Proof of the Riemann hypothesis

Toshiro Takami*
mmm82889@yahoo.co.jp

Abstract

I treat Riemann hypothesis as an infinite series and proved it.

key words

Riemann-Zeta function, non-trivial zero point, infinite series

1 introduction

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad s = c + ix
\] (1)

If \(c = 1/2 \), \(x \) is non-trivial zero value, then Eq. (1) becomes zero.

\[
\zeta(s) = 2^s \pi^{s-1} \sin \left(\frac{s\pi}{2} \right) \Gamma(1 - s) \zeta(1 - s)
\] (2)

\[
\xi(s) = \frac{1}{2} s(s - 1) \pi^{-s/2} \Gamma \left(\frac{1}{2} s \right) \zeta(s)
\] (3)

which satisfies:

\[
\xi(s) = \xi(1 - s)
\] (4)

The formula

\[
\cos \theta + i \sin \theta = e^{i\theta}
\]

*47-8 kuyamadai, Isahaya-shi, Nagasaki-prefecture, 854-0067 Japan
can be rewritten as shown below.

\[\cos \theta - i \sin \theta = e^{-i\theta} \]

Riemann-Zeta Function is also defined as below. (put \(s = c + ix \).)

\[
(1 - \frac{2}{2^s}) \zeta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s} = \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^s} - \sum_{n=1}^{\infty} \frac{1}{(2n)^s}
\]

\[
= \sum_{n=1}^{\infty} \left[\frac{1}{(2n - 1)^{c+ix}} - \frac{1}{(2n)^{c+ix}} \right] = \sum_{n=1}^{\infty} \left[\frac{(2n - 1)^{-ix}}{(2n - 1)^c} - \frac{(2n)^{-ix}}{(2n)^c} \right]
\]

Using the formula \(a^{b+ix} = a^b \left[\cos(x \ln a) + i \sin(x \ln a) \right] \)
equal if \(b=0 \)

\(a^{-ix} = \cos(x \ln a) - i \sin(x \ln a) \)
equal \((2n)^{-ix} = \cos(x \ln(2n)) - i \sin(x \ln(2n)) \)

\[
= \sum_{n=1}^{\infty} \left[\frac{\cos(x \ln(2n - 1)) - i \sin(x \ln(2n - 1))}{(2n - 1)^c} - \frac{\cos(x \ln(2n)) - i \sin(x \ln(2n))}{(2n)^c} \right]
\]

\[
\zeta(s) = \left[1/(1 - 2^{1-s}) \right] \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}
\]

\[
= \left[1/(1 - 2^{1-s}) \right] \sum_{n=1}^{\infty} \left[\frac{\cos(x \ln(2n - 1)) - i \sin(x \ln(2n - 1))}{(2n - 1)^c} - \frac{\cos(x \ln(2n)) - i \sin(x \ln(2n))}{(2n)^c} \right] = 0
\]

\[
\left[1/(1 - 2^{1-s}) \right] \neq 0
\]

\[
\sum_{n=1}^{\infty} \left[\frac{\cos(x \ln(2n - 1))}{(2n - 1)^c} - \frac{\cos(x \ln(2n))}{(2n)^c} \right] = 0
\]

\[
\sum_{n=1}^{\infty} \left[\frac{\sin(x \ln(2n - 1))}{(2n - 1)^c} - \frac{\sin(x \ln(2n))}{(2n)^c} \right] = 0
\]

Although \(x \) is treated as a real number, \(x \) is a non-trivial zero value.

From Eq.(9), it is estimated that \(\cos \) is a real value and \(\sin \) is an imaginary value. When this
real value and the imaginary value reach zero simultaneously, they become non-trivial zero value. Both \(\cos \theta \) and \(\sin \theta \) just rotate the circle with radius 1. Therefore, no matter how large the value of \(x \) or how small the value of \(x \) is, no failure can occur.

Eq.(1) is the definition of Riemann-Zeta function itself, and Eq.(11) and Eq.(12) are modified Eq.(1).

Eq.(11) and Eq.(12) hold when \(c = 1/2 \), \(x \) is non-trivial zero value.

And, from Eq.(1), \(\Re(s) = 1/2 \)

Proof complete.

References

Please raise the prize money to my little son and daughter who are still young.