- 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
The SRQM Interpretation of Quantum Mechanics
s A Tensor Study of Physical 4-Vectors s

SR —» QM

Using Special Relativity (SR) as a starting point, then noting a few empirical 4-Vector facts,
one can instead *derive* the Principles that are normally considered to be
the Axioms of Quantum Mechanics (QM). Hence, [SR—QM]

Since many of the QM Axioms are rather obscure, this seems a far more logical and
understandable paradigm than QM as a separate theory from SR, and sheds light on the
origin and meaning of the QM Principles. For instance, the properties of SR <Events>/can
be “quantized by the Metric”, while SpaceTime & the Metric are not themselves “quantized”,
in agreement with all known experiments and observations to-date.

The SRQM or [SR—QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

or. Why General Relativity (GR) is *NOT* wrong

Recommended vewing or: Don't bet against Einstein ;) AT
Wit Fi-To-Page & Page-Up/bown : QM, th I did the Math...
or. , (NG easy way... Ad Astra...Magnum Opus

ex. Firefox Web Browser

SRQM: A treatise of SR—QM by John B. Wilson ver 2020-Feb-27 .06



mailto:SciRealm@aol.com

SR — QM - 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
The SRQM Interpretation of Quantum Mechanics
s A Tensor Study of Physical 4-Vectors s

4-Vectors = 4D (1,0)-Tensors are a fantastic language/tool for describing the physics of both relativistic and quantum phenomena.
They easily show many interesting properties and relations of our Universe, and do so in a simple and concise mathematical way.
Due to their tensorial nature, these SR 4-Vectors are automatically coordinate-frame invariant, and can be used
to generate *ALL* of the physical SR Lorentz Scalar (0,0)-Tensors and higher-rank SR Tensors.
Let me repeat: You can mathematically build *ALL* the Lorentz Scalars and larger SR Tensors from SR 4-Vectors.

4-Vectors are likewise easily shown to be related to the standard 3-vectors that are used in
Newtonian classical mechanics, Maxwellian classical electromagnetism, and standard quantum theory.
Each 4-Vector also connects a special relativistically-related scalar to a 3-vector:
ex. energy (E) & 3-momentum () as 4-Momentum P = (E/c,p)

Why 4-Vectors as opposed to some of the more abstract mathematical approaches to Quantum Mechanics (QM)?
Because the components of 4-Vectors are physical properties that can actually be empirically measured.
Experiment is the ultimate arbiter of which theories actually correspond to reality. If your quantum logics and
string theories give no testable/measurable predictions, then they are basically useless for real, actual, empirical physics.

In this treatise, | will first extensively demonstrate how 4-Vectors are used in the context of Special Relativity (SR),
and then show that their use in Relativistic Quantum Mechanics (RQM) is really not fundamentally different.
Quantum Principles, without need of QM Axioms, then emerge in a natural and elegant way.

| also introduce the SRQM Diagramming Method: an instructive, graphical charting-method, which visually shows how

the SRQM 4-Vectors, Lorentz 4-Scalars, and 4-Tensors are all related to each other.
This symbolic representation clarifies a lot of physics and is a great tool for teaching and understanding.

SRQM: A treatise of SR—QM by John B. Wilson
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SR - QM

S R QM 4-Vector SRQM Interpre;?tiQo'\;l]
Some Physics:Mathematics
I Abbreviations & Notation

GR = General Relativity t, = 1 = Proper Time (Invariant Rest Time) =t/y : «Time Dilation— t=1t
SR = Special Relativity L, = Proper Length (Invariant Rest Length) = yL : —Length Contraction— L = Lo/y
CM = Classical Mechanics B = Relativistic Beta = v/c = {0..1}A ; v = 3-velocity = {0..c}fi ; v = |v|

EM = ElectroMagnetism/ElectroMagnetics vy = Relativistic Gamma = 1/N[1-?] = 1/N[1-B:B] = 1A[1-|B[*] = {1..}

QM = Quantum Mechanics D = Relativistic Doppler = 1/[y(1-|B|cos[6])]

RQM = RelatiViStiC Quantum MeChaniCS /\p’v = Lorentz (SpaceTime) Transform: prime (‘) specifies alt. reference frame, {boosts, rotations, reflections, identity}
NRQM = Non-Relativistic Quantum Mechanics = (standard QM) 1, = 3D Identity Matrix = Diag[1,1,1] ; I = 4D Identity Matrix = Diag[1,1,1,1]

QFT = Quantum Field Theory = (multiple particle QM) 8= 8= 8;=Is = {1if i5j, else 0} 3D Kronecker delta

QED = Quantum ElectroDynamics = QFT for (e:)’s & photons 8= 84= 8,0= L) = {1 if u=v, else 0} 4D Kronecker Delta (unique rank-2 isotropic tenson
RWE/QWE = Relativistic/Quantum Wave Equation . gl = {even:+1, odd:-1, else:0} 3D Levi-Civita anti-symmetric permutation (unigue rank- isotropic tenson
KG = Klein-Gordon (Relativistic Quantum) Equation/Relation " = {even:+1, odd:-1, else:0} 4D Levi-Civita Anti-symmetric Permutation (one ofafew...
PDE = Partial Differential Equatlon {other upper:lower index combinations possible for Levi-Civita symbol, but always anti-symmetric}

MCRF = Momentarily Co-Moving Reference:Rest Frame N —nu—Diag[1, -1 lee — V' + H" = 1" Minkowski “Flat SpaceTime” Metric

EoS = Equation of State (Scalar Invariant) = w = P/ pe 0%, = 8", = Diag[1, 1] = Iwy = g @sowe e (1,1)-Tensor Identity Mixed-Metric /"

Pr= 4-TotaIM9m§ntum = (H/c,pr) =2 [P] = Z[All 4-Momenta] . _ T*T' = Temporal “(V)ertical” Projection Tensor, also \V*, and V,,, =,
H = The Hamiltonian = y(P1U) (-energy used in advanced o, (ke + PE) for v << e} H™ = ™ - THTY = Spatial “(H)orizontal” Projection Tensor, also H*, and H,, Z_ H”
I— = The Lagrang|an = '(PTU)/Y { “energy” usedﬂin advanced CM, (KE - PE) for |v| << c} Light-Cone
V = 3-gl’adlent —>{rectangular basis} (ax7ay:az) = (d/aXva/aY7a/aZ) Tensor—lndex & 4-Vector Notation:
d" = dIoR, = @ = dr = 4-Gradient = (9,/c,-V), a (1,0)-Tensor A=a= () = (a'a’,a’)= (a): 3-vector [Latin index {1..3}, space-only]
3, = 3/6R¥ = Gradient One-Form = (9,/c,V), a (0,1)-Tensor A= A= (a") = (a°,a',a",a") = (a’,a): 4-Vector [Greek index {0..3}, TimeSpace]
S = Saion = The Action ( 4-TotalMomentum Pz = -9[S] ) A"B, = AB'= A-B = A"n,,B": Einstein Sum : Dot Product : Inner Product
aetion ! A"B' = A®B: Tensor Product : Outer Product
® = Qphase = The Phase ( 4-TotalWaveVector Ky = -9[®d] ) : : ) _ .
¥ = Sum of Range = multi (+) ; I = Product of Range = multi (x) A'B' - A'B* = AMBY) = AAB: Wedge Product : Exterior Product : Anti-Symmetric Product
A = Difference ; d = Differential ; 9 = Partial A'B"- A"B" = 0" (2,0)-Zero Tensor

vl << c: speed (v = |v|) approx.: much less than LightSpeed (c) A'B - B'A"=[A",B"] = [A,B]: Commutation | femporal object: blc, Spatial object: red
. . vo_ vV = IXe Imespace object: rpie
(1 +X)n ~ (1 +nx+ O[Xz])a fOI’ |X| << 1: CIaSSlcaI Ilmlt approx. APB BHA ??? The mnemonic beir?g blue andjred mi)E)elé nE)ake purple

SRQM = The [SR—QM] Interpretation of Quantum Mechanics, by John B. Wilson TimeSpace = SpaceTime: | sometimes write

actually [GR—SR—RQM—QM—(CM & EM)] it as “TimeSpace” just to match the order of
4-Vector (temporal, spatial) components




SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
The SRQM Interpretation: Links

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

See also:

nttp://scirealm.org/SRQM.html (it discussion)
nttp://scirealm.org/SRQM-RoadMap.html (main sram website)
nttp://scirealm.org/4Vectors.html (-vector study)
nttp://scirealm.org/SRQM-Tensors.html rensor & 4-vector Calculator)
nttp://scirealm.org/SciCalculator.html (complex-capable RPN Calculator)

or Google “SRQM”

http://SCireaIm.Org/S RQM pdf (this document: most current ver. at SciRealm.org)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

SRQM Study: Physical / Mathematical Tensors
4D Tensor Types: 4-Scalar, 4-Vector, 4-Tensor
ﬁf-ll;?l'?;soiz:gltf\}/lectorscomponent Types: b ) thCriRBe.av'UﬂfJ?

: = _ : SR:Minkowski Metric
Matrix Format SRQM Diagram Format O IR] =R =n"=V"+H" >
Temporal + © Spatial Diag[1,-1,-1,-1] = Diag[1,-1;3)] = Dia 1 -0
SR 4—Sgalar_S : . SpaceTime Dimensions g{ll:n Cartesian fo:ll'm} Partglc[a Phyggl Con -n 7l
a “number”: magnitude SR 4-Scalar SRQM Diagram Ellipse: y -
4-Scalars, 0 index = rank 0 {rluu} - 1/{n } N = 5
S (0,0)-Tensor S ofien as So M atruisitin (m,n)-Tensor has:
LOI’entZ Scalar 4° = (1) = 9 component (m) # upperindices ﬁ A 4'Gradient a“
(n) # lower-indices a = 3/3Rp = (3t /C,'V)
SR 4-Vector V¥
an “arrow”: magnitude and 1 direction SR 4-Vector SRQM Diagram Rectangle: SR 4-CoVector = “Dual”’ 4-Vector 4-Position R"
- 5 3 (QRORILET RN ~ Veciors, 1 index = rank 1 (0,1)-Tensor aka. One-Form R = (ct,r) =
\Y \Y AV \Y VH = (V”) = (VO,V) = (VO,VI) 4*1 = 4 corners Cp = r]chO — (Cu) - (CO,Ci) N (Ct,Cx,Cy,Cz)

4" = (1+3) = 4 components SpaceTime
JR=0,R"=4

Dimension

— (V,V,V,V9) = (c’,-c) = (c°,-¢') — (c',-c*,-¢', )

VvV — - row:col
SR 4-Tensor TV =T SR Tl

a “matrix or dyad”: magnitude and 2 directions

SR SR
Mixed 4-Tensor @ Lowered 4-Tensor
(1,1)-Tensor (0,2)-Tensor

SR

2,0)-Tensor T : . .
T00 | O T02 703 ( )Tuv - MMI’er?goDrlsa Zr?r?;ec))(ciaraonnk. 5 Mixed 4-Tensor
’ (1,1)-Tensor

=
.

00 -0k 4*2 = 8 corners
, = = = Tensor Property:
LS L E;O Trjk } 4?= (1+6+9) = 16 components IR LS T =N T T = Nl T™ [
T2 T2 T2 T2 ’ = = = Rank = # of indices
= 0 Tk 0_ TO {0 = 4-Scalar}
TR0 Ta! T32 T3 [Ttt Ttx Tty TtZ] [ TO ’TO ] [ T O’T _k ] [ TOO :TOK ] {1 = 4-Vector}
o L oo for 2-index tensor components: [ TP, T] [ To,Tk] [Tio,Tik] etc...

[TXt,TXX,TXy,TXZ] 6 Anti-Symmetric (Skew)

Temporal region: IR EAREI +10 Symmetric

Spatial region:
Mixed TimeSpace region:

00 ok Dimension = # of

[+T, -T™] values an index can
_Tio0 ik use

[ T, +T ] {SR Tensors = 4D}

[ +TOO, _TOk]
[+T°, -T*]

7t Tzx Tzy T2z [ +T00’ +T0k]
[T, 77,77,77] 16 General components [ -T°,-T*]
The mnemonic being red and blue mixed make purple

SR 4-Tensor SR 4-Vector

. . “ _ ” U] = W — TH —
(2.0)-Tensor T (1,0)-Tensor V¥ = V = (v.v) SR 4-Scalar Technically, all these objects are “SR 4-Tensors”, but we usually reserve Trace[T"] = nuT" =T =T

(0,0)-Tensor S the“name “4-Ten”sor" for objects with 2 (or more) indices, and use V-V = VP, VY = [(VO)2 - vev] = (VO)2
orentz Scala the “(m,n)-Tensor” notation to specify all the objects more precisely. = Lorentz Scalar

(1,1)-Tensor T*, or T, §l SR 4-CoVector: OneForm




SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
SRQM Diagramming Method

of Physical 4-Vectors John B. Wilson

The SRQM Diagramming Method shows the properties and relationships of various SRQM Diagramming Method
physical objects in a graphical way. This “flowchart” method aids understanding. ﬁ

u \% uv
Representation: 4-Scalars bycellipses; 4-Vectors by rectangles, 4-Tensors byloctagons. D 31[R‘} 81 [Ij ] [r)] 1 -5
Physical/mathematical equations and descriptions inside each shape/object. —Diag] ]=Diag[1,-5"]
Sometimes there will be additional clarifying descriptions around a shape/object. Minkowski Metric O0—e
4-Tensor

4-Displacement
AR=(cAt,Ar)
dR=(cdt.d

Relationships: Lorentz Scalar Products or tensor compositions of different 4-Vectors are on 4-Gradient ¢
simple lines(—) between related 4-Vectors. Lorentz Scalar Products of a single 4-Vector, or o= (8 /c,-V) YRY,
Invariants of Tensors, are next to that object and often highlighted in a different color. =0/0R, -Vector

r
4 Posmon R*

paceTime ®
Properties: Some objects will also have a symbol representing its properties nearby, and E¥I=QIEFI=U Y o R—a Ru 4

Flow: Objects that are some function of a Lorentz 4-Scalar with another 4-Vector or
4-Tensor are on lines with arrows(—) indicating the direction of flow. (ex. multiplication) &

Uol..]

sometimes there will be color highlighting within the object to emphasize temporal-spatial vd/dt[..]
properties. | typically use & — @ | dldt|
Alternate ways of writing 4-Vector expressions in physics: Prggﬁ\’g{;‘/ee

(A-B) is a 4-Vector style, which uses vector-notation (ex. inner product "dot=-" or exterior
product "wedge=A"), and is typically more compact, always using bold UPPERCASE to

represent the 4-Vector, ex. (A-B) = (A'n.,B"), and bold lowercase to represent 3-vectors, E=mii2"=‘°;t;i;§=YEo 4-Velocity U"
ex. (a-b) = (al5xb"). Most 3-vector rules have analogues in 4-Vector mathematics. ‘ ----- | 2 @ U=y(c,u)

dR/dt
(A"n.B") is a Ricci Calculus style, which uses tensor-index-notation and is useful for more

complicated expressions, especially to clarify those expressions involving tensors with Rest 4-Scalar

more than one index, such as the Faraday EM Tensor F* = (¢"A" - 8'A") = (@ * A)

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

Trace[T"] =N, T =TH, =T
Relativistic Gamma y = 1\[1- BB ], B = u/c V-V = Vi, VY = [(V) - vev] = (Vo)?
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
SRQM Tensor Invariants

of Physical 4-Vectors John B. Wilson

One of the extremely important properties of Tensor Mathematics is the fact that there are SRQM Diagramming Method
numerous ways to generate Tensor Invariants. These Invariants lead to Physical Properties that
are fundamental in our Universe. They are totally independent of the coordinate systems used to

Trace Tensor Invariant
SpaceTime Dimension

measure them. Thus, they represent symmetries that are inherent in the fabric of SpaceTime. a[R]zau[Rv]znuv _ from Tr[..] of Minkowski
See the Cayley-Hamilton Theorem, esp. for the Anti-Symmetric Tensor Products. —Diag[1,-1,-1,-1]=Diag[1,-5"]

A Minkowski Metric
Trace Tensor Invariant: Tr[T"] = n, T = T", = T," = X[ EigenValues A, ] for T", o—e

4-Te
4-Gradient o el

for 4D anti-symmetric a:(at /C,‘V)
Inner Product Tensor Invariant: IP[T*] = T"T,, : IP[T*] = LSP[T", T'] = T"n,T" = T*T, = T-T =dloR,

Determinant Tensor Invariant: Det[T"'] = I1[ EigenValues A, ] for T, — (Pfaffian[T*'])? 4- Alep(lca:z?rRS)nt
dR=(cdt.d

4-\/ector

r
4-Position R*
R=(ct,r)=<Event>
, 4-Scalar (cLn) E
Lorentz Scalar Product Tensor Invariant: LSP[T",S"] = T'n,S' = T"S, = T,S" = T-S = t°s’-t-s = t,s°% Lorentz i o
4,[R"]=0R"/oR"=N\"

4-Divergence Tensor Invariant: 4-Div[T*] = 8,T" = aT¥/oX" = &-T : 4-Div[T"] = 3,T" = aT"/oX" = S* }

U-al..]
yd/dt[..]

Phase Space Tensor Invariant: PS[T"] = ( d® /1% ) = ( dt' dt? dt* / t° ) for (T-T) = constant

The Ratio of 4-Vector Magnitudes (Ratio of Rest Value 4-Scalars): T-T / S-S = (% / 8%)? #éag’;rfr?\:‘:ﬁant ]_g y d/dt[..
. Determmant_ Inner Produc_t SpaceTime Dimension Propngnr_ne
Tensor EigenValues A, = { A1, A2, As, As }: coud also be indexed 0.3 Tensor Invariant ~ Tensor Invariant 7. 4-Divergence of Derivative

Affine Transform  SpaceTime

; . : 5 4-Position
. . . (Anti-)Unitary from Dimemsion from
The various Anti-Symmetric Tensor Products, etc.: Det]..] of Lorentz  IPY..] of Lorentz Einstein's

= Trace = X[ EigenValues A, ] for (1,1)-Tensors E=mc?=ym.c*=y 4-Velocity U*
T [GTBB] Asymm Bi-Product — Inner Product 9 = > U=y(c,u)
T%T%TY,; = Asymm Tri-Product — ?Name? dR/dt
T% TP TY, T% = Asymm Quad-Product — 4D Determinant = I1[ EigenValues A, ] for (1,1)-Tensors
Rest 4-Scalar Lorentz Scalar Tensor Invariant
These are not all always independent, some invariants are functions of other invariants. Phase Space Tensor Invariant Speed of LighiES
4-Momentum-Phase-Space LSP[..] of 4-Velocity
SR 4-Tensor SR 4-Vector WeightingiSaail 5 Vo TH —
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar — Trace[T"] = r]uVOT“2 =TV, = TO i
(1,1)-Tensor T*, or T, SR 4- CoVector (0,0)-Tensor S Relativistic Gammay = 1\[1-B-B 1, B = ulc V-V =V, VY = [(V) - vev] = (V)

orentz Scala = Lorentz Scalar



SR —» QM 4-Vector SRQM Interpretation

SRQM Study: Physical/Mathematical Tensors **
Tensor Types: 4-Scalar, 4-Vector, 4-Tensor

i - Examples — Venn Diagram

Physical 4-Tensors: Objects of Reality which have Inve

ProperTime

SR 4-Scalar~Speed-of-Light (c=V[U-U saceTims

U-a=d/dv=yd/dt
(EM Charge (Q=[pd°x)(0,0)-Tensors Derivative 9-R=0,R"=4
Lorentz Scalar S = Planck’s Const (n) - T X=cdt-dx-dy-dz Dimension

SR 4-Vector 4-Position 4-Velocity 4-Momentum SR 4-CoVector = “Dual” 4-Vector Gradient One-Form

(1,0)-Tensors R=R¥=(ct,r)=<Event> || U=U"=y(c,u) | |P=P"=(mc,p)=m,U|" (0,1)-Tensors aka. One-Forms 8,=(8,/c,V)

VE =V = () —(ct,Xx,Y,2) =dR/dt =(E/c,p)=(E./c*)U Cu = NwC’ = (c,) = (Co,C:) — (C1,CrCy,C2) =9l0R" —(9,/c, )
I B (VO’ ) = (VO’ ) = (Vt! P ) = (CO’ ) B (CO’ ) i (Ct’ 2 2 ) :(3/Cat, )

2 index-count Tensors: Projection (Mixed) Tensors P*, T
- - P -Tensor
( Minkowski ) R e Tonsor (Tempora| PrOjeCtIOﬂ P, — V“\) SR Lowere

W=MRV]= =\/HV -
SR 4-Tensor "~/ IRTARI=VE (1,1)-Tensors (Spatial Projection P*, —» 1) | a0 11O 71 overed Minkowski
(2,0)-Tensors Tu = Mo TH° =uv NueMNve AR = Mo = (-)
™ = Faraday EM 4-Tensor Lorentz Lorentz Boost To T Metric
[T, TOk Fof = 0°AP - OPFA® =0 A A [ T%,T%]  &[R]=AY, N, — B, { T-(;O ’ Ok]] (Proiection Tensors Py, y
o i Transform : P Temporal Proj. P, — Vy
[ T PerfeCt Fluid 4- Tensor [ TO : ] Tensors Lorentz, Parltylnyerse p . Lo -
TV = o)vpv po /\pv — (P')Hv (Spatla' PrOJ. va — )
Higher index-count Tensors: Riemann Curvature Tensor Weyl (Conformal) Curvature Tensor
RPouv = 9y Pus - Ao + TPMe — TPl — 0%, for SR “Flat” Minkowski SpaceTime CPsu = Traceless part of Riemann [R%,]

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,¥
(0,2)-Tensor T,

Trace[T"] =N, T" =T, =T
V-V = Vi, VY = [(VO) - vev] = (V!
= Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S
| orentz Scalar,

Ricci Decomposition of Riemann Tensor
Rp = Sp (scalar part)+ Ep (semi-traceless part)+ Cp (traceless part)
opv




SR - QM 4-Vector SRQM Interpretation

SRQM Study:
SRQM 4-Vectors = 4D (1,0)-Tensors
et SRQM 4-Tensors = 4D (2,0)-Tensors

John B. Wilson
4-Vector = 4D Type (1.0)-Tensor S| Dimensional Units Temporal_: Spatial ] components
4-Position R =R" = (ct,r) = X = X* {ait notation) [m] [Time (t) : Space (1)]
4-Velocity U = U¥ = y(c,u) = (yc,yu) [m/s] [Temporal “velocity” factor (y) : Spatial “velocity” factor (yu), Spatial 3-velocity (u)]
4-UnitTemporal T = T = y(1,5) = (,78) [simensioniess] [Temporal “velocity” factor () : Spatial normalized “velocity” factor (v(), Spatial 3-beta ()]
4-UnitSpatial S = S* = ya(B-A,1) = (y4:B-A,yp0) {T(imensio;le]ss] %Tempor?llz‘)‘vﬂocity” fa(itor ((W.-.)?-ﬁ) : Spatial normalized “velocity” factor (y4:11), Spatial 3-beta ()]
4-Momentum P = P* = (E/c,p) g-m/s energy : 3-momentum
4-TotalMomentum Py = P¥ = (E1/c=H/c,p:) = Za[Pa] [kg-m/s] [total-energy (E+) = Hamiltonian (H) : 3-total-momentum ()]
4-Acceleration A = A" = y(cy',y u+ya) [m/s?] [relativistic Temporal acceleration (y") : relativistic 3-acceleration (y'u+ya), 3-acceleration (a)]
4-Force F = F¥ = y(E/c,) = (yE/c,yf) = (yE/c,yp) [N = kg-m/s?] [relativistic power (YE), power (E) : relativistic 3-force (yf), 3-force (f = p)]
4-WaveVector K = K* = (w/c,k) ‘ [rad/m] [angular-frequency (w) : 3-angular-wave-number ()]
4-TotalWaveVector Kr = K¢ = (w/c, k1) = Za[Kn] [rad/m] [total-angular-frequency (wr) : 3-total-angular-wave-number (k)]
4-CurrentDensity=4-ChargeFlux J = J* = (pc,)) [C/m?s = C-m/s-1/m®]  [charge-density (p) : 3-current-density = 3-charge-flux (/)]
4-VectorPotential A = A" = (¢/c,2) — Agm [T-m = kg-m/C-s] [scalar-potential = voltage (©) : 3-vector-potential (2)], typically the EM versions (®eu) : (2ew)
4-PotentialMomentum Q = Q" - gA = (V/c=qu/c,q2) [kg-m/s] [potential-energy (V = q®) : 3-potential-momentum ( ), EM ver (Vew = q®ew) : (Gem = Qaem)
4-Gradient dg = dx = 9 = ¢ = dIOR,, = 9ldX, = (0 /;;, ) [1/m] [Temporal differential (¢, ) : Spatial 3-gradient(\/ = x)]
4-NumberFlux N = N = n(c,u) = (nc,nu) [#/m*s =#m/s-1/m°]  [Temporal number-density (n) : Spatial 3-number-flux (n = nu)]
4-Spin S = 8" = (s°,5) = (s°B,5) = (5-u/c,3) [J's =N'm's =kg'm?/s] [Temporal spin (s° = s-) : Spatial 3-spin (s)] ; {because SL T > S:T=0=y(s"-sB)}
4-Tensor = 4D Type (2,0)-Tensor [ Temporal-Temporal : Temporal-Spatial : Spatial-Spatial ] components
Faraday EM Tensor F** = [ 0 , -e/c] [T =kg/C-s] [ 0 : 3-electric-field (e = €') : 3-magnetic-field (b = b") ] F = 9AA = OPAY - O'AY
[+e'lc, ]
.=N..=k.2 -2 = - nl) - - = |k W = YWAP = YHPV _ XYVPH
4-Angular Momentum M* = [ 0, -cn'] US m-s = kg-m/s] [0 : 3-mass-moment (n = n') : 3-angular-momentum (I = 1) ] M* = XAP = X'P" - X'P
Tensor [+cn, ]

. ) e ) [imensiontess] [1:0:-1g=-5"] n" = "R = V¥ + H*
Minkowski Metric n™ = VV*'+H i Diag[1, '] [imensioness] [1:0: 0=0%] VW= THT
Temr_)oral Rropchon Tensor V"' — D|.ag[1 ,0] [gimensiontess] [0:0: Iy =-3"] H» = v - TT
Spatial Projection Tensor H"" — Diag[0,-0"]

rfi i v ; 3 _ 2 _ 2 T = (Peotpo) T'T" - (Po)d*[R']
Perfoct-Fiuid Stress-Energy T — Diaglo..0.0p]  [4im" =Nim* =kg/m'sT [0.:0: ply = po'] T = (puo) VP + (-pH

ensor

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T (1,0)-Tensor V* =V = (V°,v)

SR 4-Scalar 4-Tensors can be constructed from the Tensor Products of 4-Vectors. Technically, 4-Tensors

refer to all SR objects (4-Scalars, 4-Vectors, etc), but typically reserve the name 4-Tensor for

(0,0)-Tensor S o . X c
SR Tensors of 2 or more indices. Use (m,n)-Tensor notation to specify more precisely.

| orentz Scalar,

(1,1)-Tensor T or T, SR 4-CoVector
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V)




SR - QM 4-Vector SRQM Interpretation

SRQM Study:
4-Scalars = (0,0)-Tensors = Lorentz Scalars
eosiy = 4D lnvariants — Physical Constants Rt

4-Scalar = Type (0,0)-Tensor = SR Invariant Sl Dimensional Units 4-Scalar = Type (0,0)-Tensor {generally composed of 4-Vector combinations with LSP}

RestTime:ProperTime (t, = 1) [s] (tr) = [R-U)/[U-U] = [R-R)/[R-U] **Time as measured in the at-rest frame**
RestTime:ProperTime Differential (dt, = dt) [s] (dt) = [dR-UJ/[U-U] **Differential Time as measured in the at-rest frame**
ProperTimeDerivative (d/dt, = d/dr) [1/s] (d/dt) = [U-0] = y(d/dt) **Note that the 4-Gradient operator is to the right of 4-Velocity**
Speed-of-Light (c) [m/s] (c) = Sqrt[U-U] = [T-U] with 4-UnitTemporal T = y(1,8) & [T-T] = 1 = “Unit”
RestMass (m, = E,/c?) [ka] (m,) = [P-U)/[U-U] = [P-R]/[U-R] (mo—m¢) as Electron RestMass
RestEnergy (E, = m,c? = hw,) [J = kg-m?/s?] (Eo) = [P-U]
RestAngFrequency (w, = E/h) [rad/s] (wo) = [K-U]
RestChargeDensity (po) [C/m?] (po) = [J-UY/[U-U] = (q)[N-UJ/[U-U] = (g)(n,)
RestScalarPotential (¢,) [V =J/IC =kg-m%C-s?] (¢o) =[A-U] (Po—@,0) as the EM version RestScalarPotential
RestNumberDensity (n,) [#/mq] (no) = [N-U)/[U-U]
SR Phase (q)phase) [rad]angle (q)phase,free) = '[KR] = (kr - (JJt) : (¢phase) = '[KTR] = (kT'r - th) **Units [Angle] = [WaveVec.]-[Length] = [Freq.]-[Time]**
SR Action (Saction) [J.S]action ( actiOn’free) = -[PR] = (pr - Et) : (Saction) = '[PTR] = (pT'r = ETt) **Units [Action] = [Momentum]-[Length] = [Energy]-[Time]**
Planck Constant (h = h*21T)c,c [J's =N-m's =kg-m?/s] (h)=[P-Ul/[Keye'U] = [P-R]/[Keye'R] : Keye = K/(27T)
Planck-Reduced:Dirac Constant (h = h/21T)aq [J's =N-m-s =kg-m%s] (h) = [P-UJ/[K-U] = [P-RI/[K-R] : K= (2T)Keyc
SpaceTime Dimension (4) [simensioniess) (4) = [8-R] = Tr[n°*] = ALA* SR Dim = 4, InnerProduct[any Lorentz Transf{cont.,discrete}] = 4
Electric Constant (o) [F/m = C*-s?/kg-m’] 3-F® = (o) = (1/e462)d Maxwell EM Eqn. w/ source  poto = 1/c?
Magnetic Constant () [H/m = kg-m/C?] 3-F® = (uo)J = (1/e,c%)J Maxwell EM Eqn. w/ source Moo = 1/C2
EM Charge (q) . [C=As] U-F = (1/q)F Lorentz Force Eqn. (q— -e) as Electron Charge
EM Charge (Q) “alt method [C=As] (Q) = [p(dxdydz) = [pd®x = [poyd®x = [(po)(dA)(ydr) Integration of volume charge density
E{ertéc\lleomr(n’\(ja) V) [#]3 (N) = [n(dxdydz) = [nd®x = [neyd®x = [(n,)(dA)(ydr) Integration of volume number density
Rest(MCRF) EnoergyDensity (0o = NeEL) [m ]3 N , (Vo) = [y(dxdydz) = [yd®x = [(dA)(ydr) Integration of volume elements (Riemannian Volume Form)
Rest(MORF) Pressure (p.) eo = Moto [J/m3 = N/m2 = kg/m-sz] (Peo) = Vep T = Temporal “(V)ertical” Projection of PerfectFluid Stress-Energy Tensor

Po [J/m* = N/m® =kg/ms’] (p,) = (-1/3)HeT = Spatial “(H)orizontal” Projection of PerfectFluid Stress-Energy Tensor
Faraday EM InnerProduct Invariant 2(b-b-e-e/c?) [T? = kg’/C?:s] 2(b-b-e-e/c?) = IP[F**] = F®*F
Faraday EM Determinant Invariant (e-b/c)? [T* = kg"/C*s"] (e-b/c)? = Det[F**] — (Pfaffian[F])2, since F* is (2n x 2n) square anti-symmetric

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T | (1,0)-Tensor V* = V = (+*,v) SR 4-Scalar Lorentz Scalars = (0,0)-Tensors can be constructed from

(0,0)-Tensor S
| orentz Scalar,

(1,1)-Tensor T or T, SR 4-CoVector
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V)

the Lorentz Scalar Product (LSP) of 4-Vectors




SR —- QM

SRQM Study: Physical 4-Vectors
Some SR 4-Vectors and Symbols

A Tensor Study
of Physical 4-Vectors

4-Gradient

d=ar=dx=0"=(0,/c."V) i
-0, —~(3,0-2,-3, -2 |
=(/cat,-0lox,-9 ay,~9oz)

4-Displacement
AR=AR"=(cAt,Ar)=R2-R1 finite}

(8/c.V)

A

o—e
d R=d Rp=(Cdt: d I") {infintesimal}
4-Position _
R=R'=(ct,r)=<Event> [t

Poincaré Invariant

—(ct,x,y,2)
alt. notation X=X*

4-Velocity J§4-UnitTemporal
U=Uf=y(c,u) § T=T"=y(1,B)

=dR/dt=cT | =y(1,u/c)=Ulc

4-Acceleration
A=A"=y(cy',y'utya)
=dU/dt=d’R/d7’ : {y’=dy/dt}

4- UnitSpatiaI 4-Spin

S= Sp—'YB (B n n) Sspm Ssplnp

SR 4-Tensor
(2 0)-Tensor T+

SR 4-Vector
(1, O) -Tensor V” V= (V)

Gradient 4-Vector [operator]

Gradient One-Form [operator]

(depends on direction fi) | =(S%5)=(B*S,5)=S.S [l

4-Momentum
P=P"= (mc p)= (mc mu)=m,U

4-WaveVector
K=K"= (w/c k)=(wo/c*)U

4-(EM)VectorPotential
A=A"=(p/c,a)=(p./c*)U
Aev=Aen'=(Pem/C,aEm)

4-(EM)VectorPotentialMomentum
Q Q“-(q<p/c qa)= (V/c q)

4-ChargeFlux : 4-CurrentDensity

- :
J=J"=(pc,j)=p(c,u)=p.U
=qn.U=gN
> 4-(Dust)NumberFlux

N=N"=(nc,n)=n(c,u)=n,U

4-ThermalVector
4-InverseTemperatureMomentum
G) ©"=(8°,0)= (c/kBT U/kBT) (8./c)U

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

4-Force

.

F:FM=Y(E/C,f)=y(E/C!p)

‘- .
=dP/dt=ydP/dt

4-MassFlux
4-MomentumDensity

G=G"=(p_c,9)=p_(c,u)
=m,N=n,m,U=Q/c?
4-HeatEnergyFlux

Q=Q"=(p_c,q)=p.(c,u)
=E,N=n,E,U=c*G

[RHF->

oll-»
4-PureEntropyFlux

Sent_purezsent_pureu
— 0
- (Sent_pure ,Sent_pure)

=SentN=nOSentU

4-HeatEntropyFlux

S(—)nt_heatzsent_heatu

— 0
_(Sent_heat :Sent_heat)

=S_N+Q/T,=S_N+E,N/T,

SR 4-Scalar 4-Vector V = V" = (V")

SR 4-Vector V = V¥ = (

(0,0)-Tensor S
orentz Scala

=no(S, +Eo/To)U
V') = (vi,V) v = dv/dt Trace[T"] =N, T =TH, =T
)| = dev/dee |VEV= ViV = ()7 < vev] = (Vo)?
: = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Study:
Primary/Primitive 4-Vectors:
s 4=UnitTemporal T & 4-UnitSpatial S s

é‘.umtT?m‘l’Oral T-T = y(1,8)-v(1.B) Felaste Ganma y =11 BRL B e
Pt = +2(11 - B-B) = 2(1 - B-B) _ = 1A[1 - B-B1 = 111 - B
agnitude = +1 LightSpeed @ !

4-UnitTemporal Invariant () 4-Velocity Yoa = VN1 - BB = 11 - 1B,

T=T'=y(1,8) _c B U = U ZVR(/%,u) =$v(1,l3)
= T=C

=v(1,u/c) = Ulc

A
o

with B.= (B-A)A = component of
vector B along the A-direction

“Temporal” 4-Vector
Magnitude?® = +(c)?

4-UnitTemporal “Magnitude” = (c) _
— . IT A IMagnitude| = (c) In the RestFrame of a particle (8=0),
T-S = y(1,B) v,,(B-n,n) e lsa ) ¢/ the 4-Velocity appears totally
= Y*Yy(1*B- - B-A) = vy, (B-f - B-1) gf{j‘r?iggggii;‘;( ) temporal and the 4-Spin appears
=0 Dimensionless 4-UnitSpatial v totally
Ll S 1
VaghItC S N Magnitude® = -(s,)’ >
“Magnitude” = (iso) .~ %
|[Magnitude| = (s,) ’

4-UnitSpatial

$ =8"=y,(B-A,A) @ Szg.(,)I _)S—SFEB ; 233
(depends on direction n S-S = an(ﬁ A,A)- an(B A, ) Spin

4-UnitSpatial

Dimensionless

Magnitude? = -1

= Yﬁﬁz((ﬁ n*B_n) Y A (:) _(‘;Yn)z()n fi - (B n)z) Invariant (So) T'sspin — 'Y(1 ,[3)'(80,8)
== -
= -1

=(s°- Brs) = 0
thus {s°=B-s }

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T, §l SR 4-CoVector: OneForm

SR 4-Scalar 4-Vector V = V" = (V") = (V°,V) = (V%,v) Trace[T"] = N T =T# =T

USSR SR 4-Vector V = V¥ = (scalar * ¢*, ) VAV = ViV = [() - vev] = (Vo)?
orentz Scala = Lorentz Scalar




SR —- QM

A Tensor Study
of Physical 4-Vectors

f=f[txyz]

df = dt(&fat) + dx(lax) + dy(@flay) + dz(/az)
df/dt =

= (¥at) + dx/dt(@F/ax) + dy/dt(@ay) + dz/dt(#s7)
= (flat) + ux(Flax) + uy(9ay) + u.(¥az)

= (lat) + u-VIF

d/dt = (9lat) + u-V = (8t + u-V)

ProperTime

4-Gradient
a=3R=3X=3u=(3t /c,-V)
dloR, a(at/c,-ax,-ay,-az
=(9/cat,~%/ 9x,~%1 9y, %1 9z)

= Y(a/at+dr/d

= d/dt

...is a Lore

Scalar Invariant

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T, §l SR 4-CoVector: OneForm

SR 4-Vector

A Derivative
U-o
y(c,u)-(9, /c,-V)
= y(3+uV)

= yd/dt

SRQM Study:
Physical 4-Vectors

4-Position

R=R"=(ct,r)=<Event>
—(ct,x,y,2)
alt. notation X=X"

Ual..]
yd/dt[..]

E d/dt[..]

4-Velocity
: U=U"=y(c,u)
volor) M =dRidt=cT
U-al[..]
yd/dtr..]

ntz

©)

d/dt[..]

4-Acceleration

A=A"=y(cy',y'ut+ya)

=dU/dt=d’R/d7

Invariant
LightSpeed

: {y’=dy/dt}

Some 4-Velocity Relations

Rest Mass:Energy/c?

Rest Ang. Frequency/c?

Rest EM Potential/c?
Rest Voltage/c?

Rest (EM) Potential Energy/c?
qP./c*=V,/c?

Rest Charge Density

Rest Number Density

Rest Inv. Thermal Energy

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

4-Momentum
P=P"= (mc p)= (mc mu)=m,U

4-WaveVector
K=K"=(w/c,k)=(w./c*)U

4-(EM)VectorPotential )
A=A"=(¢/c,a)=((./c*)U @
AEm=AEMp=((pEM/C,aE|v|) (EM) Charge

(-

Q=0'=(q/c,qa)=(V/cq) o |}-»

4-(EM)VectorPotentialMomentum

4-ChargeFlux : 4-CurrentDensity

J=J"=(pc,j)=p(c,u)=p.U
=gqn.U=gN

4-(Dust)NumberFlux

N=N"=(nc,n)=n(c,u)=n,U

4-ThermalVector

4-InverseTemperatureMomentum
G) ©"=(8°,0)= (c/kBT U/kBT) (6./c)U

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

4-Vector V = V¥ = (V") = (V°,V)) = (V°
SR 4-Vector V = V" = (scalar * ¢/,

, ) Trace[T"] = nuT" =T =T
) V-V = Vi VY = [(V)7 - vev] = (Vo)
= Lorentz Scalar




4-Vector SRQM Interpretation

SRQM Study:
Physical 4-Vectors
S e Some 4-Gradient Relations ST

4-Gradient A SRQM Non-Zero 4-Position
a:aRzaxzaU=(at /C,'V)

A, Commutation R=R"=(ct,r)=<Event>

=9l0R, —(8,/c,-0,,-0 ,-3.) d[R]=¢"[R"]=n" [0,R] = [¢,R"] S (ctx,y,2)
2 e Metric

=(9/cat,~% ox,-91 9y, oz

= ¢"R"-R'¢" = n* alt. notation X=X"
8-0=(3,/c)>-V-V ﬁ

Invariant
d’Alembertian Wave Eqn.

Minkowski

paceTime
o R—a R“ 4

4-Momentum

ProperTime
P= P“—(mc p)= (mc mu)=m,U

Derivative

N U-o Phase (®) & Action (S)

= yd/dt Lorentz Scalars 4-WaveVector
K=K"=(w/c,k)=(wo/c*)U

=d/dt Faraday EM Tensor _
Fof = auAX- FA°=9MA i IS

VR +S/C -elc Conservation of EM (Vector)Potential
-Velocity \ Loren= e 4-(EM)VectorPotential
—| M= 4D Stokes A —

U=U*=y(c,u) Theorem Y ;. ) - o TR A=A"=(0/c,a)=(./c2)U

=dR/dt=cT

Integration of

= H=
4D Div = 4D Surface Flow Aev=Aen"=(Pen/C,aem)

Iﬂd“X(apV“) o sﬁmdS(V“Np) Conservgiijor; gf Charge 4-Ch3£%if(lg)é j )ﬁ;}(igr;iD:)DSnsity
= 4 o = . @ - = J)— y 4 )~ Mo
[, d*X(e-V) $,,dS(V-N) =gn.U=gN

Q = 4D Minkowski Region, 8Q = it's 3D boundary Consewa;'_?‘,”zogpamde % 4-(Dust)NumberFlux
d*X = 4D Volume Element, V = V¥ = Arbitrary 4-Vector Field @ ) o--->
dS = 3D Surface Element, N = N* = Surface Normal N=N*"=(nc,n)=n(c,u)=n,U

SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T, §l SR 4-CoVector: OneForm

SR 4-Tensor

SR 4-Scalar 4-Vector V = V¥ = (V") = (V",V)) = (V",v) Trace[T"] =N, T =T =T

(0,0)-Tensor S SR 4-Vector V = V" = ( , ) V-V = Vi VY = (V)2 - vev] = (Vo)?
orentz Scala = Lorentz Scalar




SR - QM 4-Vector SRQM Interpretation

SRQM Study: Physical 4-Tensors
e O0ME SR 4-Tensors and Symbols ...

of Physical 4-Vectors John B. Wilson

«—Discrete Continuous—
SR:Lorentz
Transforms

P— t x y z SR:Minkowski Metric
Transform X [ 0 1 0 0 ] = i i (Carlesia,n/rectangular basis)’ COS[G] -Sln[e] 0 ( 6Ij'nlnj )COS(e)-( E‘jknk )Sin(e)"'n‘nj
ATV, = y{ 8 8 (1) (1)} sin[6] cos|[f]

Z

Lorentz Transform 4,[R"]=A",
Particle Physics” Convention [ /\O O’/\OVJ ] temporal- mixed

4-Tensor Dimension 4y [ i | components
Symmetric, Spatial Isotropic

Perfect Fluid Faraday EM 7 ) 4-AngularMomentum
T = (Peo) V" + (-po) Fo® = g°AP- PA =9 A A Me® = X9PB - XPPa = X A P

—>Dlag [pe, ]{rectangular basis{MCRF}

0 -cn/
+cn' €l |6

t X 'y z
t[ 0 -eYc -e'lc -e*lc]
x[+elc 0 -b® +b’]
y [te’/c +b* 0 b1l 0 -elc y[+tcn? -F 0 +1]
z [+e*lc -bY  +b* 0 1 +e'/c -V*a z[+en* ¥ - 0]
4-Tensor 4-Tensor 4-Tensor
Symmetric, Spatial Isotropic Anti-symmetric Anti-symmetric

t X 'y z
t[ 0 -cn* -cn’ -cn?]
x[+cn* 0 4P -P]

+el/lc -gl b

0 -cn

SR 4-Tensor SR 4-Vector W_= Rapidity_= LI/][ 7(128)] Trace[T*] =
(2,0)-Tensor T+ J(1,0)-Tensor V¥ =V = (v",v) PSR 4-Scalar Note that all the Lorentz Transforms and| | Y = cosh(w) = 1/[ 1-57] vV s
(1,1)-Tensor T* or T," SR 4-CoVector (0,0)-Tensor S the Minkowski Metric are dimensionless| | P = tanh(w) = (v/c) = ViV = [(
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-v) L orentz Scalag vB = sinh(w) = ,




SR - QM

SRQM Study: Physical 4-Tensors
Some SR 4-Tensors and Symbols

A Tensor Study
of Physical 4-Vectors

4-UnitTemporal

T=T=y(1,8)
=y(1,u/c)=U/c
Temporal “(V)ertical”
Projection (2,0)-Tensor
P — V¥ = T*TY = U'UY/c?
—Diag[1," Jmcrr

>

4-Tensor
Symmetric
Spatial Isotropic

Spatial “(H)orizontal”
Projection (2,0)-Tensor
PY — H¥Y = v - THTY
—Diag[0,-1;]=Diag|0,

Jovcrey

t
t[o

x [+elc 0  -b?
y [+e’/lc +b* 0
z [+e’/lc -bY

4-Tensor
@ Symmetric
S

patial Isotropic

energy density vcrr

negative pressure vcre ﬁ

SR:Minkowski Metric
JR]=d"R"=n" = V" +
—Diag[1,-1;3]=Diag[1,

{Cartesian/rectangular basis}

Particle Physics” Convention

4-Tensor

Faraday EM Tensor
FP = o°AP - PA =9 A A

X i z 0
-e*/c -e'lc -e*/c ]} +e'lc
+b”]

_bx]
+b*

4-ForceDensity
Fden = I:denv = _apTU"z -0 T
{=0" if conserved}

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Perfect Fluid Stress-Energy N
T — (Peo) V™" + (-Po) 1" —mcrr)

0 pd
4-Tensor

Null-Dust=Photon Gas
= (Peo) V" + (-Peof3)

pA
0 0]
0]
03 0]
0 pJ3]

4-Tensor
Symmetric, Spatial Isotro

-ellc X y z
_gikak

s¥/c s¥lc s¥c]
O -g¥ -g*¥ ]
oYX gV -oY? ]
_o—zx _o—zy _o—zz ]

4-Tensor
Symmetric

CoSIT1-w=p.og
Symmetric T
) V1= _
Spatial Isotropic T T"]=Peo 3pg
53K

—{MCRF?}

(Cold) Matter-Dust
T — PPN"=moU"noU"=(eo)V*" —picrr)

= Oj
i o

\

Lambda Vacuum
T — (Peo)n™ = (A)N" —ucrey
Dark Energy?
Yy 2z :
0] = o
0| 'peSU

—

4-Tensor @
Symmetric, Spatial Isotrop

Zero:Nothing Vacuum .
™ — 0" —{MCRF}
Yy z o
O 0 ] Oi O\j

0 0]
0 0] e

=undefined
4-Tensor (Tr[T*]=0J

0 0]
Symmetric, Isotropic

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,¥
(0,2)-Tensor T,

SR 4-Vector

(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

SR 4-Scalar
(0,0)-Tensor S
| orentz Scalar,

Note that the Projection Tensors &
the Minkowski Metric are unit dimensionless. [ 1]

EnergyDensity (temporal) & Pressure (spatial) have the same

dimensional measurement units. [J/m® = N/m? = kg/m-s?]

Equation of State Trace[T"] = N T = T"
EoS[T*] = w = po/peoh S AN (O EERVAY
4-Scalar = Lorentz Scalar




SR - QM

- SRQM Study: Physical 4-Tensors
Projection 4-Tensors P"

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Temporal “(V)ertical”
Projection (2,0)-Tensor
PY — V¥ = THTY
—Diag[1," Jmcrs

4-Tensor
Symmetric,Spatial Isotropic

Spatial “(H)orizontal”
Projection (2,0)-Tensor
PY — H¥Y = v - THTY
—Diag|[O0,

4-Tensor
Symmetric,Spatial Isotropic,

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,¥
(0,2)-Tensor T,

]=Diag|0,-6"Tmcrr

Temporal “(V)ertical”
Projection (1,1)-Tensor
P, — V¥, =T"'T,
—Diag[1," Jmcre

4-Tensor
Symmetric,Spatial Isotropic

Spatial “(H)orizontal”
Projection (1,1)-Tensor
va - Huv = r]”v - TMTV
—Diag[0,1:]=Diag[0,5 Jmcre

Symmetric,Spatial Isotropic

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

SR 4-Scalar
(0,0)-Tensor S
| orentz Scalar,

Temporal “(V)ertical”
Projection (0,2)-Tensor
Pw— V=TT,
—Diag[1," Jmcre

4-Tensor
Symmetric,Spatial Isotropic

Spatial “(H)orizontal”
Projection (0,2)-Tensor
Pw — Hy =nw - T, Ty
—Diag|O0,

4-Tensor
Symmetric,Spatial Isotropic,

“(V)ertical” SR Perfect Fluid 4-Tensor
VW Tperfectﬂuiduv = (peo)V“" + ('po)
/
— H¥ Spatial
“(H)orizontal”

Light-Cone

—{MCRF}

U — pHa
E . Euﬁﬂav Units of Symmetric y
w = P NouNey [EnergyDensity=Pressure] (Ir[T" ]=peo-3po
The projection tensors can work on 4-Vectors to
on 4-Tensors to give either a 4-Scalar component

]=Diag[0,-6;]mcrr

4-UnitTemporal T = y(1,B) 4-UnitTemporal
Rl NENCREIENCRERERENE T=T"=y(1,B)
=y(1,u/c)=U/c

4-UnitSpatial
$=8*=y(B-1,N)

VWA= (1-a’+0-a'+0-a’+0-a°, )
(O'ao+0‘a1+0'82+0'33, _>(1 ao){RestFrame} H(O,n)(RestF,ame)

0-a°+0-a'+0-a%+0-a°, ‘m. ‘EO) @’
0-a’+0-a'+0-a*+0-a*) = (a°,0,0,0) = (2°,0): Temporal Projection
H* Av= (O a0+0 a1_'_0 a2+0 a3 Minkowski
v = . . . a, =MRV=nHV=\/H'4+
OSSN =0l OIR]= R
0-a’+0-a'+1-a%+0-a°,
0-a’+0-a'+0-a’+1-a% = (0,a',a”,a°) = (0,a): Spatial Projection

Vid T Vi [(Peo) V! + (-Po) T = (Peo) Vi VY +(0)= (Peo) = (Peo) = Vi T
H = Hul(Peo)V* + (-po)H*T = (0)+(-po) i H™ = (-3Po) : (Po) = (-1/3)H,, T

VET™= VE[(Peo) V™ + (-po) HT = (Peo) V¥6V*'+(0*) = (peo) V" —Diag[p:,0,0,0]
HET™= HYG[(Peo) V' + (-Po)H™T = (O%)+(-po) HeH™ = (-po)H™ —Diag[0,p,p,p]

Note that the Projection Tensors are dimensionless:
the object projected retains its dimensional measurement units
Also note that the (2,0)- & (0,2)- Spatial Projectors have opposite signs
from the (1,1)- Spatial due to the (+

,--»-) Metric Signature convention

Trace[T"] = N
V-V = V', VY = [(V°
= Lorentz



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Special Relativity — Quantum Mechanics .
e RoadMap of SR—>QM s ST

*START HE%E*: 4-Position=Location of SR <Events>in SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime “Flat” 4D Metric , , 4-Position R* ity= i
SR Lorentz Transforms o A[RYI=NAY, R=(ct r\=<E . 5 b 4-Velocity=Motion
SR Action — 4-Momentum S Lorentz 2LV Sl Dorvatival M o= U (s
SR Phase — 4-WaveVector M'&Z‘i;’,\’:k' R-R=(ct)*-rr It?oipsgft-ilc-:lg: gswaves
. N ,
e e DY
8-8=(9,/c)>-V-V 4-Gradient ¢" ProperTime 4-Velocity U*
= -(MoC/N)? = -(Wo/C)? 0=0/0R, . U-0=d/dt=yd/dt Matter Wave U=y(c,u)=dR/dt
_ 2 =(at /C,’V)='IK Der|Vat|Ve K_R_q) P_R_S group* phase= 4
= (81/0) B " phasefree B ey RestAngular ( )2
: SR Phase SR Action Frequency w, =(c
SR d’Alembertian & -0 @phase o0 1=K -a[]=P
Klein-Gordon Relativistic . Hamilton-Jacobi Phase & Action
4-WaveVector L e
Quantum Wave Relation Complex Pr = -9[S] bl el Einstein
Schrodinger QWE is Plane-Waves @ E = mc? = ymoc?= yE,
Rest Mass mq:Rest Energy E,

{lv]<<c} limit of KG QWE (- )0
[ SR — QM | S @
=

4-\WWaveVector=Substantiation
of SR Wave <Events>

4-\WaveVector K"

4-Momentum=Substantiation

oscillations proportional to K=(w/c,k)=(w/c,wn/Vpnas) 4-Momentum P* of SR Particle <Events>
mass:energy & 3-momentum =(1/cF,A/x)=(wo/c?)U=P/h SR e P=(mc,p)=(E/c,p)=m,U mass:energy & 3-momentum
Dirac:Planck Constant h=h/2m
K-K=(w/c)*-k-k P =K G, P-P=(E/c)-p-p

= (moc/h)? = (wo/c)? = (1/cT,)? % = (m.c)’ = (E./c)?
1/h

SR 4-Tensor SR 4-Vector
=V= : - Trace[T"] = NuT" = T4, = T
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar W H
(11)Tensor T, or T, SR 4-Covector (0.0)-Tensor S xisting SR Rules VAV = Vi = [V - vev] = (Vo
, - orentz Scala ( QM Principles ) = Lorentz Scalar

0,1)-Tensor V, = (vo,-V
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SR —- QM

SRQM Chart:

Special Relativity — Quantum Mechanics

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

WDy SR—QM Interpretation Simplified ....romese

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR,

although technically SR is itself the Minkowski-SpaceTime low-curvature:“flat” limiting-case of GR.

{c,7,m,,h,i} = {c:SpeedOfLight, t:ProperTime, m,:RestMass, h:Dirac/PlanckReducedConstant(h=h/21r), i:lmaginaryNumber\[-1]}:

are all Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants
4-Position R = (ct,r) = (R'R) = (CT)
4-\elocity U =y(c,u) = (U-0)R=("/4)R=dR/dt (U-U) = (c)?
4-Momentum P = (E/c,p) =m,U (P-P) = (m.c)®
4-WaveVector K= (w/c,k) = P/h (K-K) = (moc/h)?
4-Gradient 0= ( ) =-iK (o0

KG Equation: vl<<c
d) = (-imoc/h)? = -(m,c/h)* = QM Relation - RQM — QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |[v| << ¢}, giving the Schrodinger Egn. This fundamental KG Relation also leads to the other

Quantum Wave Equations: RQM (massiess) RQM

{lv|]=c:m,=0} {0<=|v|]<c:m,>0}
spin=0 boson field = 4-Scalar: Free Scalar Wave (Higgs) Klein-Gordon
spin=1/2 fermion field = 4-Spinor: Weyl Dirac (w/ EM charge)
spin=1 boson field = 4-Vector: Maxwell (EM photonic) Proca

QM
{0<=|v|]<<c:m,>0}
Schrédinger (regular QM)

Pauli (w/ EM charge)

SRQM: A treatise of SR—QM by John B. Wilson
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SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Topic Index

A Tensor Study
of Physical 4-Vectors

Mostly SR Stuff
4-\/ector Basics, SR 4-Vectors

Paradigm Assumptions
Minkowski SpaceTime, <Events>, WorldLines, Minkowski Metric
SR 4-Scalars, 4-Vectors, 4-Tensors & Tensor Invariants, Cayley-Hamilton Theorem
SR Lorentz Transforms, CPT Symmetry, Trace Identification, Antimatter, Feynman-Stueckelberg
Fundamental Physical Constants = Lorentz Scalar Invariants = SR 4-Scalars
Projection Tensors: “(V)ertical” & “(H)orizontal”: (V),(H) refer to Light-Cone
Stress-Energy Tensors, Perfect Fluids, Special Cases (Dust,Radiation,DarkEnergy, etc)
Invariant Intervals, Measurement, Relativity
SpaceTime Kinematics & Dynamics, ProperTime Derivative
Einstein’s , Rest Mass:Rest Energy, Invariants
SpaceTime Orthogonality: 4-Velocity, 4-Acceleration
Relativity of Simultaneity:Stationarity ; Invariance/Absolutes of Causality:Topology
Relativity: ( )
Invariants: ( ),
( ) Causality is Absolute; (

: ) Stationarity is Relative ; (
SR Motion * Lorentz Scalar = Interesting Physical 4-Vector
SR Conservation Laws & Local Continuity Equations, Symmetries
Relativistic Doppler Effect, Relativistic Aberration Effect
SR Wave-Particle Relation, Invariant d’Alembertian Wave Eqn, SR Waves, 4-WaveVector
SpaceTime is 4D = (1+3)D: 9-R=0,R"=4, A, A"=4, Tr[n"]=4, A = A* = (a*) = (a’,
Minimal Coupling = Interaction with a (Vector)Potential
Conservation of 4-TotalMomentum ( & )
SR Hamiltonian:Lagrangian Connection
Lagrangian, Lagrangian Density
Hamilton-Jacobi Equation (differential), Relativistic Action (integral)
Euler-Lagrange Equations
Noether’s Theorem, Continuous Symmetries, Conservation Laws, Continuity Equations
Relativistic Equations of Motion, Lorentz Force Equation
c¢? Invariant Relations, The Speed-of-Light (c)
Thermodynamic 4-Vectors, Unruh-Hawking Radiation, Particle Distributions

) Simultaneity is Relative
) Topology is Absolute

SR & QM via 4-Vector Diagrams

) =4 comps.

SciRealm.org
John B. Wilson

Mostly QM & SRQM Stuff

Where is Quantum Gravity?

Relativistic Quantum Wave Equations

Klein-Gordon Equation/ Fundamental Quantum Relation

RoadMap from SR to QM: SR—QM, SRQM 4-Vector Connections

QM Schrddinger Relation

QM Axioms? - No, (QM Principles derived from SR) = SRQM

Relativistic Wave Equations: based on mass & spin & relative velocity:energy
Klein-Gordon, Dirac, Proca, Maxwell, Weyl, Pauli, Schrédinger, etc.

Classical Limits: SR’s { |[v| << c }; QM's { h|V-p| << (p-p) }

Photon Polarization

Linear PDE’s—{Principle of Superposition, Hilbert Space, <Bra|,|Ket> Notation}
Canonical QM Commutation Relations < derived from SR

Heisenberg Uncertainty Principle (due to non-zero commutation)

Pauli Exclusion Principle (Fermion), Bose Aggregation Principle (Boson)
Complex 4-Vectors, Quantum Probability, Imaginary values

CPT Theorem, Lorentz Invariance, Poincaré Invariance, Isometry

Hermetian Generators, Unitarity:Anti-Unitarity

QM — Classical Correspondence Principle, similar to SR — Classical Low Velocity
The Compton Effect = Photon:Electron Interaction (neglecting Spin Effects)
Photon Diffraction, Crystal-Electron Diffraction, The Kapitza-Dirac Effect

The h Relation, Einstein-de Broglie, Planck:Dirac, Wave-Particle

The Aharonov-Bohm Effect (integral), The Josephson Junction Effect (differential)
Dimensionless Quantities

SRQM Symmetries:

Hamilton-Jacobi vs. Relativistic Action

Differential (4-Vector) vs. Integral (4-Scalar)

Schrédinger Relations vs. Cyclic Imaginary Time < Inverse Temperature
4-Velocity:4-Position vs. Euler-Lagrange Equations

Matter-AntiMatter: Trace Indentification of Lorentz Transforms, CPT

Quantum Relativity: GR is *NOT* wrong, *Never bet against Einstein* :)
Quantum Mechanics is Derivable from Special Relativity, SR—QM: SRQM

SRQM = The [SR—QM] Interpretation of Quantum Mechanics - -
= Special Relativity — Quantum Mechanics | SRQM: A treatise of SR—QM by John B. Wilson
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SR - QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
Paradigm Background Assumptions gart1) ...

A Tensor Study

of Physical 4-Vectors John B. Wilson

Relativistic Physics **IS NOT** the generalization of Classical Physics.
Classical Physics **IS** the low-velocity { |v| << c } limiting-case approximation of Relativistic Physics.

This includes (Newtonian) Classical Mechanics and Classical QM, (meaning the non-relativistic Schrédinger QM Equation — it is not fundamenta
The rules of standard QM are just the low-velocity approx. of RQM rules. Classical EM is for the most part already compatible with Special Relativit
However, Classical EM doesn't include intrinsic spin, even though spin is a result of SR Poincaré Invariance, not QM.

So far, in all of my research, if there was a way to get a result classically,
then there was usually a much simpler way to get the result using 4-Vectors and SRQM relativistic thinking.
Likewise, a lot of QM results make much more sense when approached from SRQM (ex: Temporal vs. Spatial relations).
4-Vector formulations are all extremely easy to derive in SRQM and are all relativistically covariant.

Einstein Energy:Mass Eqn: P = m,U — { E = mc” = ym.c” = yE, : } Einstein-de Broglie Relation: P = hK — { E = hw : }
Complex Plane-Wave Relation: K=id — { w = id: : }
Hamiltonian: H = ’Y(PTU) { Relativistic} — (T + V) = (Ekinetic + Epotential) { Classical-limit only, [u] << ¢} SChr('idinger Relations: P = ihd — { E =iho : }
Lagrangian: L = -(Pr*U)/y (reiatuisic) — (T = V) = (Exinetic = Epotential) { Classicatimitonty, ju <<y ~ Ganonical QM Commutation Relations inc. QM Time-Energy:
[P*.X] =iAn® — { [x",p°] = [LE] = -if : }
SR/QM Wave Eqn(diﬁerential format): KT = 'a[q)phase] = I:’T/ﬁ - { wr = ‘at[(D] . }
Hamilton-Jacobi Eqn giferential formaty: Pt = =0[Saction] = Ky — { E+ = -9/[S] : } Total Momentum: Pr=P+gA—> {E:=E +qo: }
SR Action Equationgnegraiormaty, ~ ASaction = ~JpanPr *dX = ~Joan(Pr -U)dt = [panl dt ~ Minimal Coupling: P =Pr-qA - {E =Er-qo : }
SR/QM Wave Equation(integral format)« Aq)phase = 'fpathKT -dX = 'Ipath(KT U)dT = ASaction/h

Josephson-Junction Relation gierential format): A = -(1/qQ)O[AD o]
Euler-Lagrange Equation: (U = (d/dt)R) — (dr = (d/dt)dy) Aharonov-Bohm Relation negral formaty: APpot = ~(q/A)fpanA-dX
Hamilton’s Equations: (d/dt)[X] = (d/0P+)[H.] & (d/dt)[P+] = (9/6X)[H.]

Compton Scattering:
d’Alembertian Wave Equation: 9-@ = (d,/c)’ - V-V, with solutions ~ £, e * " X) Klein-Gordon Relativistic Quantum Wave Eqn: 9-9 = -(m.c/h)?

SRQM: A treatise of SR—QM by John B. Wilson (SciRealm@aol.com)
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Special Relativity -~ Quantum Mechanics
e, PAradigm Background Assumptions gartz) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

SR 4D Physical 4-Vectors *ARE NOT* generalizations of Classical/Quantum 3D Physical 3-vectors:
While a “mathematical” Euclidean (n+1)D-vector is the generalization of a Euclidean (n)D-vector,
the “Physical/Physics” analogy ends there.

Minkowskian SR 4-Vectors *ARE* the primitive elements of 4D Minkowski SR SpaceTime.
Classical/Quantum Physical 3-vectors are just the components of SR Physical 4-Vectors.
There is also a fundamentally-related Classical/Quantum Physical scalar related to each 3-vector,

which is just the component scalar of a given SR Physical SpaceTime 4-Vector.

ex. 4-Position R = R" = () = (r0,r) = (ct,r) — (ct,x,y,2) : 4-Momentum P = P* = (p") = (p0,p) = (E/c,p) — (E/c=p'/c, )

These Classical/Quantum { H{ } are the dual { H{ } components
of a single SR SpaceTime 4-Vector = ( : )
with SR LightSpeed factor (c*') to give correct overall dimensional measurement units.

While different observers may see different "values" of the
Classical/Quantum components (v, ) from their point-of-view in SpaceTime,
each will see the same actual SR 4-Vector V and its “magnitude” |V| ~ \[V-V] at a given <Event> in SpaceTime.
Magnitudes can be {+/0/-} in Special Relativity, due to the pseudo-Riemannian metric (non-positive-definite)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
Paradigm Background Assumptions parts) ...

A Tensor Study

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

We will **NOT** be employing the commonly-(mis)used Newtonian classical limits {c—=} and {h=—>0%
Neither of these is a valid physical assumption, for the following reasons:
[1]
Both (c) and (h=h/21T) are unchanging Universal Physical Constants and Lorentz Scalar Invariants.
Taking a limit where these change is non-physical. They are CONSTANT.

Many, many experiments verify that these constants have not changed over the lifetime of the universe.
This is one reason for the 2019 Redefinition of S| Base Units on Fundamental Constants {c,h,e,ks,Na,Kcp,Aves}.
[2]

Photons/waves have energy (E) via momentum (pc) & frequency (hw): (W = 2TTV){ angular [radis], circularcycle/s] , 21 rad = 1 cycle }
Let E = pc. If c>«, then E—~. Then Classical EM light rays/waves have infinite energy.

Let E = hw = hv. If h—0, then E—0. Then Classical EM light rays/waves have zero energy.

Obviously neither of these is true in the Newtonian/Classical limit.
In Classical EM and Classical Mechanics, LightSpeed (c) remains a large but finite constant.
Likewise, Dirac’s (Planck-reduced) Constant (h=h/21T) remains very small but never becomes zero.

The correct way to take the limits is via:
The low-velocity non-relativistic limit { |v| << c }, which is a physically-occurring situation.
The Hamilton-Jacobi non-quantum limit { h|V-p| << (p-p) }, which is a physically-occurring situation.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gartg) ..,

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

We will *NOT* be implementing the common {—lazy and extremely misguided} convention of setting physical constants
to the value of (dimensionless) unity, often called “Natural Units”, to hide them from equations; nor using mass (m) instead of (m,) as the Restiviass:
Likewise for other components vs Lorentz Scalars with naughts (,), like energy (E) vs (E.) as the RestEnergy.

One sees this very often in the literature. The usual excuse cited is “For the sake of brevity”.
Well, the “sake of brevity” forsakes “clarity”

The *ONLY™ situations in which setting constants to unity is practical or advisable is in numerical simulation or mathematical analysis.
When teaching physics, or trying to understand physics: it helps when equations are dimensionally correct.
In other words, the physics technique of dimensional analysis is a powerful tool that should not be disdained.

i.e. Brevity only aids speed of computation, Clarity aids understanding.

The situation of using “naught = ,” for rest-values, such as (m,) for RestMass and (E,) for RestEnergy:
Is intrinsic to SR, is a very good idea, absolutely adds clarity, identifies Lorentz Scalar Invariants, and will be explained in more detail later.
Essentially, the relativistic gamma (y) pairs with an invariant (Lorentz scalar:rest value ,) to make a relativistic component: m = ym, ; E = yE,
Note the multiple equivalent ways that one can write 4-Vectors using these rules:

) (mc,mu) = (mc,p) = mc(1,B)
2 = (E/c)(1,B) = mcT = (Eo/C)T

(p",p) = (me,p) = moU = mgy(c,u) = ymo(c,u) = m(c,u) =
cy(c,u) = v(Ed/c?)(c,u) = (Efc)(c,u) = (E/c, ) = (E/c,p)

This notation makes clear what is { relativistically-varying=(frame-dependent) vs. invariant=(frame-independent) } and { VS.
BTW, | prefer the “Particle Physics” Metric-Signature-Convention (+,-,-,-). {Makes rest values positive, fewer minus signs to deal with}
Show the physical constants and naughts (, ) in the work. They deserve the respect and you will benefit.
You can always set constants to unity later, when you are doing your numerical simulations.

4-Momentum P = P* = (p
= (E/c,p) = (EJ/c*)U = (Ed/C

SRQM: A treatise of SR—QM by John B. Wilson
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Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gars) .. .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Some physics books say that the Electric field E and the Magnetic field B are the “real” 4-Gradient

physical objects, and that the EM scalar-potential ¢ and the EM 3-vector-potential “A” are just B §=0"=0/0R,=(d /C,-V) Faraday EM

“calculational/mathematical” artifacts. ! l Tensor
—(8/c,-8,,-,,-3,) vl

Neither of these statements is relativistically correct. __ oA A

All of these physical EM properties: {E,B,@,“A”} are actually just the components of SR tensors, -

and as such, their values will relativistically vary in different observers’ reference-frames. [F* F* FY F%]
xt XX XYy [EXZ
Given this SR knowledge, to match 4-Vector notation, we demote the physical property ) [Eyt ny Eyy EVZ]
symbols, (the tensor components) to their lower-case equivalents {e,b,,a}. Lorenz GE{‘UQG- [ t ]
see Wolfgang Rindler Conservation of [F= F* F= F*]
EM (Vector)Potential =
The truly SR invariant physical objects are: 9-A=(0,/c)(¢/c)--V-a [ 0 -e¥c -e¥/c -e%c]

The 4-Gradient 9, the 4-VectorPotential A, their combination via the exterior (wedge=*) product =(0.0/c?)+V-a=0 . 2 y

into the Faraday EM 4-Tensor F*® = 3°A® - °A° = (9 A A), and their combination via (G@lc?y+V [+ey/C 0 § -b +bx]

the inner (dot=) product into the Lorenz Gauge 4-Scalar (3 - A) = 0 [+e’/lc +b* O -b*]
[+e’/c -b’ +b* 0]

- components of 4-Tensor F°: . =
- components of 4-Tensor F°*: : A
component of 4-Vector A: . "H_H - [+ Ci)/ ’ ?J/t():k]
components of 4-Vector A: ) [+ec, € b*]

4-(EM)VectorPotential [ 0 , -elc ]
A=A“=(cp/c,a) [+eT/C, _VI\a]
Aen=Acn"'=(Pev/C,aem)

Note that the Speed-of-Light (c) plays a prominent role in the component definitions.
Also, QM requires the 4-VectorPotential A as explanation of the Aharonov-Bohm Effect. —
The physical measurability of the AB Effect proves the reality of the 4-VectorPotential A.

Again, all the lower and higher-rank SR tensors can be built from fundamental 4-Vectors.

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gars) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

A number of QM philosophies make the assertion that particle “properties” do not “exist” until measured.
The assertion is based on the QM Heisenberg Uncertainty Principle, and more specifically on quantum non-zero commutation,
in which a measurement on one property of a particle alters a different non-commuting property of the same particle.

That is an incorrect analysis. Properties define particles: what they do & how they interact with other particles. Particles and their properties “exist”
as <events> independently of human intervention or observation. The correct way to analyze this is to understand what a measurement is: the arrangement of
some number of fundamental particles in a particular manner as to allow an observer to get information about one or more of the subject particle’s properties.
Typically this involves “counting” spacetime <events> and using SR invariant intervals as a basis-of-measurement.

Some properties are indeed non-commuting. This simply means that it is not possible to arrange a set of particles in such a way as to measure
(ie. obtain “complete” information about) both of the “subject particle’s” non-commuting properties at the same spacetime <event=.
The measurement arrangement <events> can be done at best sequentially, and the temporal order of these <events> makes a difference in observed results.
EPR-Bell, however, allows one to “infer” (due to conservation:continuity laws) properties on a “distant” subject particle by making a measurement
on a different “local” {space-like-separated but entangled} particle. This does *not* imply FTL signaling nor non-locality.
The measurement just updates local partial-information one already has about particles that interacted/entangled then separated.

So, a better way to think about it is this: The “measurement” of a property does not “exist” until a physical setup <event> is arranged.
Non-commuting properties require different physical arrangements in order for the properties to be measured, and the temporally-first measurement alters
that particle’s properties in a minimum sort of way, which affects the latter measurement. All observers agree on Causality, the time-order of
temporally-separated spacetime <events>. However, individual observers may have different sets of partial information about the same particle(s).

This makes way more sense than the subjective belief that a particle’s property doesn’t exist until it is observed,
which is about as unscientific and laughable a statement as | can imagine.

**Relativity is the System-of-Measurement that QM has been looking for**

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gart7) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Correct Notation is critical for understanding physics

Unfortunately, there are a number of “sloppy” notations seen in relativistic and quantum physics.

Incorrect: Using T' as a Trace of tensor T?, or T as a Trace of tensor T""
T'"is actually just the diagonal part of 3-tensor T!, the components: T" = Diag[T"",T%*, T*]
The Trace operation requires a paired upper-lower index combination, which then gets summed over.
Ti is the Trace of 3-tensor T': T\ = T,'+T,%+T5® = 3-trace[T"] = §;T" = +T""+T#*+T* in the Euclidean Metric E" = &

T" is actually just the diagonal part of 4-Tensor T"', the components: T* = Diag[T*°, T",T%, T
The Trace operation requires a paired upper-lower index combination, which then gets summed over.
T," is the Trace of 4-Tensor T": T,* = To%+T,'+T,2+T5° = 4-Trace[T"] = N, T = +TP-T"-T*-T** in the Minkowskian Metric n""

Incorrect: Hiding factors of LightSpeed (c) in relativistic equations, ex. E = m
The use of “natural units” leads to a lot of ambiguity, and one loses the ability to do dimensional analysis.
Wrong: E=m: Energy is *not* identical to mass.
Correct: E=mc®: Energy is related to mass via the Speed-of-Light (c), ie. mass is a type of concentrated energy.

Incorrect: Using m instead of m, for rest mass; Using E instead of E, for rest energy
Correct: E = mc? = ym,c® = yE,
E & m are relativistic internal components of 4-Momentum P=(mc,p)=(E/c,p) which vary in different reference-frames.
E. & m, are Lorentz Scalar Invariants, the rest values, which are the same, even in different reference-frames: P=m,U=(E./c*)U

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
e, P@radigm Background Assumptions gars) ... .

of Physical 4-Vectors John B. Wilson

There are some paradigm assumptions that need to be cleared up:

Incorrect: Using the same symbol for a tensor-index and a component | \\/rong: [X,p'] = ihd!
The biggest offender in many books for this one is quantum commutation. : S N S A
: : s ; Right: [X,p"] = iho
Unclear because ( i ) means two different things in the same equation. IO AV — ey
Correct way: (i = \[-1] ) is the imaginary unit : { j,k } are tensor-indicies | Better: [P*,X"] = ihn
In general, any equation which uses complex-number math should reserve (i) for the imaginary, not as a tensor-index.

Incorrect: Using the 4-Gradient notation incorrectly
The 4-Gradient is a 4-Vector, a (1,0)-Tensor, which uses an upper index, and has a negative spatial component (-V) in SR.
The Gradient One-Form, its natural tensor form, a (0,1)-Tensor, uses a lower index in SR.
4-Gradient: 9=0"=(9,/c,-V)=(d,/c,-\V) Gradient One-Form: d,=(d,/c,V)=(¢ /c,V)

Incorrect: Mixing styles in 4-Vector naming conventions
There is pretty much universal agreement on the 4-Momentum P=P"=(p")=(p° p")=(E/c,p)=(mc,p)=(E/c,»)=(mc,p)
Do not in the same document use 4-Potential A=(@,A): This is wrong on many levels.
The correct form is 4-VectorPotential A=A"=(a")=(a’a’)=(p/c,a)=(v/c,2), with (¢)=the scalar-potential & (a)=the 3-vector-potential

For all SR 4-Vectors, one should use a consistent notation:
The UPPER-CASE 4-Vector Names match the lower-case 3-vector names
There is a LightSpeed (c) factor in the component to give overall matching dimensional units for the entire 4-Vector
4-Vector components are typically lower-case with a few exceptions, mainly energy (E) vs. energy-density (e) or (p.)

SRQM: A treatise of SR—QM by John B. Wilson
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of Physical 4-Vectors

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric g*"

¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Obscure QM Axioms:

Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)
Bose Aggregation Principle (BE-statistics)
Hermitian Generators

Correspondence Principle to CM

Born Probability Interpretation

h,h = physical constants

4-Vector SRQM Interpretation

Old Paradigm: QM (as | was taught)
e DR AND QM as separate theories

of QM

SciRealm.org
John B. Wilson

Quantum
Gravity ?77?

Multiple
Particles

SR limiting-case:

QM limiting-case:
# particles N >> 1

This was the QM paradigm that | was taught while in Grad School: everyone trying for Quantum Gravity




Simple GR Axioms:
Principle of Equivalence

Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric g*"

¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Obscure QM Axioms:

Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)

Bose Aggregation Principle (BE-statistics) [

Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,h = physical constants
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merging???
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searching for
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NO SUCCESS...

SR limiting-case:
lv| <<c

QM-limiting case:
hIV-p| << (p-p)
or y—Re[y]
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A fortuitous
merging?

It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...



SRQM Study:
Physical Theories as Venn Diagram

reaiters WHICh regqions are empirically real?

GR: TCELLY
General Relativity

QM:
Quantum Mechanics

Quantum

. H 2
SR cravity’ Many-Worlds Interpretations
SpeCial Relat|v|ty Non-local interactions

Instantaneous QM entangled connections
GR limiting-case: g** — n™ Minkowski “Flat® SpaceTime = (Curvature ~ 0) InstantaneousQPhysicaI%Navefunction Collapse

CM Spacetime Dimensions >4
QM physicists think these areas, . ) ) Hidden:Alternate Dimensions
anything outside of QM, doesn’t exist... ClaSSICal MeChaI’]ICS Super-Symmetry
SR limiting-case: |v| << ¢ String Theory _ _
Hence the attempt to Quantize Gravity: QM limiting-case: h|V-p| << (p-p) Alternate Gravity Theories
Unsuccessful for 50+ years... Slews of hypothetical new particles
etc.
A new approach is needed: RQM .
SR—QM fits the facts... N ...Quantum Mysticism...
Relativistic

QM Basically lots of stuff for which there is
no empirical evidence...
& loads of hype...




SR — QM SRQM Study: 4-Vector SRQM Interpre;?tiQo'\;ll
Physical Limit-Cases as Venn Diagram
s\ RICh limit-regions use which physics? s

Instead of taking the Physical Theories as set, examine
Physical Reality and then apply various limiting-conditions.

Reality

) - GR limit-case: g"' — n" ; : .
QM limit-case: h|V-p| << (p-p) Minkowski “Flat” SpaceTime What do we then call the various regions?

o orgp—»l?e[tp] t = (Curvature ~ 0)
ange by a few quanta ' ' i
Sh ki SRQM : As we move inwards from any region on the diagram, we

on overall state Special Relativity — Relativistic QM are adding more stringent conditions which give physical
Classical SR limiting-cases of “larger,more encompassing” theories.

Classical GR Classical (non-QM) RQM
Classical (non-QM) Special Relativity Relativistic QM If one is in Classical GR, one can get Classical SR by

General Relativity CM moving toward the Minkowski SpaceTime limit.
Classical

“f,?;?g”h';.’f QM If one is in RQM, one can get Classical SR by moving

(non-SR) Non-relativistic toward the Hamilton-Jacobi non-QM limit, or to standard

(étiggirg) QM by moving toward the SR low-velocity limit.

Mechanics

Looking at it this way, | can define SRQM to be equivalent
to Minkowski SpaceTime, which contains RQM, and leads
to Classical SR, or QM, or CM by taking additional limits.

Large gra(tit(/ 7
fields typicall lg%

to relativistic sp %I
)

My assertion:
There is no “Quantized Gravity”

Actual GR contains SRQM and Classical GR.
Perhaps “Gravitizing QM”...

~C
SR limit-case’/ |V} ““ i /,,,

M Non-relativistic velocities

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

Special Relativity -~ Quantum Mechanics
Background: Proven Physics

of Physical 4-Vectors John B. Wilson

Both General Relativity (GR) and Special Relativity (SR) have passed very stringent tests of multiple varieties.
Likewise, Relativistic Quantum Mechanics (RQM) and standard Quantum Mechanics (QM) have passed all tests within their realms of validity:
{ generally micro-scale systems: ex. Single particles, ions, atoms, molecules, electric circuits, atomic-force microscopes, etc.,
but a few special macro-scale systems: ex. Bose-Einstein condensates, super-currents, super-fluids, long-distance entanglement, etc.}.

To-date, however, there is no observational/experimental indication that quantum effects "alter" the fundamentals of either SR or GR.
Likewise, there are no known violations, QM or otherwise, of Local Lorentz Invariance (LLI) nor of Local Position/Poincaré Invariance (LPI).
In fact, in all known experiments where both SR/GR and QM are present, QM respects the principles of SR/GR, whereas SR/GR modify the results of QM.
All tested quantum-level particles, atoms, isotopes, super-positions, spin-states, etc. obey GR's Universality of Free-Fall & Equivalence Principle and SR's
{ E = mc? } and speed-of-light (c) communication/signaling limit. Meanwhile, quantum-level atomic clocks are used to measure gravitational red:blue-shift effects. i.e.
GR gravitational frequency-shift (gravity time-dilation) alters atomic=quantum-level timing. Think about that for a moment...

Some might argue that QM modifies the results of SR, such as via non-commuting measurements. However, that is an alteration of CM expectations,
not SR expectations. In fact, there is a basic non-zero commutation relation fully within SR:( [¢",X"] = n* ) which will be derived from purely SR Principles
in this treatise. The actual commutation part ( Commutator [a,b] ) is not about ( f ) or (i ), which are just Lorentz invariant scalar multipliers.

On the other hand, GR Gravity *does™ induce changes in quantum interference patterns and hence modifies QM:
See the COW gravity-induced neutron QM interference experiments, the LIGO & VIRGO & (soon) KAGRA gravitational-wave detections via QM interferometry,
and now also QM atomic matter-wave gravimeters via QM interferometry.
Likewise, SR induces fine-structure splitting of spectral lines of atoms, “quantum” spin, spin magnetic moments, spin-statistics (fermions & bosons), antimatter, QED,
Lamb shift, relativistic heavy-atom effects (liquid mercury, yellowish color of gold, lead batteries having higher voltage than classically predicted, heavy noble-gas
interactions, relativistic chemistry...), etc. - essentially requiring QM to be RQM to be valid. QM is instead seen to be the limiting-case of RQM for { |v| << c }.

Some QM scientists say that quantum entanglement is "non-local”, but you still can't send any real messages/signals/information/particles faster than
SR's speed-of-light (c). The only “non-local” aspect is the alteration of probability-distributions based on knowledge-changes obtained via measurement.
A local measurement can only alter the “partial information” already-known about the probability-distribution of a distant (entangled) system.

There is no FTL-communication-with nor alteration-of the distant particle. Getting a Stern-Gerlach “up” here doesn'’t cause the distant entangled particle to
suddenly start moving “down” there. One only knows “now” that it “would” go down “if* the distant experimenter actually performs the measurement.

QM respects the principles of SR/GR, whereas SR/GR modify the results of QM




SR —- QM

Special Relativity -~ Quantum Mechanics
Background: GR Principles

4-Mector SRQM Interpretation

of QM

sk KNOWN Physics — Empirically Tested s

Principles/Axioms and Mathematical Consequences of General Relativity (GR):

Equivalence Principle: Inertial Motion = Geodesic Motion, Universality/Equivalency of Free-Fall, MasSieria = MasSgravitational

Relativity Principle: SpaceTime (M) has a Lorentzian=pseudo-Riemannian Metric (g"*), SR:Minkowski Space rules apply locally (n**)

General Covariance Principle: Tensors describe Physics, General Laws of Physics are independent of chosen Coordinate System

Invariance Principle: Invariant Interval Measure comes from Tensor Invariance Properties, 4D SpaceTime from Invariant Trace[g"]=4
Causality Principle: Minkowski Diagram/Light-Cone give { , Light-Like(Null=0), } Measures and Causality Conditions
Einstein:Riemann’s |deas about Matter & Curvature:

Riemann(g) has 20 independent components — too many
Ricci(g) has 10 independent components = enough to describe/specify a gravitational field

{c,G} are Fundamental Physical Constants GR limiting-case: g — N
To-date, there are no known violations of any of these GR Principles. mgl:izvisz(éuiba;tusrgicg;lme

It is vitally important to keep the mathematics grounded in known physics.

There are too many instances of trying to apply theoretical-only mathematics to physics

(ex. String Theory, SuperSymmetry: no physical evidence to-date; SuperGravity: physically disproven).

Progress in science doesn’t work that way: Nature itself is the arbiter of what math works with physics. Tensor mathematics applies well to known
physics {SR and GR}, which have been empirically extremely well-tested in a huge variety of physical situations.

All known experiments to date comply with all of these Principles, including QM and RQM




Simple GR Axioms:
Principle of Equivalence

Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric g*"

¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Obscure QM Axioms:

Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)

Bose Aggregation Principle (BE-statistics) [

Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,h = physical constants
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SR limiting-case:
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QM limiting-case:
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A fortuitous
merging?

It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...



*New Paradigm: SRQM or [SR—-QM]*
QM derived from SR + a few empirical facts
Simple and fits the data

A Tensor Study
of Physical 4-Vectors

Simple GR Axioms:
Principle of Equivalence

(properties)
SR 4-vector:

Invariant Interval Measure
Tensors describe Physics

R=(ct,r)
U=y(c,u)
P=(E/c,p)

SpaceTime Metric g*"
¢,G = physical constants

K=(w/c,k)
0=(a/c,-V)

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

(relations)

4-Vector SRQM Interpretation

of QM

SciRealm.org
John B. Wilson

SR 4-vector:
R=<Event>
U=dR/dt

P=(m,)U

a=(-)K

FT
/Q

Multiple

Derived RQM **Principles**:
Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)
Bose Aggregation Principle (BE-statistics)
Hermitian Generators

h,h = physical constants

Particles

|v| << C

Derived QM **Principles**:
Correspondence Principle to CM
Born Probability Interpretation

SR limiting-case:

QM

QM limiting-case:

{hIV'p| << (p-p)} or {y—Re[y]}
Change by a few quanta has
negligible effect on overall state

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR




*New Paradigm: SRQM w/ EM*

QM, EM, CM derived from

A Tensor Study
of Physical 4-Vectors

Simple GR Axioms:
Principle of Equivalence:

(properties)
SR 4-vector & EM tensor:

Invariant Interval Measure
Tensors describe Physics

R=(ct,r) A=(op/c,a)
U=y(c,u)  J=(cp.)

SpaceTime Metric g*"
¢,G = physical constants

P=(E/c,p)
K=(w/c,k) F®=[ 0 ,-elc]
9=(a/c,-V) [+e'/c,-€lb"]
F=y(E/c,f)

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

N=n(c,u)

(relations)
SR 4-vector & EM tensor:

SR + a few empirical facts

4-Vector SRQM Interpretation

of QM

SciRealm.org
John B. Wilson

R=<Event> A=(¢./c*)U
U=dR/dt
P=(m,)U

o=(-)K

F=dP/dz
N=(n,)U

J=(p,)U=(q)N

K= 'a[(Dphase]
FoP=g°AP-9PA"
U-F*=(1/q)F
3-F*P=(p15)d
0-J=0

QFT

Derived RQM **Principles**:
Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)
Bose Aggregation Principle (BE-statistics)
Hermitian Generators

h,h = physical constants

/

Multiple

q=0 Particles

—1  N\_— _[Ram-

SR limiting-case:
v <<c

QE

Derived QM **Principles**:

Correspondence Principle to CM
Born Probability Interpretation

QM
EM w/ spin

QM limiting-case:

{hIV-p| << (p-p)} or {y—Re[y]}
Change by a few quanta has
negligible effect on overall state

CM
EM

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR




Simple GR Axioms:
Principle of Equivalence

Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric g*"

¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

(properties) (relations)
SR 4-vector & EM tensor: SR 4-vector & EM tensor:

R=(ctr)  A=(gp/c,a) R=<Event> A=(¢./c*)U
U=y(c,u) J=(cp,j) U=dR/dt J=(p,)U=(q)N

P=(E/C,p) ‘ P= Mo U K= 'a[(Dphase]
K=(wlc,k) F®=[ 0 ,-elc] FobmgiaB SPA

a=(a/c,-V) [+e'/c,-€lb"] o=(-hK  U-F*=(1/q)F
F=y(E/c,f) F=dP/dt  9-F%=(u,)J
N=n(c,u) N=(n,)U 9-J=0

4-Vector SRQM Interpretation

CM & EM derived from
T SR + a few empirical facts

q=0

SR Eh

The entire classical SR—-EM,CM structure is based on the
limiting-case of quantum effects being negligible.

Notice that only the SR 4-Vector relation:
is missing from the Classical Interpretation...

All of the SR 4-Vectors, including (K & 9),
are still present in the Classical setting.

K is used in the Relativistic Doppler Effect and EM waves.

d is used in the SR Conservation/Continuity Equations,

Maxwell Equations, Hamilton-Jacobi, Lorenz Gauge, etc.
0=(-i)K may be somewhat controversial, but it is the equation for
complex plane-waves, which are in classical EM (in real form).

EM

SR limiting-case:
v <<c

Background Inherent Assumption

QM limiting-case:

{nIV-p| << (p-p) } or {y—Re[y[}
Or{ |Vk| << (kk) }(doesn’t depend on h)
Hamilton-Jacobi non-quantum limit
Change by a few quanta has negligible
effect on overall state

of QM

SciRealm.org
John B. Wilson

This (Classical=non-QM) SR—{EM,CM} approx. paradigm has been working successfully for decades...




SR — QM 4-Vector SRQM Interpretation

SRQM = New Paradigm:
SRQM View as Venn Diagram

of Physical 4-Vectors John B. Wilson

GR
General Relativity

SRQM
Special Relativity — Relativistic QM

GR limiting-case: g"" — n"' Minkowski “Flat” SpaceTime = (Curvature ~ 0)

QM
Non-relativistic Quantum Mechanics

SRQM limiting-case: |v| << ¢

CM

Classical Mechanics
QM limiting-case: h|V-p| << (p-p) or y—Re[y]
Change by a few quanta has negligible
effect on overall state

The SRQM view: Each level (range of validity) is a subset of the larger level.



SR — QM 4-Vector SRQM Interpretation

SRQM = New Paradigm:
s, IRQM View wl EM as Venn Diagram ... .,

of Physical 4-Vectors John B. Wilson

GR
General Relativity

SRQM
Special Relativity — Relativistic QM

GR limiting-case: g"" — n"' Minkowski “Flat” SpaceTime = (Curvature ~ 0)

Qm

CM

Classical Mechanics
QM limiting-case: h|V-p| << (p-p) or y—Re|
Change by a few quanta has negligible
effect on overall state

EM charge
A = 4-EMVectorPotential

The SRQM view: Each level (range of validity) is a subset of the larger level



SR — QM 4-Vector SRQM Interpretation

SRQM: oo
SR language beautifully expressed
e with Physical 4-Vectors b

Newton's laws of classical physics are greatly simplified by the use of physical 3-vector notation, which converts 3 separate space components,
which may be different in various coordinate systems, into a single invariant object: a vector, with an invariant magnitude.
The basis-values of these components can differ in certain ways, yet still refer to the same overall 3-vector object.

_ . Classical 3D objects styled this
3'V.eCt°r_= KIDNGMIECHE@ — (a*,a’,a”) Cartesian/Rectangular 3D basis way to emphasize that they
°) (a}aj’aj} Polar/Cylindrical 3D basis are actually just the separated
PR R IETmy (22 .a”) Spherical 3D basis components of SR 4-Vectors.

s The triangle/wedge (3 sides)

The scalar products of either type: {3D,4D} are basis-independent.
However, unlike the 3D magnitude (only +)=Riemannian=positive-definite,

A-A=A'n A'=(a’)-a-a=(a’)’ the 4D magnitude can be (+/0/-)=pseudo-Riemannian—CausalConditions represents splitting the
~ 4 — (a',a*,@,a%) Cartesian/Rectangular 4D basis components into a scalar and

4-Vec;tor =4D (1 ’(9)';9“3%" NN — (a',a',a%,a%) Polar/Cylindrical 4D basis 3-vector.

A=A"=(a")=(aa)=(a"a) = (a",a,a",a") P O R T R R
SR is able t d th t of math tical vectors into the Physical 4-Vect Jorentz

is able to expand the concept of mathematical vectors into the Physical 4-Vector, : 4-Scalar °®
which combines both ( ) and ( ) components into a single (TimeSpace) object: Classical scalar (1D) [m/s]
These 4-Vectors are elements of Minkowski 4D SR SpaceTime. 4-Position
Typically there is a Speed-of-Light factor (c) [s] e R =R"= (") = (ct,r)
in the temporal component to make the dimensional units match. - (®) =(r)= (2 jl
eg. R = (ct,r): overall dimensional units of [length] = SI Unit [m] 3-position - <Ever’1t>, ’
This also allows the 4-Vector name to match up with the 3-vector name. [m] r=r'—(x,y,z) —(ct,x,y,2)
= <location> s

In this presentation:

| use the (+,-,-,-) metric signature, giving A-A = A'n, A’ = [(a°) - a-a] = (a%)®
4-Vectors will use Upper-Case Letters, ex. A; 3-vectors will use lower-case letters, ex. a; | always put the (c) dimensional factor in the temporal component.
Vectors of both types will be in bold font; components and scalars in normal font and usually lower-case. 4-Vector name will match with 3-vector name.
Tensor form will usually be normal font with tensor indicies: { Greek TimeSpace index (0,71..3): ex. A = A" } or { Latin SpaceOnly index (' .“):ex.a=a"“}

SR 4-Vector (4D)

Classical 3-vector (3D)

SR 4-Tensor SR 4-Vector - ] = W TH =
(2,0)-Tensor T*  J(1,0)-Tensor V* =V = (v*,v) ¢ SR 4-Scalar Classical (scalar j 3-vector) Trace[T*1 =Nl "= T =T "
(0,0)-Tensor S Galilean Not Lorentz VV = Vi, Ve =[(V)7 - vev] = (Vo)
orentz Scala Invariant Invariant = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & Lorentz Scalars
Frame-Invariant Equations
s SRQM Diagramming Method b

4-Vectors are 4D type (1,0)-Tensors, Lorentz {4-}Scalars are type (0,0)-Tensors, 4-CoVectors are 4D type (0,1)-Tensors,
(m,n)-TensorS have (m) # upper-indices and (n) N Vp’ S, Cp, Tan..{m deCIeS}pv..{n indicies)

Any equation which employs only Tensors, such as those with only 4-Vectors and Lorentz 4-Scalars, (ex. P = m,U) is automatically
Frame-Invariant, or coordinate-frame-independent. One’s frame-of-reference plays no role in the form of the overall equations.

This is also known as being “Manifestly-Invariant” when no inner components are used. This is exactly what Einstein meant by his postulate:
“The laws of physics should have the same form for all inertial observers”. Use of the RestFrame-naught (,) helps show this.

It is seen when the spatial part of a magnitude can be set to zero (= at-rest). Then the temporal part would equal the rest value.

4-Vector = 4D (1,0)-Tensor

a’,a') = (a’,a) = (a%a',a%a’) — (a',a*,a’,a*

The components (a",a',a°,a") of the 4-Vector A can relativistically vary depending on the observer and their choice of coordinate system,
but the 4-Vector A = A" itself is invariant. Equations using only 4-Tensors, 4-Vectors, and Lorentz 4-Scalars are true for all inertial observers.
The SRQM Diagramming Method makes this easy to see in a visual format, and will be used throughout this treatise.

The following examples are SR frame-invariant equations: @
o f> o>

The SRQM Diagram Form has all of the :
U-U = (cy info of the Equation Form, but shows 4-Velocity @ 4-Momentum
U =y(c,u) overall relationships and symmetries U=y(c,u) P=(mc,p)=(E/c,p)
P = (mc,p) = (E/c,p) = moU = (EO/cz)U among the 4-Vectors much more clearly. @ 4-WaveVector
K= (wick) = (wic,wn/ Vphase) = (wJ/c)U @ Kz(w/C,k)=(w/C,(.Uﬁ/VphaSe)
P-U=E,

Equation Form SRQM Diagram Form MA---

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector

(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

SR 4-CoVector

(1,1)-Tensor T*, or T,




SR —- QM

SR 4-Vectors are primitive elements of
Minkowski SpaceTime 4D+ (1+3)D

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

We want to be clear, however, that SR 4-Vectors are NOT generalizations of Classical or Quantum 3-vectors.

SR 4-Vectors are the primitive elements of Minkowski SpaceTime:
} as components.
) with component scalar (2”) — (a') & component 3-vector (a) — (2",a’,a%)

af }and a{

4-Vector A = A" = (a") = (a",a',a",a") = (a",a) — (a',a",a’,

4D+«—(1+3)D which incorporate both:
and are metrically distinct, but can mix in SR.

It is the {Classical (Newtonian) or Quantum} 3-vector (a) which is a limiting-case approximation of the spatial part of SR 4-Vector (A) for { |[v| << c }.

i.e. The energy (E) and 3-momentum (p) as “separate” entities occurs only in the low-velocity limit { |v| << c } of the Lorentz Boost Transform.

They are actually part of a single 4D entity: the 4-Momentum P = (
dependent on a frame-of-reference, while the overall 4-Vector P is invariant. Likewise with

SR is Minkowskian; obeys Lorentz/Poincaré Invariance.

energy (E), 3-momentum (p),
3-position (r) in the 4-Position R.

,p); with the components:
(t) and

CM is Euclidean; obeys Galilean Invariance.

: ey e > : m2/a2
(E) can intermix with (p) o ' 4-Momentum @ s ou [kg-m“/s]
via a Lorentz Boost [kg-m/s] LRV}  Classical limiting-case d 0 i denan dext of (p)
Transformation 9 P=(E/c,p) vl<<c | P_=(E/cA p) nl p| call &
AY, BV, ’ : cm oy 3-momentum ka-m/
Spatial : p—(0p'.p7) R
B (o Rotation Minkowski Lorentzu Euclidean Galilean  spatial components can
Transform AY.—R" (1+3)D — 4D [TimeSpace] Invariant ; [Time] + 3D [Space] Invariant  intermix via a Galilean (space-only) Rotation
) ! : Transform R
o ' k [s]
() can intermix with (r) — : i it .
via a Lorentz Boost [m] 4-Position Classical limiting-case 4 POSItlonCM o @ (t) is totally
Transformation R=(ct,r) Iv|<<c R_=(ct/Ar) independent of (r) -
N\ —BY, ' CM only classically 3-position
r=r'—(xy,z) [m]
SR 4-Tensor SR 4-Vector - T - W= TH =
(2,0)-Tensor T §(1,0)-Tensor v* =V = (v*,v) P SR 4-Scalar Classical (scalar j 3-vector) Vv
(1,1)-Tensor T, or T," SR 4-CoVector (0,0)-Tensor S Galilean Not Lorentz V=V V= [(V) - vev] = (Vo)
, orentz Scala Invariant Invariant = Lorentz Scalar




SR —- QM

4-Vector SRQM Interpretation

SR Minkowski SpaceTime
4-\Vectors, 4-CoVectors, Scalars, Tensors
wmeeieos  INVAriant Lorentz Scalar Product S

4-\ectors are tensorial entities of Minkowski SpaceTime, 4D (1,0)-Tensors, which maintain covariance for inertial observers,

meaning that they may have different components for different observers, but describe the same physical object.
(like viewing a sculpture from different angles — snapshots look different, but it's actually the same object)
There are also 4-CoVectors, aka. One-Forms, which are 4D (0,1)-Tensors and dual to 4-Vectors.

Both GR and SR use a metric tensor g"' to describe measurements in SpaceTime.
SR uses the “flat” Minkowski Metric g* — n™ = n, — Diag[1,-1;] = Diag[1,-0"] = Diag[1, ] {Cartesian formy},

which is the {curvature ~ 0 limit = low-mass limit} of the GR metric g"".

4-Vectors = 4D (1,0)-Tensor:

S
A=A'=(a")=(a"a)=(a"a) = (2, )— (@, )
B =B"=(b") = (b’,b)) = (b°,b) = (1, ) — (0, )
4-CoVectors = 4D (0,1)-Tensors Index
A =(a)=(a,2)=(a,2)= (o, ) —(a, ) whereA =n A’and A*=n"A raising & lowering
=(a,a)=(a";-a)=(a, )= (@, ) SR'M\?Ir:wowski
B,=(b)=(b,b)=(b,-b)= (b, ) = (b, ) whereB =n B"andB"=n"B, e Tensor

=(b,,b) = (b°,-b) = (b, )— (b, ) n*orn,

AB'=AB = A“r]wBV =ApB'= A“Bu =z Jab1=%_ [ab]= (@°o° - a-b) = (a’%° - a'b" - a’b? - a°b®)
using the Einstein summation convention where upper-lower paired indices are summed over

Proof that this is an invariant:

A"B'=A"n,,B" =

(NVaA%) Nuv(A'6BP) = (NVanuw\'g) ABP = (AoA"s) A“BP = (Nep/\*w\"g) ABP = (NepO%) A°BP = (Nas) A°BP =
A’(ns)B* = A‘B

Lorentz Scalar Product of 4-Vectors — Lorentz Invariant Scalar = Same measured value for all inertial observers
Lorentz Invariant Scalars are also tensorial entities: (0,0)-Tensors

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S

Einstein & Lorentz “saw” the physics of SR,
Minkowski & Poincaré “saw” the mathematics of SR.
We are indebted to all of them for the simplicity,
beauty, and power of how SR and 4-vectors work...

4-\ector 4-\ector
A=A'=(a’a B=B'=(b’b

Invariant Lorentz
Scalar Product
A-B=AB'=A"'B,=A’-B’
=(a’p’ - a-b)
=(a01b01_ a!_b!)

4-\ector 4-\ector
A=A"=(a”,a’) B’=B"=(b”,b’)

L Detl/ =1 S, /v = 47

Trace[T"] = nuT" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & Lorentz Scalars
Rest Values (“naughts”=,) are Lorentz Scalars

A-A = (3%’ - a-a) = (a%)?, where (a%) is the rest-value, the value of the temporal coordinate when the spatial coordinate is zero (a=0).
The “rest-values” of several physical properties are all Lorentz scalars.

4-Vector A¥ 4-Vector B*
P = (mc,p) K = (w/c,k) A=(a°,a)=(a°,a1,az,a3) B=(b°,b)=(b°,b1,b2,b3)
= 2 = 2
P-P = (mc) - p-p K-K = (w/c)” - kk . : ) —)(aoo,o) {in spatial rest frame} —’(boo,o) {in spatial rest frame}
(P-P) and (K-K) are Lorentz Scalars. We can choose a frame that may simplify the expressions. 'R =
Notation: RS CX) B-B=(b")
Choose a frame in which the spatial component is zero. “o” for rest values { naughts, “(o)bserver value” }
This is known as the “rest-frame” of the 4-Vector. It is not moving spatially. “0” for temporal components { 0" index }
P-P = (mc)’ - p-p = (MoC)? K-K = (w/c) - k'k = (wo/c)? P-P=(m.c)*=(E./c)?
The resulting simpler expressions then give the “rest values”, indicated by (. ). P T e
RestMass (m,) and RestAngularFrequency (w,) @ _ _ —
P=(mc,p)=(E/c,p)

They are Invariant Lorentz Scalars by construction.

P = (Mo)U = (E/c’)U K = (wo/c?)U U=y(c,u)

- | )= 2: ----- >
This leads to simple relations between 4-Vectors. 4-Velocity m

And gives nice Scalar Product relations between 4-Vectors as well.
P-U = (m,)U-U = (m,)c® = (E,) K-U = (wo/c?)U-U = (wo/c?)c? = (wo)

P-K = (MoWwa) — P = (Mec/wo)K = (Eo/wo)K — P = (const)K @

This property of SR equations is a very good reason to use the “naught” convention for specifying the difference between
relativistic component values which can vary, like (m), versus Rest Value Invariant Scalars, like (m,), which do not vary.
They are usually related via a Lorentz Factor: { m = ym, } and { E = yE, }, as seen in the relation of P and U. Likewise { w = yw, }

4-\WaveVector

K=(ou/c,k)=(oo/c,uur“1/vphase

(me,p) = (mo)U = (Mo)y(c,u) = (ymoc,ymou) =(me,mu) = (me,p) = (MoC)T = (mac)y(1,5) = (me)(1,5)
(E/c,p) = (Eo/c*)U = (Eo/c?)y(c,u) = (YEJ/C, )= = (E/c,p) = (Eo/C)T = (Ed/c)y(1,5) = (E/c)(1,5)

SR 4-Tensor SR 4-Vector Wy — WooTh =T
2.0)-T T L bV = (VO SR 4-Scalar Trace[T"] = N, T =T, =
(2,0)-Tensor (1,0)-Tensor V¥ =V = (v°,v) V-V = Vi, Y = [(Vo)z e (v°°)2

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR - QM SRQM Stu dy 4-Vector SRQM Interpre;?tiQo'\;ll
Manifest Invariance:
Invariant SR 4-Vector Relations

of Physical 4-Vectors John B. Wilson

Relations among 4-Vectors and Lorentz 4-Scalars are Manifestly Invariant, meaning that they are true in all inertial reference frames.
Consider a particle at a SpaceTime that has properties described by 4-Vectors A and B:
One possible relationship is that the two 4-Vectors are related by a Lorentz 4-Scalar (S): ex. B = (S) A.

How can one determine this? Answer: Make an experiment that empirically measures the tensor invariant [ B-A/A-A]or[ B:C/A-C ].
IfB=(S)A

then B-A = (S) A‘A or B-C=(S)A-C T —R.A/A. g

(S)=[B-A/A-A] Note that this basically a vector projection. AAYecgtor S__B A/A-A B—4 l;éel;: t?g A
(S)=[B-C/A-C] Can also be mediated by another 4-Vector C =(a_a) =B-C/A-C =(b,b)=

Run the experiment many times. If you always get the same result for (S), then it is likely that the relationship is true, and thus invariant.
Example: Measure (Sp) = [ P-U / U-U ] for a given particle type. & P-P=(m,c)’*=(EJ/c)’
Repeated measurement always give (Sp) = m

@ 4 Momentum
=(mc,p)= (E/c,p)
----- =

1” hint hlnm w

4—WaveVector

This makes sense because we know [ P-U ] =y(E - pru)=E,and [U-U] = c?
Thus, 4-Momentum P = (E,/c?)U = (m,)U = (m,)*4-Velocity U

4-\elocity
Example: Measure (Sk) = [ K-U / U-U ] for a given particle type. U=y(c,u)
Repeated measurement always give (Sk) = (w./c?)
This makes sense because we know [ K:U ] = y(w - k-u) = w, and [U-U]=¢?
Thus, 4-WaveVector K = (w,/c®)U = (w./c?)*4-Velocity U

K=(w/c,k)=(w/c,wﬁ/vphase

Since P and K are both related to U, this would also mean that the
4-Momentum P is related to the 4-WaveVector K in a particular Lorentz Invariant manner for each given particle type... a major hint for later...

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

Some SR Mathematical Tools
Definitions and Approximations

B=vic;B=IB: dimensionless Velocity Beta Factor { B=(0..1); rest at (3=0); speed-of-light (c) at (B=1) }
y = 1[1-8%] = 1N[1-8-B]: dimensionless Lorentz Relativistic Gamma Factor {y=(1..«); rest at (y=1); speed-of-light (c) at (y==) }

(1+x)" ~ (1 + nx + O[x?]) for { |x| << 1 } Approximation used for SR—Classical limiting-cases
Lorentz Transformation A¥, = X"/aX" = 8,[X"]: a relativistic frame-shift, such as a rotation or velocity boost

It transforms a 4-Vector in the following way: X* = A, X" : with Einstein summation over the paired indices, and the (‘) indicating an alternate frame.
A typical Lorentz Boost Transformation A*, — B¥, for a linear-velocity frame-shift (x,t)-Boost in the X-direction:

SR:Minkowski Metric
JR]=0"R" =n"=V"+ H" —

SR:Minkowski Metric
JR] = "R =n" = V* + H

t x y z —Diag[1,-1;]=Diag[1,-5"] Diag[1,-1,-1,-1] = Dlag[1 -] = Dlag[1 -]
t[y By 0 0] onCaresan {in CarEsEn form} “Particle Phy3|cs Conven
x[-By 0 0] n" =N {Nw} = 1/An"} 1 n," =8,
y[0 0 0] m SR:Lorentz Transform
210 0 O 1] B[R] = RVIGR" = IV,
- . - : /\H - (/\ ) M. c /\Uq/\qv - an = 8“
Particle Physics Qonventlon
Original N (at, ) Symmetric B
Boosted A" = (&, ) = AV AY — BY A = (ya' - yBa’, ) {for X-boost Lorentz Transform}
v ] AV ! o \% \ \% u S aceTime
A'-B' = (\"\A")(A\°.B°) = A'B = A“anB = A“Bu =AB'=% _ Japbl=% _ [a'b]= (a’b, + a'b, + a’b, + a’b,) a_sz 3R = 4
= (a’%?° - a-b) = (a°0° - a'b’ - a’b? - a’b?) Dimension
using the Einstein summation convention where upper:lower paired-indices are summed over
d[X] = ¢"[X"] = (d:/c,-V)(ct,x) = Diag[¢:/c[ct], ] = Diag[1,-1;)] = Diag[1, ]1=n"" Minkowski “Flat” SpaceTime Metric [_xj
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ §(1,0)-Tensor V* = V = (v’,v) SR 4-Scalar Trace[T*] = Il

(0,0)-Tensor S

V-V = Vi VY = [(V)7 - vev] = (Vo)
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



Temporal Causality vs. Spatial Topology,

e Simultaneity vs. Stationarity |

of Physical 4-Vectors John B. Wilson

Space-Like Ordering of...

Time-Like Separated <Events> Time-Like Invariant Interval Time-Like Separated <Events>
R-AR=(cAt)*>-Ar-Ar — +(cAr)?

: Invariant = Absolute Temporal Order (A—B—C)
{ ProperTime (t, = t) for | clock at-rest | }
{ Time Dilation (t =yt, = yt) for ...<—moving clock— }

: Relative — Relativity of (A—?—B)
: (only if in reference-frame with occurrence)
“no motion” for stationary particle/worldline, “motion” in all other frames)

All observers agree on temporal order of time-separated events, . - “ -
although temporal event separation may be < Time-Dilated-». ? 2 time-separated events may occur in any spatial order = frame-dependent
== —— | —
<Events> Light-Like Invariant Interval @ <Events>
CU-U=c? AR-AR=(cAt)’-Ar-Ar — 0
: Invariant = Absolute Temporal Order (A—B—C) : Invariant = Absolute Spatial Order (A—B—C)
All observers agree on temporal order of light-separated events, All observers agree on spatial order/topology of light-separated events,

and on the invariant TimeSpace <Event> interval measurement.
All observers measure invariant LightSpeed (c) in their own frames.

and on the invariant TimeSpace <Event> interval measurement.

All observers measure invariant LightSpeed (c) in their own frames.

Space-Like Invariant Interval Space-Like Separated <Events>
R-AR=(cAt)2—Ar-Ar — -(lAI’o = (co-linear)
"""""""""""""""""""""""""""""" o iant = Absolute Spatial Order (A—~B—C C—-B—A
: Relative — Relativity of Simultaneity (A«—?—B) { - . pa}la rder (A—B—C) or ( _l:y rotation)

Simultaneity: (only if in reference-frame with Same-Time occurrence) {

Space-Like Separated <Events>

“no wait” for simultaneous events, “wait” in all other reference frames

. = All observers agree on spatial order/topology of space-separated events,
2 space-separated events may occur in any temporal order = frame-dependent although spatial event separation may be

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

SR 4-Tensor

(2,0)-Tensor T+
(1,1)-Tensor T*, or T,¥
(0,2)-Tensor T,

4-Displacement (between <events>)
AR=AR"=(cAt,Ar)=R2-R1 it}
dR=dR"=(cdt,dr)

SR 4-Scalar
(0,0)-Tensor S
| orentz Scalar,

{infintesimal}




SR — QM 4-Vector SRQM Interpretation

A SRQM Diagram:

, The Basis of Classical SR Physics
Aoy s Special Relativity via 4-Vectors

John B. Wilson

Focus on a few of the main SR Physical 4-Vectors: : - A
4-Displacement 4-Gradient

AR=(cAt,Ar) 0=(0,/c,-V)=0/0R,
Note that these main 4-Vectors are all ~(0,/,6,-0,6,)
_ - =(d/cat,-0/0x,-0/0y,-0/0
R=(ct,r mathematical functions of the (dre z Y 2)
4-Position R":

4-Position

R=R¥=(r")=(r’,r)=(ct,r)=<Event> ® <Event> Location dR=(cdt,dr)
=(r%,r',r,r¥)—(ct,x,y,2)

4-Velocity

(VY RS (MATE(RTIEN @- - - - - 3 <Fvent> Motion
=(u,u’,u?,u®)—y(c,ux,u,u?)

4-Displacement dR = d[R"]
4-Gradient d=00R,: R, =nu.R"
4-Velocity U = d/d7[R"] = dR"/dt

4-Gradient
a=aR=a“=a/aRp=(a~)=(a°,ai)=(at /c,-V) A

<Event> Alteration

=(8°,0",8%,8°)—(9, lc,-0,,-0,,-0,)

These 4-Vectors give some of the main classical results of Special Relativity,
including SR concepts like:

The Minkowski Metric, SpaceTime Dimension = 4, Lorentz Transformations
<Events>, Invariant Interval Measure,

SRQM Diagram

4-Velocity
Causality (= ), Topology (= ) U=y(c,u)
The Invariant Speed-of-Light (c), Invariant Proper Measurements ( : )
Relativity: ( ) ( )
Invariants: ( ), ( ) Absolute/Invariant:
: Causality ( ) is Absolute, Simultaneity ( ) is Relative Causality is to as
: Stationarity ( ) is Relative, Topology ( ) is Absolute Topology is to

Minkowski Diagrams, Light Cone ) _ Relativistic:
Use of the Lorentz Scalar Product to make Lorentz Invariants S'“’é’:;?gi‘gy'sls“;o as
Invariant SR Wave Equations, via the d’Alembertian (Lorentz Scalar Product of 4-Gradient with itself)
Continuity Equations, etc.

(23,51;?;‘5% (1 ,0)-Tesn§o‘: ‘V’?Z‘CZ °v)§F SR 4-Scalar Trace[T™] =, I™ =T¢, =T

(0,0)-Tensor S

V-V = Vi VY = [(V)7 - vev] = (Vo)
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM 4-Vector SRQM Interpretation

A SRQM Diagram:

| The Basis of Classical SR Physics
A Special Relativity via 4-Vectors

John B. Wilson
o—@
The Basis of most all Classical SR Physics is in the SR Minkowski Metric of 4-Displ t J[R]=0"R"=n" 3 [RY] A :
“Flat” SpaceTime n" which can be generated from the 4-Position R and - 'S_p ElelEliizin —Diag[1,-1,-1,-1] Y i 4-Gradient
4-Gradient 3, and determines the measurement between <Events>. AR=(cAt,Ar) . =Diag[1,-5"] =0R"/oR"=/\", 9=(3,/c,-V)=dloR,
! ! Minkowski Lorentz =(8,/c,-3,,-0,,-

This Minkowski Metric n** provides the relations between the = Metri Transform . é t 8;8 X 8/y3’ Z;/a
4-\ectors of SR: 4-Position R, 4-Gradient 9, 4-Velocity U. =(ct,r paceTime D|m =(0/cat,-0/0x,-0/0y,-0/9z)

Invariant Interval W =4 = A, Invariant
The Tensor Invariants of these 4-Vectors give the: R-R=(ct)%-r-r=(ct)? d’Alembertian
Invariant Interval Measures — Causality:Topology, from R‘R AR-AR=(CAt)>-Ar- Ar‘(CAt)2 Wave Equation

e iR - ot dre(c ProperTime Deriative. N\ 752 6/

The relation between 4-Gradient @ and 4-Position R
gives the Dimension of SpaceTime (4),

the Minkowski Metric n*, and the Lorentz Transformations AY,. Relativity of

Simultaneity:Stationarity

The relation between 4-Gradient @ and 4-Velocity U U'AF - l(c,u)-(CAt,Ar) Contm.u'ty 0
gives the invariant ProperTime Derivative d/dz. - V(g At - U;Ar) 4-Velocity Flow
Rearranging gives the invariant ProperTime Differential dr, = C°At, = ¢°At 0-U=0
which leads to relativistic Time Dilation & Length Contraction. SRQM Diagram
The ProperTime Derivative d/dz: 4-Velocity

acting on 4-Position R gives 4-Velocity U | U=y(c,u)

acting on the SpaceTime Dimension Lorentz Scalar =dR/dt

gives the Continuity of 4-Velocity Flow.

nvariant Magnitude

The relation between 4-Displacement AR and 4-Velocity U LightSpeed

gives Relativity of Simultaneity:Stationarity. U-U=c? SR is a theory about the
. B ] relations between 4D

One of the most important properties is the Tensor Invariant SpaceTime

Lorentz Scalar Product ( dot = - ), provided by the i i 1 1 ie. how they are

lonrd indo form of the Minkwald MeHic From here, each object will be examined in turn... how they 3

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?

(1,1)-Tensor T*, or T, SR 4- CoVector
= Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

o—e SRQM Diagram:
. The Basis of Classical SR Physics
esrsuy  4-Position, 4-Displacement, 4-Differential

John B. Wilson

¢—’ S=ues a[R]_auRv:np 3 [R“] A
4-Displacement —Diag[1,-1,-1,-1] y 4-Gradient

(et = =Diag[1,-5] | =ORIGR'=N, 9=(0,/c,-V)=dldR,
dR=(Cd’[,dr) M P Lorentz _
— inkowski T : -(at/c,-ax,-ay,-az)
_ Metri = Drans O VB - (0/c2t,-0/0x -010y,-0162)

The 4-Position R (alt. X) is essentially one of T invariant
the most fundamental 4-Vectors of SR. e X, =4 =N\, , _
It is the SpaceTime location of an <Event>, R-R= (Ct)2 ‘r=(c1)? , d’Alembertian
the basic element of Minkowski SpaceTime: AR-AR=(cAt)*-Ar- AI"(CAT) AT, _ — Wave Equation
a time (t) & a place (r) — ( , )= (ct,r) = () = R. dR-dR=(cdt)*-dr-dr=(cdt)Z B ProperTime Derivative 9-0=(0,/c)*-V-V.

Technically, the 4-Position is just one of the possible properties of
an <Event>, which may also have a 4-Velocity, 4-Momentum, 4-Spin, etc.

“_n

But | write the 4-Position as “=" to an <Event> since that is the most basic property.

The 4-Position relates to via the fundamental i ity:Stationari i roperTime Differentia
physical constant (c): the Speed-of-Light = “(c)elerity ; (c)eleritas”, ‘AR = . Continuity o dt =(1/y)dt
which is used to give consistent dimensional units across all SR 4-Vectors. . 4-Velocity Flow =Time Dilatio

The 4-Position is a specific type of 4-Displacement,
for which one of the endpoints is the <Origin>, or 4-Zero Z, or 4-Origin O.

SRQM Diagram

R:—R, Ri—Z 4-Zero Z, 4-Origin O
AR=R;-Ri—>R-Z=R =(0,0)=(0,0,0,0)=(0")=<Origin>

As such, any “defined” 4-Position, like the 4-Zero, is Lorentz Invariant (point rotations and boosts),

but not Poincaré Invariant (Lorentz + time & space translations), since translations can move it. nvariant Magnitude

LightSpeed
The more general 4-Displacement and 4-Differential(Displacement) are invariant under both U-U=c? Music is to time as
Lorentz and Poincaré transformations, since neither of their endpoints are “pinned” this way. artwork is to space
The 4-Differential(Displacement) is just the infinitesimal version of the finite 4-Displacement, s 4-Creativity )
and is used in the calculus of SR. U=dR/dt : dR=Udt i

4-Position R=(ct,r)=(r")=<Event>
SR 4-Tensor SR 4-Vector = [dR = [Udt = Jy(c,u)dt = [(c,u)ydt = J(c,u)dt = (ct,r)

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar

_ _ _ _ _ _ Trace[T"] = nuT" =T =T
(1.1)-Tensor T% or T oL CoVector (0,0)-Tensor S R = 2AR = ZUAT = XZy(c,u)AT = 2(c,u)yAt = Z(c,u)At = (ct,r) VAVERVIRVES [(v0)2 -vv] = (Voo)2
orentz Scala = Lorentz Scalar




SR — QM , SRQM Diagram: 4-Vector SRQM Interpre;?tiQo,\;l\
The Basis of Classical SR Physics
o Invariant Intervals, TimeSpace

A Tensor Study SciRealm.org

et Causality (time), LightSpeed, Topology (space) "=

JRI=8"R'=n" 4
4-Displacement AR“ AR=(cAt, Ar) UA‘E—Rz-R1 (Cto-cty,ro-r4): {finite} 4-D|sp|acement —>D[ia]g[1 -1 r1] 1] 5 R 4-Gradient
4-Diff i |

AR=(cAtAN ' =Diag[1,-5"] =0R"IOR"=/\", 8=(3,/c,-V)=dlR,
r=(Ee) . Minkowski Lorentz =(3,/c,-0,,-0,,-0.)
4 Tosttion Metri Transform SRl 3/cot.-0lox -aldy,-212z)
The Invariant Interval is the Lorentz Scalar Product R oot | I =(ctr e %
of the {4-Position, 4-Displacement, 4-Differential} with . nva_nan;[ nt?rva M =4=/, Invariant
itself, giving a magnitude-squared, which may be (+/-). R-R= (Ct)2 r=(ct)’ , d’Alembertian
i AR- AR (cAt) -Ar Ar-(cAr) ar .. Wave Equation
RR= () - rr =(ct) =(ctf? =-(r) ProperT|me Derlvatlve 3-0=(0,/c)’-V-V.
AR-AR = (cAt)? - Ar-Ar = (cAt,)? = (cAt)* = -(Ar, ) ______
dR-dR = (cdt)? - drdr = (cdt,)? = (cdu)?=-(dr)? ~ TTmeeemeT

time-like interval (+)
light-like:null:photonic interval (0) g \ roperTime Differentia
= | / ‘AR = . Cont|nU|ty o] dt =(1/y)dt
. 4-Velocity Flow =Time Dilatio
< o, - 2u=0
The 4D Intervals are Invariant:
A future meaning that all observers must agree on their magnitudes,
__ regardless of differing reference frames. This leads to the idea - i
AR space-like interval (-) ¢ ProperTime (At = At,), which is the time-displacement e q Z(;Egit)y
i measured by a clock at-rest, and (Lo = |AXo|), which =dR/dz
is the space-displacement measured by a ruler at-rest.
This also leads to the various Causality Conditions of SR, and the

SRQM Diagram

Absolute/Invariant:
Causality is to Time-like event separation as
Topology is to

elsewhere

concept of the (Minkowski Diagram) Light Cone. The differential form nvaE%rr\;(tg/I;g;c;tude Simultaneity is to Relativistic: as
dR-dR is apparently also still true in curved GR. U-U=c? Stationary is to Time-like event separation

past

cAr) (+) {causal = 1D temporally-ordered, spatially relative}
- . AR-AR = [(cAt)? - Ar-Ar] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Ar/At|=c)}
g 2 . . _ .
LightCone -(Ar,) () {temporally relative, topological = 3D spatially-ordered}

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (v%,v) SR 4-Scalar Absolute/Invariant (Ordering of Events)
SR 4-CoVector (0.0)-Tensor S Causality is temporal Topology: Topology is spatial Causality

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T,
, orentz Scala




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
sz SpaceTime Dimension = 4D — (1+3)D

John B. Wilson
4-Grad|entva“ SAPEIeN) R 4-Displacement IRI="R"=n’ a[R"] 4-Gradient
0=0I0R,=(0,/c,-V)=(c" g ) Diag[1,-1,-1,-1 y , -Gradien
= )=(9) paceTime R AR=(cAt,Ar) "R=4 —>:D?a[g[1 -51 ] =0R"/oR"=N\", 0=(8,/c,-V)=0loR,
| 2-R=0"n, \R'=9,R'=4 | dR=(cdt,dr) r Mi ki Lorentz =
— A . inkowski =(0,/c,-0 ,-0 ,-0.)
Dimension \\Dimensiong Metri Transform ! S

2R = 4 : The 4-Divergence SpaceTime Dimension Relation

. - . b e N paceTime - =(9lcat,-919x,-91y,-01dz)
= (9,/c,-V)-(ct,r) Invariant Interval N @ W= 4 = A, Invariant

N v R-R=(ct)*-r-r=(ct)? d’Alembertian

- =[(@,/c)*(ct) - (-V)+(r)] AR-AR=(cAt)*Ar- Ar—(cAr)2 U-a[.] _ g Wave Equation
= (9[t] + V'r) JR-dR=(cdt)’-dr-dr=(cdr)’ UGt ] ProperTime Derivative 3-9=(9/c)-V-V/
= (3[t] +0,Ix] +0,Iy] +9,[z]) e[ . \ U-d=y(c,u)-(9,/c,-V)=y(d+u-V)
= (Q[t)/et +a[x]/ax +d[y]/dy +0[z)/oz) y =y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
f (1+1+1+1) Relativity of = yd/dt = d/dt -— .
:‘\It Serval Simultaneity:Stationarity roperTime Differentia

. Derivation: ‘AR = - Continuity o dt =(1/y)dt
(@-R) = (0"R’) = (8"NssR®) = Nap(9"RP) = Nep(n) = N’ = Na® = &4 - 4-Velocity Flow =Time Dilatio
= (87481 +5,°+85°) = (1+1+1+1) = 4 = = 2-U=0

SRQM Diagram

This Tensor Invariant Lorentz Scalar relation gives the dimension of SpaceTime.

The only way there can more dimensions is if there is another SpaceTime direction 4-Velocity

available. 4-Divergence (&-[ ]) is also used in SR Conservation Laws, ex. (8-J) = 0 : U:jyé(/;d?
All empirical evidence to-date indicates that there are only the 4 known dimensions: s . .
1 temporal (t): measured in Sl units = [s], with (ct): measured in S| units [m] ‘ nvaE%r;;ttg/lsggc;tude
3 spatial (x, vy, z) : measured in Sl units = [m] = U-U=c?
] SR : Minkowski
These are the 4 components that appearin:. [ | | —1J | AT /1" The Tesseract, SpaceTime is 4D
- 5
R=(ct,r)—(ct,x,y,z 5 measured |n SI unItS [m] 0D () 1D (x) 2D (x,y) 3D (x,y,2) 4D (ct,x,y,z) 4D SpaceTime ( + )D =4D

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar & =8, =8, = Iy = {1 if u=v, else 0} = Diag[1, ]

(0,0)-Tensor S 4D Kronecker Delta
orentz Scala

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
== The Basis of Classical SR Physics

wrsy 1@ Minkowski Metric (n"'), Measurement

of Physical 4-Vectors John B. Wilson

a "— = §~ : A
_ _ _ 4-Displacement M e 0 [RY] 3 :
0=0/0R,=(8./c,-V)=(d") R=(ct,r)=(r")=<Event> ' ~1,-1,- v , 4-Gradient
— — ARZ(cAL,0r) ' —Diag[1,5"] = [ “ORIR=N" Bl a=(d,/c-V)=aIeR,

SR:Minkowski Metric dR=(cdt,dr) Minkowski g _Lorentz =(8,/c,-9,-0,,-0))
Metri ransform

J[R] = &R' =" = V¥ + H" — R= SaceTime - =(3lcat,-0/dx,-0ldy,-0loz)
Diag[1,-1,-1,-1] = Diagl11,,] = Diag[1,-+' Invariant Interval @ iy nvariant

{in Cartesian form} ’Particle PhyS|cs Conven R-R=(ct)?-r-r=(ct)? d’Alembertian
{Nu} = 14N"} i ' =8, ﬂm’ AR-AR=(cAt)*-Ar- Ar-(cAr)2 T _ - Wave Equation
dR-dR=(cdt)>-dr-dr=(cdr)3 ya/dtr..] 0-0=(0,/c)*-V-\,

SR:Temporal Projection X\ +) SR:Spatial Projection dlde[..
"Vertical" V¥ = T'T' — "Horizontal" H" = n™-T"T" —
Diag[1.0.0,0] = Diag[1,0"] 4l Diag[0,-1 - 1,-1] = Diag[0.-5'] Relativity of

4-Gradient 0" 4-Position R”

roperTime Differentia
dt =(1/y)dt
4-Velocity Flow =Time Dilatio
a-U=0

Derivation:
J[R] = ¢"R"
=(,/c,-V)(ct,r)]

=[g/c*ct, -Vct]

The component representation of
the Minkowski Metric n*"

will differ with the chosen basis,
just like with 4-Vectors.

SRQM Diagram

[8/c’r, -Vr ] n*'—Diag[1, ] : Cartesian/Rectangular basis 4-\_/eIOC|ty
n"'—Diag|[1, ] : Polar/Cylindrical basis - — _—y(c,u)
=[ot, 0] n"'—Diag[1, ] : Spherical basis VH(VV)ertlcaI =dR/dt

[0,-Vr] _ .
Generally, components [n*] = 1/[n,.] and n,* = §," / nvariant Magnitude
= Diag[+1,-6"] = n" b LightSpeed
. U-U=c?

Alt. Derivation: 0"X" = n*°9,X" = n*°(9/dX°)X" = n*°(X"1X°) = n*°(8,*) = n* “(H)orizontal”
The SR:Minkowski Metric n* is the fundamental SR (2,0)-Tensor, which shows how intervals are “measured” in SR TimeSpace. . The SR : Minkowski Metric n™ is the
It is itself the low-mass = (Curvature ~ 0) limiting-case of the more general GR metric g*. It can be divided into and parts. Flat SpaceTime” low-curvature limiting-case
The Minkowski Metric can be used to raise/lower indices on other tensors and 4-Vectors. of the more general GR Metric g™

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T*  0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar 3 = 8% = 8,y = Iy = {1 if p=v, else 0} = Diag[1, ]

((())’r%);{; nSch;rla‘S 4D Kronecker Delta = 4D Identity

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




4-Vector SRQM Interpretation

SRQM Diagram:
Y.\ The Basis of Classical SR Physics
e The Lorentz Transform 0,[R"]=A",

John B. Wilson

4-Gradientva“ ) ¢ -Position R° 4-Displacement a [R'] 4-Gradient
0=0/0R,=(9,/c,-V)=(¢" R=(ct,r)=(r")=<Event> ) iag[1,-1,-1,- v , -Gradien
v=( t )=(2") (ct,r)=(r") ven %Ez((cﬁli,gr)) - —Diag[1,-5'] =0R"/OR'=N\", 6=(6t/c,-V)=a/aRp
; =(cat,dr ; ki Lorentz _
Tensorial Lorentz Transform A", Ny g Minkowski =(9,/c,-9,,-0,,-9,)

Transform
{ acting on 4-Vector [ R* = A¥, R"] } paceTime Dim =(olcaot,-dlox,-0l0y,-0/0z)

a[R"] = (9I0R")[R"] = (9/9R")I\"a R Invariant Interval W = 4 = AGAW Invariant
=A% (90R")[R?] = A'an®y = A" R-R=(ct)*-r-r=(ct)’ d’Alembertian

TIA"]={-o..+} ‘m AR-AR=(cAt)*-Ar- Ar-(cAr)2 ar.. ProperTime Derivafive Wave quzjation
=Lorentz Transform Type dR-dR=(cdt)’-dr-dr=(cdt)Z d/dt[..] I vauv 9-0=(d,/c) V-V
General Lorentz Boost Transform (symmetric.continuous): Yd/dr [ o Ua=y(c,u)(9/c,-V)=y(6+urV)
for a linear-velocity time-space-mixing frame-shift (Boost) =y(9,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)
in the vic==(8",3° 8°)-direction: A¥ —> B¥ = S = yd/dt = d/dr
7B’ Simultaneity:Stationarity roperTime Differentia

_vBi ‘AR = - Contin.uity o] dt =(1/y)dt
‘ 4-Velocity Flow =Time Dilatio

General Lorentz Rotation Transform (non-symmetric,continuous): U=

for an angular-displacement spatial-only frame-shift (Rotation)

SRQM Diagram

angle 6 about the fi=(n",n* n’)-direction: ¥ — R¥ = Lorentz Transform Properties: 2-Velocity
0 A= (A d U=y(c,u)
0 NN =q = -
WO - - SR:Lorentz Transform

General Lorentz Discrete Transforms (symmetric.discrete): AnN™ = 4 2 SpaceTime Dimension nvariant Maanitude A.IR"1 = OR¥/8RY = AV
Identity I Time-Reverse Parit ComboPT n /NN =n - 9 M ] v

Sty ' , . iy , R D LightSpeed b= (AT ARAS = 0t = §H
N o= N ST N SPY N (PT) Det[A%] = £1 : (+)=Linearity; (-)=Anti-Linearity (i A= (AW AN = by =6
= Diag[1,0'] = Diag[-1,0] = Diag[1,-0]] = Diag[-1,-6']

**The Trace Invariant of the various Lorentz Transforms

0 0 0 0 leads to very interesting results: CPT Symmetry and Antimatter**
0 0 0 0 4 ° ’y Y TrA"]={-c0. . +<0}
Invariant Tr[ N, ] — =L orentz Transform Type

SR 4-Tensor SR 4-Vector (0),..,+2,..,(+4),...,+°° v — Vi -
(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (v*,v)|F’. SR 4-Scalar Trace identifies CPT Symmetry Tﬁacf[T“ 1= nu T = TEUS S
(0,0)-Tensor S in the Lorentz Transform VAV = Vi, V' = [(V) S VISl

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
o Prpaem e The Lorentz Transform d,[R"]=A",

John B. Wilson
The Lorentz transformation can also be derived empirically. ; J[R]=0"R"=n" 3 [R“'] A
In order to achieve this, it's necessary to write down coordinate transformations (RS gElE Y] —Diag[1,-1,-1,-1] v 4-Gradient
that include experimentally testable parameters. AR=(cAt,Ar) - =Diagi1 _;Jk]’ =0RY/OR'=N\", 0=(0,/c,-V)=0/6R,
For instance, let there be given a single "preferred" inertial frame (t, ) dR=(cdt,dr) Minkov&ski Lorentz _ at/ 2 -3 -0
in which the speed of light is constant, isotropic, and independent of the velocity -Positi i ; Transform =(0,/6,-0,,-0,,0)

of the source.
It is also assumed that Einstein synchronization

baceTime D =(0/cat,-0/0x,-0/0y,-0/0z)

e ; Invariant Interval W =4 = A AR Invariant
one synvenzaton by sow ook anspor ae sunaent - (K SRS
- ’ —\‘ — 2 —_ 2 -
in relative motion, in which clocks and rods have AR-AR= (CAt)Z'Ar Ar= (CAT) 9.. ' L Wave quzlat'on
the same internal constitution as in the preferred frame. dR-dR=(cdt)*-dr-dr=(cd)Z . A - ] 0-0=(0,/c)-V-\,
The following relations, however, are left undefined:
=y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
a(v) differences in time measurements, = yd/dt = d/dt
b(v) differences in measured longitudinal lengths, i L ar ® . . .
d(v) differences in measured transverse lengths, : — roperTime Differentia
£(v) depends on the clock synchronization procedure in the moving frame, ‘AR = : Continuity o dt =(1/y)dt

4-Velocity Flow =Time Dilatio

then the transformation formula (assumed to be linear) between those frames are given by: G = 2-U=0

t=a(v)(t+egv)x) 4-Position R™ Lorentz t x y z SRQM Diagram

X =b(v) (x—vt) R'= t-’ ?S_' '(1, Do) e x-Boost t[v By 0 0] 4-Velocity

y'=d(v)y =(ct,r')=(ct'Xy".z)= ransformy x [ -By 0 0] d U=y(c,u)

zZ=d(v)z (vet - yBx,-yBet + yx,y,2) A —BH, = Q[ 0 0 0] =dR/dt

(yct - yxvic,-yvt + yx,y,z) 210 0 0 1] SR:Lorentz Transform
— i i M1 = p vV = AM

€(v) depends on the synchronization convention and is not determined experimentally, nvallj?r;;(tg/laggc;tude aV[R_1] R /65 Ny
it obtains the value (-v/c2) by using Einstein synchronization in both frames. 4-Position R* gntsp AV = (AT AN =ty = oY

U-U=c?

The ratio between b(v) and d(v) is determined by the Michelson—Morley experiment.
The ratio between a(v) and b(v) is determined by the Kennedy—Thorndike experiment.
a(v) alone is determined by the Ives—Stilwell experiment.

In this way, they have been determined with great precision to { a(v) = b(v) =y and d(v) =1}, TrA"]={-o..+0}
which converts the above transformation into the Lorentz transformation.

R=(ct,r)=(ct,x,y,2)

=Lorentz Transform Type

The value of LightSpeed (c) was

SR 4-Scalar empirically measured by Ole Rgmer Trace[T"] = n, " =TH, =T

(0,0)-Tensor S to b_e finite using_ the timing of V-V = V", VY = [(v°)2 -vv] = (v°°)2
Jovian moon eclipses. = Lorentz Scalar

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
SpaceTime Dimension = 4D, again! i

of Physical 4-Vectors

R =Trn"] = A\, = 4 ARI=0'R'= ; A
The SpaceTime Dimension Relations 4-Displacement —Diag[1,-1,-1,-1] IR 4-Gradient

AR=(cAt,Ar) . -Di 'Sk =9RV¥/OR'=/N\V 8=(3,/c,-V)=3IdR
Tensor Invariants include: {Trace, InnerProduct, Determinant, etc. - =Diag[1,-¢"] v /G b
{ } dR (Cdt,dr) Minkowski Lorentz =(at/C7_aX’_ay,_aZ)

4-Divergence[4-Position] , Trace[Minkowski Metric] , and -Positi i A Transform
the InnerProduct[any of the Lorentz Transforms] : =(d/cat,-0/0x,-0/0y,-0/0z)

give the Dimension of SR SpaceTime = 4D. Invariant Interval , Invariant
R-R=(cty-rr=(ct’ NN\ >/ O d’Alembertian
Minkowski Metric 4-Divergence Lorentz Transform 4§ AR‘(CAt)E-AI' Al"(CAT)2 9[.. ProperTime Derivative Wave quzjanon
Trace Invariant  of 4-Position  Inner Prod Invariant " GeelSCRYRGIEEl(Eel)> et By, a=y(cpu)-( 8,16,V )=1(8+u-V) 0-9=(9,/c)-V'V,
MV = ’ ’
race[n=] S NuN'o/\'g = Np el =y(3+(dx/dt)a,+(dy/dt)a +(dz/dt)a.)
- (0% = aP.RV aB /\p /\v = aB Y t X y y z
Tr[n"™] N*Nu/\"o/\'g = Nogh = vd/dt = d/dt
= Nwln*"] = 3“nuvRZ N®A"NWA's = Nen " Relativity of ™ - N
= ﬂp” = nuvaiR (naB/\uq)(nw/\vB) = nuBnaB Simultaneity:Stationarity Continuity . ropeI‘cj;T?1lyl)dTren 1a
=3 H = v ug = ap = o -
= 0y L N®Np = NegN™ = Tr[n"] 4-Velocity Flow =Time Dilatio
= (1+1+1+1) = Tr[n"™] NBAg=4 \ 2-U=0
=4 =4 =4 Minkowski

Trace Invariant

SRQM Diagram

General Tensor
Trace Invariant 11[n"]=n."=(1) - (-1) - (-1) - (-1)=

4-\elocity
1 U=v(c,u)
=dR/dt

Metric n™ Conservation:Non-Divergence _ '
— of Minkowksi Metric nvariant Magnitude

\ o eV LightSpeed
THv = [T T 02 T EO 1_,1060’()(;] o on firpoe
[T10’T1i’T12’T13] [0’0 _11 10] = o = 8 Noun™ SSR: l\_/ll_!nkO\.NS‘:'(IiD
22 P ° ° aceTime is
[TZO’T%,TAL,T?] . = 9" = 8°ng’ Y
[T3O,T31’T32’TJQ _ acf)av ( . )D — 4D
=Qv =Qv

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T*  0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Tfacf Ly i n”VoTZV = Ty 5 To 2

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi VY= [(V)7 - vev] = (Vo)
, orentz Scala = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
s . Lorentz Scalar (Dot) Product (n,, = -)

John B. Wilson
The Tensor Invariant Lorentz Scalar Product (LSP) is the SR 4D (Dot) Product. : J[R]=0"R"=n" 3 [R] A
It is used to make Invariant Lorentz Scalars from two 4-Vectors. 4-Elgp(la£(taxe)nt —Diag[1,-1,-1,-1] v ‘ 4-Gradient
A-B = A"-B' = A"n,,B' = AB' = A¥B, = (a°b° - a-b) = (a%b%) =(CAt,Ar - =Diag[1.-5* =0R"/0R"=A¥, 9=(d /C,-VF@/@R
AA = AAY = A, AT = AA' = VA, = (a%” - a-a) = (a%) dR=(cdt,dr) ! Mintowaki Lo =(2,/c,-3,-3, -3 )
= Transform e A
Metri = - - -
. - baceTime D|m (dlcat,-dlox,-0ldy,-0/0z)
—Diag[+1,-1,-1,-1]; cartesian) Invariant Interval . . M =4=A, Invariant
with &, and &, as basis vectors R-R=(ct)?-rr=(ct)? Y ' d’Alembertian

A= A“ép — AY { Cartesian } AR- AR_(CAt)Z_Ar Ar_(CA‘C)Z . " Wy Wave Equation

dR-dR=(cdt)?*-dr-dr=(cd ProperTime Derivative 9-9=(3./c-V-V
(C ) rar= (C )2 Yd/dt[..] \ U'azY(Cau)'(at/C,-V):y(at+U'V) ( t )

=y(9+(dx/dt)d,+(dy/dt)d, +(dz/dt)d,)
Relativity of = yd/dt = d/dt

( nw ) is itself just the lowered-index form of the
SR Minkowski Metric ( n* ), with individual components d/dz[..
[Nuw]=1/n*], else 0. In Cartesian basis, this gives { N, = N* % cartesian}-

The LSP is used in just about every relation between any two interesting 4-Vectors. . o . . > Ti Diff fi
It also gives the Invariant Magnitude of a single 4-Vector. If the 4-Vector is temporal, SRS EUEE T T— roper 'ime Litierentia
then the spatial component can be set to zero, giving the rest-frame invariant value, Contln.UIty © 0_“ _(1/}')d_t
or the (o)bserver rest value (“naught” = ,). : 4-Velocity Flow =Time Dilatio

SRQM Diagram
4-Momentum |- 4-Velocity
P=(mc,p)=(E/c,p) | U=v(c.u)
4-Velocity — W
=y(c,u) €2 hint hintl® nvariant Magnitude
: LightSpeed
< i - U-U=c?
4-WaveVector
K=(ou/c,k)=(u)/c:,u)r“1/vphase a’ ora,: (0)" = temporal component (can relativistically vary)

a,: (0)bserver’s rest-frame “naught” Invariant value (does not vary)

SR 4-Tensor SR 4-Vector - - —
(2,0)-Tensor T*  (1,0)-Tensor V¥ =V = (\,v)? SR 4-Scalar Tfacf [T = M T
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi VY= [(V)7 - vev] = (Vo)
, orentz Scala = Lorentz Scalar




4-Vector SRQM Interpretation

A SRQM Diagram:
The Basis of Classical SR Physics
4-Velocity U, SpaceTime <Event> Motion

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

4-Velocity U=y(c,u)=(yc,yu)=(U-0)R=y(3+u-V)R=(d/dt)R=

=dR/dt=(dt/dt)(dR/dt)=(dt/dt)(dR/dt)=y(dR/dt)=y(ct,F)=y(c,u)=U"
4-Velocity U is the ProperTime Derivative (d/dt)
of the 4-Position R or of the 4-Displacement AR.

It is the SR 4-Vector that describes

the motion of through SpaceTime.
For an un-accelerated observer, the 4-Velocity
is a constant along the WorldLine at all points.
For an accelerated observer,

the 4-Velocity is still tangent to the WorldLine at each point,
but changes direction as the WorldLine bends thru SpaceTime.

The 4-Velocity is unlike most of the other SR 4-Vectors in that it only
has 3 independent components, whereas the others usually have 4.

This is due to the constraint placed by the LSP Tensor Invariant of the 4-Velocity.

U-U has a constant magnitude, giving the Speed-of-Light (c) in SpaceTime.

Components:

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

Invariant Interval
R-R=(ct)?-r-r=(ct)?
AR-AR=(cAt)*-Ar- Ar-(cAr)2
dR-dR=(cdt)*-dr-dr=(cdt)Z

Relativity of
Simultaneity:Stationarity

ya/dtr.
didrr.

d[R]=0"R"=n"
—Diag[1,-1,-1,-1]

=Diag[1,-6"]
Minkowski
Metri

paceTime D|m
M =4=A\,

ProperTime Derivative

S Ua=y(c,u) (/e V)=r(@+urV)

=0R¥/OR'=NY,

A

4-Gradient
9=(9,/c,-V)=0loR,
:(at/c,-ax,-ay,-az)
=(dlcat,-0l0x,-dldy,-dldz)
Invariant
d’Alembertian
Wave Equation

3-9=(8,Ic)-V'V/

=y(2:+(dx/dt)d +(dy/dt),+(dz/dt)3,)

= yd/dt = d/dt

Continuity o
4-Velocity Flow
o-U=0

-----

roperTime Differentia
dt =(1/y)dt
=Time Dilatio

A =1’ =R” is normal

3 independent + 1 independent = 4 independent @ t_o \LVo_rId-Liﬁ
@ 4-Momentum 4-Velocity [ = ‘ (Ais Spatial)
U=y(c,u) P=(mc,p)=(E/c,p)=m.U e —t—  UAZ0
a=>

P=myU = (E/c))U nvariant Magnitude
The temporal components give

The 4-Velocity also usually has the Relativistic Gamma factor (y) exposed Einstein's famous LightSpeed
in component form, whereas most of the other temporal 4-Vectors have it U-U=c?
absorbed into the Lorentz 4-Scalar factor that goes into their components. The spatial components give

U =R’ is tangent
to WorldLine
U is Temporal)

Y WorldLine

4-Velocity U = U = y(c, ) = (yc, 1)
4-Momentum P = P® = (mc,n) = moU = ymy(c, 1) = m(c,u) = (me, i) = (E/c, )

SR 4-Tensor SR 4-Vector

R moves along
E, & m,: Invariant Lorentz Scalars Worldline

(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

(1,0)-Tensor V¥ = V = (V°,v)
SR 4- CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Relativistic Gammay=1~[1-B-B ], B = ulc

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM '4 SRQM Diagram: 4-Vector SRQM Interpreot?tiQo'\l;l\
The Basis of Classical SR Physics
° 4-Velocity Magnitude = Invariant Speed-of-Light (c)

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

J[R]=0"R"=n" 3R] A
4-Displacement —Diag[1,-1,-1,-1] y , 4-Gradient
AR—(CAt,AI’) - =D|ag[1 ’_Sjk] =3R”/3RV=/\“\/ a=(3t/C,—V)=a/aRp

4-Velocity U=y(c,u)=(yc,yu)=(U-0)R=y(3+u-V)R=(d/dt)R=

=dR/dt=(dt/dt)(dR/dt)=(dt/dt)(dR/dt)=y(dR/dt)=y(ct,F)=y(c,u)=U°

The Lorentz Scalar Product of the 4-Velocity leads to the Invariant Magnitude

Speed-of-Light (c), one the main fundamental SR physical constants of physics. dR=(cdt,dr) ! Minkowski T'-Ol'efntz =(9,/c,-0 ’_3y,_a )
T ; ransform _ x ‘
U ﬁl_tuoenvat.on 2: Metri SEeTTe =(d/cat,-0/0x,-0/dy,-0/0z)
= y(c,u)y(c,u) = y3(c? - u-u) = dR/dr-dR/dt Invariant Interval ° W =4 = AR\ Invariant
= [1/(1 - B-B)](C? - u-u) = [1/(1 - B-B)Ic*(1 - B-B)| = (dR-dR)/(dr) R-R=(ct)?-r-r=(ct)? d’Alembertian
= ¢? Invariant Magnitude Speed-of-Light (c) | = (cdt)*/(dt)? AR-AR=(cAt)*-Ar-Ar=(cAt)? . Wave Equation
(c)? ; R'dRz(Cdt)Z-dr'dI:(Cd‘r 2 - ProperTime Derivative 9-9=(0 /C)Z'V'V
(c) is the unique maximum speed of SR causality, ‘ !
which all massless particles (RestMass m,=0), ex. the photon,
travel at temporally & spatially. Massive particles can travel at (c) only temporally.

P = (E/c,p) = (Eo/c)U = (Eo/c?)y(c,u) = (E/c, ); p=
P-P = (m.c)® = (E/c)? - p-p = (E/c)? - (E/c)*(u-u/c?) = (E/c)’[1-B7] dt =(1/y)dt

From this eqn: _ _ 4-Velocity Flow =Time Dilatio
(IB|=1) < (Ju]=c) « (M,=0): Massless objects always spatially-move at speed (c) — - 9-U=0

roperTime Differentia

SRQM Diagram

This fundamental constant Lorentz Invariant (c) provides an extra constraint on the
components of 4-Velocity U, making it have only 3 independent components (u). 4-Velocity
This allows one to make new 4-Vectors related to
4-Velocity by multiplying by other Lorentz Scalars.

P-P 2—(E /c)? 1 U=y(c,u) An interesting thing to note is that all

. myC) = C = -of-Li

(Lorentz Scalar)*(4-Velocity) = (New 4-Vector) (MoC)"=(Eo =dR/dz move at the Speed-of-Light
Components: 3 independent @

4-_Momer:tum (c) in 4D SpaceTime. Massive at-rest
i P=(mc,p)=(E/c .:'
P = (E/c,p) = (Eo/c*)U 4-Velocity (mc,p)=(E/c,p) ‘

particles simply travel at (c) temporally
as U, = (c,0), while massless photons

move at (c) spatially also (in vacuum)

as U, ~ (c,ci). Magnitude V[U-U] = ¢

+1 independent = 4 independent . Liglhitsipreeal
U='Y(C,u) Indepenaen = 4 Indepenaen U'U=C2

K = (w/c,k) = (w./c?)U @ @ 4-WaveVector

K=(U~)/C,k)=(UJ/C,Wﬁ/Vphase If (c) was not a constant, but varied somehow, then all 4-Vectors made from the

Th I de 4-Vector thus h 4-Velocity would have more than 4 independent components, which is not observed.
{3f1 n_ta\:‘V}yinrggpznd-er?tccc;rmp%iestsé m It seems a strong, compelling argument against variable light-speed theories.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =N T =T =T
(0,0)-Tensor S Relativistic Gammay =1~[1- 8B ], B = u/c V-V = Vi VY = [(V)7 - vev] = (Vo)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SRQM Diagram: 4-Vector SRQM Interpre;?tiQo'\l;ll
The Basis of Classical SR Physics
Relativity of Simultaneity:Time-Delay

A Tensor Study

AR A (Simultaneity = Same-Time Occurrence) < (At=0) John B. Witson

SciRealm.org

O—@
4-Displacement

Relativity of Simultaneity: o[R]=0"R"=n"""GEF 3 [R¥]

= = Diag[1,-1,-1,-1 ) | 4-Gradient
RRAA Vv b ar=cav.an) - [ or=a LB N <orvioreen, W o=(o e, V)=aioR,
= C°At, = c°Ar dR=(cdt,dr) SpaceTime Minkowski Lorentz k& ~(0,/c,3,-2,-3)

4-Position Dimension Transform 44

If Lorentz Scalar (U-AX = 0 = c?Ac), =(ct, A STra o =(9/cdt,-910x,-0/0y,-9/02)
then the ProperTime displacement (A1) is zero, Trenter el , ™ nvariant
and the s separation (AX = X, - X,) is orthogonal =4 = A\

, R-R=(ct)?-r-r=(ct)? ’ d’Alembertian
to the worldline at U. AR-AR=(cAt)*-Ar- Ar‘(CAt)2 TR , 5 Time Derivafi Wave Equation
= 2 = roperiime perivative 0-0= 2 \V-
‘s X, and X, A therefore simultaneous (At = 0) gR-dR=(cdt)*-dr-dr=(cdus - U-a=y(cf)u)-(3t/C,-V)=y(at+u'V) a=(6,/)-Vg
for the observer on this worldline at U. =y(8t+(dX/dt)3X+(dy/dt)ay+(dz/dt)az)
Examining the equation we get y(c?At - u-Ax) = 0. i ‘ = yd/dt = d/dt

The coordinate time difference between the events is (At = u-Ax/c?)
The condition for simultaneity in an alternate reference frame
(moving at 3-velocity u wrt. the worldline U) is At = 0,

ProperTime Differentia
‘ Continuity of dr =(1/y)dt
= y(CzAt u- Ar) : 4-Velocity Flow =Time Dilation

which implies (u-Ax) = 0. Rest-Frame Lorentz \ J

i ( ) ProperTime Boost-Frame * &S = c?At, = ¢?At pe a:U=0
This condition can be met by: t=1 t e o - SRQM Diagram
(Ju] = 0), the alternate observer is not moving wrt. the events, y

i.e. is on worldline U or on a worldline parallel to U.

(|Ax| = 0), the events are at the same spatial location (co-local).
(u-Ax = 0 =|u||Ax|cos[6]), the alternate observer's motion is
perpendicular (orthogonal, 8=90°) to the spatial separation Ax

U Realizing that Simultaneity (no-wait)

is not an invariant concept was a
breakthrough that lead Einstein to

. i i Special Relativity.
of the events in that frame. At =0 @~ nvariant Magnitude P y
” ) Simultaneous in {t'\x’} [ LightSpeed
If none of these conditions is met, U-U=c?
.then the events will not be simultaneous ~ At#0 Temporal Ordering:
in the alternate reference-frame. Not Simultaneous in {t,x}
Simultaneity (=same time occurrence) is Relative Stationarity (=same place occurrence) is Relative
This can be shown on a Minkowski Diagram Separated Events: Time-like Separated Events:
4 X’ Can appear in any temporal order, Can appear in any spatial order,
depending on one’s reference frame. (Boost) depending on one’s reference frame. (Boost) -
SR 4-Tens°ruv SR 4-V?Etor_ 0 SR 4-Scalar Causality is Absolute — Invariant Proper Time Topology is Absolute — Invariant Proper Length
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (v°,v) Time-like Separated Events: Separated Events:
(1,1)-Tensor T*, or T, SR 4-CoVector (0,0)-Tensor S All observers agree on 1D causal ordering. All observers agree on topology=3D spatial ordering.
(O 2)-Tensor Tuv (0 1)-Tensor Vp = (Vo -V) | orentz Scalar. Causality is an invariant concept. Topology/topological-extension is an invariant concept.




SRQM Diagram:

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

The Basis of Classical SR Physics
Relativity of Stationarity:Space-Motion

(Stationarity = Same-Place Occurrence) «— (Ax=0)

SciRealm.org
John B. Wilson

Cg v V—
Relativity of : 4-Displacement o[R]=0"R"=n"
U-AX = y(c,u)-(CALAX) = y(CAt - u-Ax) AR=(cAt Ar) aR=4 § —DiadllA- 1]
= ?At, = ¢’At dR=(cdt,dr) SpaceTime _hl/Dlilr?l?(E;]I\;;(i]
4-Position Dimension
Let ‘s X, and X, be local (Ax’ = 0) R=(ct,r)

for the observer on worldline at U. Invariant Interval

R-R=(ct)?-r-r=(ct)?
AR-AR=(cAt)*-Ar- Ar-(cAr)2
dR-dR=(cdt)*-dr-dr=(cdt)Z

This has equation (U-AX) = y(c?At - u-Ax) = y’(c?At’ - u-Ax’).

To be stationary/motionless in the Rest-Frame is Ax’ = 0.

This gives:

v(C?At - u-Ax) = y’(c?At)

To be stationary/motionless in the Boosted Frame is Ax = 0. JU-AR = 1(c .u)'(CA’[ Ar)
_ 2 H i)

Lorentz = Y(g At - U;Ar)

ERAEE R = CAtl, = C°AT &

; -kl .

y(c®At) = y’(c*At)
Y(At) = y°(At')
There are combinations of the Relativistic Gamma factor

determined by boosts which allow for this, but many more
which do not...

Rest-Frame
ProperTime

t=r1

U

If this condition is not met,
then the events will not be stationary

in the alternate reference-frame. L=t

Stationary in {t,x’} LightSpeed

U-U=c?

Metri - <
paceTime Dim

ProperTime Derivative
U-d=y(c,u)-(9,/c,-V)=y(d+u-V)
=y(9,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)
= yd/dt = d/dt

Continuity of
4-Velocity Flow
2-U=0

nvariant Magnitude

6V[R”']
=9R"/o0R'=N\"
Lorentz
Transform

4-Gradient
9=(9,/c,-V)=0loR,
=(at/c,-ax,-ay,-az)
=(dlcat,-0l0x,-dldy,-dldz)
Invariant
d’Alembertian
Wave Equation

9=(8,/c)’-V'V,

ProperTime Differentia
dr =(1/y)dt
=Time Dilation

SRQM Diagram
i i
Realizing that Stationarity (no-motion)
is not an invariant concept leads to a

duality of Time and Space, via
Lorentz Boosts.

This can be shown on a Minkowski Diagram. AX # 0

Not Stationary in {t,x}

Temporal Ordering:

Simultaneity (=same time occurrence) is Relative
Separated Events:
X Can appear in any temporal order,

depending on one’s reference frame. (Boost)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

Causality is Absolute — Invariant Proper Time
Time-like Separated Events:

All observers agree on 1D causal ordering.
Causality is an invariant concept.

SR 4-Scalar
(0,0)-Tensor S
| orentz Scalar,

(1,1)-Tensor T*, or T,
(0,2)-Tensor Ty,

Stationarity (=same place occurrence) is Relative

Time-like Separated Events:
Can appear in any spatial order,
depending on one’s reference frame. (Boost) -

Topology is Absolute — Invariant Proper Length
Separated Events:

All observers agree on topology=3D spatial ordering.

Topology/topological-extension is an invariant concept.




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
o vyt et The ProperTime Derivative (d/dr)

John B. Wilson

—— JRI="R'=n" 4

4-Velocity U - ErEeltonl & 4-Displacement . 9 [R"] i
_ _ _ Diag[1,-1,-1,-1 v , 4-Gradient
U=dR/dt=y(c,u)=(u") 9=0l0R,=(9,/c,-V)=(2") AR=(cAt,Ar) - - :IS?a[gh _’SJk] ] =0RY/oR'=N\", 2=(3,/c,-V)=dléR,
. . — dR=(cdt,dr) . Minkowski Lorentz =(8,/c,-9 -0 ,-0)
roperTime Derivative = Metri Transform o att o x 8/y3 Za/a
U-d=y(c,u)(9,/c,-V)=y(3+u-V) _ = paceTime D,m =St R3=aly ilery
=y(9,+(dx/dt)d +(dy/dt)d, +(dz/dt),) Invariant Interval @ M =4=A, ’ Invariant
sl 5 wofey SRy S
cAt)*-Ar-Ar=(c . -
- . M —(cdt-dr-dr=(cd 1 " ProperTime Derivative -9=(3,/c)-V-V.
The derivation shows that the ProperTime Derivative dR-dR=(cdt)*-dr-dr=(cd)Z yd/dt[..] 7 U-a=y(c,u)(8,/c-V)=y(6:+u-V t
(d/dt) is an Invariant Lorentz Scalar. Therefore, all d/de[.. \ ¥

observers must agree on its magnitude, regardless of QUCA +(dxldt)3 +(dy/dt)8 +(dz/dt)a,

their frame-of-reference. (d/dt) is used to derive a few

. ) ) ; Relativity of S
of the physical 4-Vectors: 4-Velocity, 4-Acceleration, Simultaneity:Stationarity \\ gy ProperTime Differentia
4-Force, 4-Torque, etc. AR = . ' inui dt =(1/y)dt
[ @ ------ . & ------ . - [ =Time Dilatio
4-Position 4-Velocity N 4-Acceleration U=
R=(ct,r) U=y(c,u) A=y(cy',y'u+ya)

4-\elocity

=y(c,u)
=dR/dt

. . The ProperTime Derivative can be used to
T8 =RFP-RPFI =R A F nva”_ant WETCQNIOIN 12k new tensors from existing tensors, as it
_ ap LightSpeed is taking the derivative of an existing

=d/dt[M*] U-U=c? | tensor by a Lorentz Scalar: the ProperTime t.

0 -cr
+cn'

f=fltxyz]

4-Tensor p 4-Tensor df = dt(@lat) + dx(@ax) + dy(@llay) + dz(?zz)

Anti-symmetric Anti-symmetric

df/dt = (9at) + dx/dt(?ax) + dy/dt(3f/ay) + dz/dt(%/az)
SR 4-Tensor SR 4-Vector df/dt = (9flat) + ux(@ax) + uy(eay) + u,(3fez)

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar — dffdt = (9at) + u-Vf

(0,0)-Tensor S Relativistic Gammay=1-[1-8-B], B = u/c
orentz Scala

(1,1)-Tensor T*, or T, SR 4- CoVector

didt = (@/ar) + u-V




SR SRQM Diagram:
The Basis of Classical SR Physics
ProperTime Derivative in SR:

A Tensor Stud
T, 4-Tensors, 4-Vectors, and 4-Scalars
The ProperTime Derivative 4-Displacement J[R]=¢"R"=n"
U-9 =y(c,u)-(d,/c,V)=y(0+u-V) = yd/dt = d/dt ; Diag[1,-1,-1,-1 , ,
: : AR=(cAt,Ar) _>=ID?a[g[1 "5 ] =9R"/OR'=A,
4-Vectors & 4-Tensors (acted on by ProperTime Derivative): dR=(cdt,dr) Minkov&ski
4-Position R = o Metri
4-Velocity U = dR/dt ®----Pp paceTime D|m
4-Acceleraton A=dU/dt @ - = - - Invariant Interval M =4=A,
RR=(ct)*rr=(ct)’ "\
4-Momentum P=m,U @----- > AR-AR=(cAt)*-Ar- Ar-(CAt)2 e T T B
4-Force F = dP/dt @ - > dR-dR=(cdt)?-dr-dr=(cdt)3
»,
4 -AngularMomentum M®* =R AP 7y .9

4-Torque T*=RAF =dM¥/dr ‘@’\ _ |
As one can see from the list, the ProperTime Derivative gives the tensors
that are the change in status of the tensor that ProperTime Derivative acts
on. It can also act on Scalar Values to give deep SR results.

0-R = 4: SpaceTime Dimension is 4

d/dt(¢-R) = d/dt(4) =0 : ; 4-Velocity

d/dt(o:R) = d/d7[d]'R + 2-U = 0 - X 1 U=y(c,u)
t b

5:U = 0: Conservation of the SR 4-Velocity Flow

nvariant Magnitude
LightSpeed
U-U=c®

U-U = ¢ Tensor Invariant of 4-Velocity
d/dt[U-U] = d/d1[c?] =

d/de{U-U] = d/de[U]-U + U-d/ckU] = 2(U-A) =0 IiuamtASstl) dfde[..] U’ = A=y(cy',y'u+ya)
U-A = U-U’ = 0: The 4-Velocity is SpaceTime a

SRQM Diagram

orthogonal to it's own 4-Acceleration

SR 4-Tensor

SR 4-Vector

ProperTime Derivative
\ U-9=y(c,u)-(9,/c,-V)=y(d+u-V)
=y(9,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)
= yd/dt = d/dT

Continuity o
4-Velocity Flow

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

A

4-Gradient
9=(9,/c,-V)=0loR,
:(at/c,-ax,-ay,-az)
=(dlcat,-0l0x,-dldy,-dldz)
Invariant
d’Alembertian
Wave Equation

3-9=(8,Ic)-V'V/

roperTime Differentia
dt =(1/y)dt
=Time Dilatio
A =U’=R”is normal
° t_o V_VorId-Lig
1\ (Ais Spatial)
e U-A=0

U =R’ is tangent
to WorldLine
U is Temporal)

Y WorldLine

R moves along
Worldline

(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

(1,0)-Tensor V¥ = V = (V°,v)

SR 4- CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SRQM Diagram: 4-Vector SRQM Interpre;?tiQo,\;l\
The Basis of Classical SR Physics

ProperTime Differential (dr) |

e Time Dilation & Length Contraction =
Oo—@

There are several ways to derive Time Dilation. , JR]=¢"R"=n" 3 [R"]
: — 4-Displacement —Diag[1,-1,-1,-1] y : 4-Gradient
The ProperTime Derivative AR=(cAt,Ar) : :Diagh _’51kj =dR"/OR"=N\", 9=(3,/c,-V)=dléR,

U-0 =y(c,u)(d,/c,-V)=y(8,+u-V) = yd/dt = d/dt dR=(cdt,dr) b Loz —(@Jcd -6.-2)
iti Metri Transform N

R =(0/cat,-919x,-91dy,-0l0z
ProperTime Differential (Lorentz 4-Scalar): dt =(1/y)dt . paceTime D|m ( - Y )
Invariant Interval W =4 = A, Invariant
dR-dR=(cdr)’ CB R-R=(ct)*r-r=(ct)’ d’Alembertian
@ AR:-AR=(cAt)*-Ar- Ar-(cAr) 9T .. 3 o Tt Wave Equation
4-Differential 4-Velocity dR-dR=(cdt)?-dr-dr=(cdt)3 roperTime Derivative 9= V-
dR=(cdt.cr) [ v I U= (c.u)=dR/dc Yd%it[["] S Uasy(cu) (8 /e, V)=y(@uV) ‘
= =y(0,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)

Take the temporal component of the 4-Vector relation. .
P P SRQM Diagram = AN N\

dt = ydr = ydt, _ Relativity of
At = yAt = yAt, Simultaneity: Stationarity

The coordinate time At measured by an observer is
“dilated”, compared to the ProperTime as measured by a
clock moving with the object. This has the effect that
moving objects appear to age more slowly than at-rest

objects. The effect is reciprocal as well. Since velocity is [ 4-Velocity
relative, each observer will see the other as ageing more e | { H U=y(c,u)
slowly, similarly to the effect that each will appear smaller - | =dR/dt
to the other when seen at a distance. R |

| =3 L nvariant Magnitude
Now multiply both sides by the moving-frame speed v=|v| [ - LightSpezed

¥ = U-U=c
vAt = distance L, the moving clock travels wrt. frame, : [ I~ -1
which is a proper (fixed-to-frame) displacement length. Red and Blue lengths equal in the
L, = YL %5 = T : B = moving frame, blue appears

L= (1/y)L0 : {in v direction} contracted in the ProperTime frame

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Invariant: Proper Time=( ) ; Proper Length=( )

(1,1)-Tensor T* or T,¥ SR 4-CoVector (%roe)ifnsic;f Relativistic: Time Dilation=( ) ; Length Contraction=( )




SR — QM SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo,\;ll
The Basis of Classical SR Physics
e, d-Gradient 9, SR 4-Vector Function:Operator

SciRealm.org

of Physical 4-Vectors John B. Wilson
: . ¢" = -Z ..... S
. . —AHRV=nH . . Al
4-Gradient Gradient One-Form 4-Displacement _%'i-‘;] [31 R1 q ] 0 [R"] 4-Gradient
3=3'=313R,~(?")=(0,/c. V) 8,=0l0R'=(3,)=(2,/c.V) AR=(cAt Ar) - Diagi1, 5 || oRUeR=N Bl a=(9 /o, V)=dl0R,
=(9,/c,-0,,-0,,-9,) =(9,/¢,9,,9,,9,) dR=(cdt,dr) i Minkowski Lorentz 5 t/C e oy
=(d/cat,-9/0x,-019y,-010z) =(d/cot,0l0x,010y,010z) . Metri Transform _ LN
: . - : - SaceTime D|m -(/cat,-a/ax,-a/ay,-a/az)
The 4-Gradient (6)=(¢ /c,-V)=(n"d,) is the index-raised Invariant Interval @ M =4 = A, Invariant
version of the SR Gradient One-Form (,)=(¢./c, V). R-R=(ct)?r-r=(ct)? d’AIembertign
It is the 4D version of the partial derivative function AR- AR‘(CAt)z -Ar- Al"(CAT) -O[.. ProperTime Derivative Wave quZJat|on
of calculus, one partial for each dimensional direction. dR-dR=(cdt)*-dr-dr=(cdt)Z yd/dt[..] A U-a=y(cpu)-(a 16-V)=y(@+u-V) 0-0=(0,/c)-V-\,
d/dt[.. _ ’ v !
It is a 4-Vector function that can act on other 4-Vectors, =y(0,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)
4-Scalars, or 4-Tensors. The 4-Gradient tells how Relativity of = yd/dt = d/dz
things change wrt. { & 12 Simultaneity:Stationarity roperTime Differentia
_ : : : o Continuity o dr =(1/y)dt
It is instrumental in creating the ProperTime Derivative . 4-Velocity Flow =Time Dilatio

U-0 = yd/dt = d/dr.

The 4-Gradient plays a major role in advanced SRQM Diagram
physics, showing how SR waves are formed, 4-TotalMomentum
creating the Hamilton-Jacobi equations, the P.=(E,/c,p,)=(H/c,p,

E ) : 4-Gradient

uler-Lagrange equations, Conservation = -9[Sacion] a=(2 /c,-V)

Equations (0-[..]=0), Maxwell’'s Equations, e

the Lorenz Gauge, the d’Alembertian, etc. It gives the [-] nvariant Magnitude

Dimension of SpaceTime, the Minkowski Metric, and : LightSpeed

the Lorentz Transformations. @ afg;%t.;n U-U=c’ The 4-Gradient is a 4D
In QM, it provides the Schrddinger relations. 4-TotalWaveVector Scalar vector-valued function

which can act on other
SR objects: 4-scalars,
4-vectors, 4-tensors

argument

K,=(w./ck,)
= 'a[(Dphase]

The 4-Gradient is fundamental
in connecting SR to QM.
SR 4-Tensor SR 4-Vector Hamilton-Jacobi Equation: Pt = -9[Saction]
. : - : Trace[T"] =n, T" =T, =T
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (v",v) SR 4-Scalar SR Plane-Wave Equation: Ky = -9[®pnase] V-V = V“rEqu]“ B r[](”vo)z v =

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
, orentz Scala = Lorentz Scalar



SR — QM A SRQM Diagram: 4-Vector SRQM Interpre;]?tiQo,\;ll
g The Basis of Classical SR Physics
s INVAriant d’Alembertian Wave Equation (0-9) ......

of Physical 4-Vectors John B. Wilson

The Lorentz Scalar Invariant of the 4-Gradient gives the

J[R]=¢"R"=n" P [R“']
Invariant d’Alembertian Wave Equation, describing SR wave motion. Y

44AD§PIaZ?2ent —Diag[1,-1,-1,-1] sl 4-Gradient
It is seen in the SR Maxwell Equation for EM light waves. dR;E?:dt’d:)) =Diag[1,-5"] =R, 0=(9,/c,-V)=aloR,
’ Minkowski Lo =(8,/c,-8,-0,,-0,)

2-9=(0, Ic)-V-V Lorenz Gauge= Metri Transform

. Conservation of . - =(d/cat,-9/9x,-3!dy,-dloz
: . paceTime Dim = ~
d’Alembertian (8-0)A-3(0-A)=poJ EM Potential: 9-A=0, Invariant Interval P @ . Invariant
Maxwell EM Wave Eqn R-R=(ct)’-r-r=(ct)’ d’Alembertian

. = 2_ . = 2 i
Importantly, the d’Alembertian is fully from basic SR rules, Aiﬁg_(cﬁ:)z ﬁr gr_ (Cdmg o[ .. bt S
with no quantum axioms required. However, % =(cdt)™dr-dr=(cdt
it will be seen again in the Klein-Gordon RQM wave equation. o I R R

It provides for the introduction of an SR Wave 4-Vector K (a.k.a. 4-WaveVector K)
which can also be given by the negative Gradient of a Lorentz Scalar Phase .

Continuity o dt =(1/y)dt
4-WaveVector K = (wo/c*)U = (w/c,k) = -9[Pphase] = I[K*R] - 4-Velocity Flow =Time Dilatio

The usual mathematical (complex) plane-wave solutions apply in SR:
f = (a)*e”[zi(K-R)], with (a)mplitude possibly {4-Scalar S, 4-Vector V", 4-Tensor T"}
{KG wave, EM wave , Grav wave}

Invariant Phase
K-R = (w/c,k)-(ct,r)

M- - A nvariant Magnitude

4-WaveVector fige 4-Gradient LightSpeed
. - = - U-U=c’ SR is the “natural” 4D
K=(w/c,k) . =(9,/c,-V) arena for the description

0-9=(0 /C)Z-V- of waves, using the
t
SR 4-Vector i »
(1,0)-Tensor V¥ = V = (V%,v) SR 4-Scalar agnetic Cons
SR 4-CoVector (0,0)-Tensor S Mo

d’Alembertian

89 = (3,/c)-V-V

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

4-CurrentDensity 4-(EM)VectorPotential Trace[T"] =n, " =TH, =T
J=J"=(pc,j)=p(c,u)=pU § A=A"=(g/c,a)=(p./c*)U IAVAVEERVENEVISS LRV BNV
=qn.U=gN Aen=Aen"=(Pen/C,aem) = Lorentz Scalar

orentz Scala



4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
— Continuity of 4-Velocity Flow (9-U=0)

of Physical 4-Vectors John B. Wilson

Continuity of 4-Velocity Flow 9-U=0 : J[R]=¢"R"=n" 3 [RY] A
This leads to all the SR Conservation Laws. o il et —Diag[1,-1,-1,-1] el 4-Gradient
AR:(cAt,Ar) . ~Diag[1,-5" =0R"/oR"=N\", 8=(9,/c,-V)=alaR,

aR=4 dR=(cdt,dr) Minkowski T';:r';ggrzm =(8,/¢,-0,-0,-0,)
d/dz(¢-R) = d/dz(4) = O _ Metri =(d/cat,-9/0x,-0ldy,-0ldz
el = el = Pl = 0 Invariant Interval ( Invarianty )
d/dt(8-R) = d/d[d]'R + &-U = 0 i e =4=/\ , :
2-U = -d/d[a]-R R-R=(ct)?r-r=(ct)? d’Alembertian

= _(U-9)[9]R AR-AR=(cAt)*-Ar- Ar-(cAr) .. 5 —_—- Wave Equation

— v dR-dR=(cdt)*-dr-dr=(cd roperiime Lerivative 0-9=(0./c)*-V-V.
U et L] B Uamour(ao Ve V) N

= =Uy U - = + + +
o-U = -U,0,0'R": | believe this is legit, partials commute V(¢ (dx/dt)o, (dy/dt)ay (dz/dt)3,)
o-U =-U.a.n" Relativity of , . .
d-U = -U,(0") Simultaneity:Stationarity e roperTime Differentia
oU=0 ‘AR = : inui dt =(1/y)dt
Conservation of the 4-Velocity Flow c [ , =Time Dilatio

(4-Velocity Flow-Field) :
SRQM Diagram

All of the Physical Conservation Laws are in the form of

a 4-Divergence (8- ..]=0), which is a Lorentz 46Vezgctllt)y ngagg{::gr:glgn Laws of SR
. . . . . "l =Y E)
Invariant Scalar equation, a continuity equation. —dR/dt of Continuity Equations

. . a,0-U — 9-a,U = 0-A
nvariant Magnitude = (g,a° + V-a) =

LightSpeed with A = (a%a) = a U

U-U=c’

These are local continuity equations which basically
say that the temporal change of a quantity is balanced
by the flow of that quantity in-to or out-of a local region.

a

o)

Conservation of Charge: Jo-R=4 U-ar.. Continuity o ' Any Loren Conservation of
PodU=0pU=0J=(0,p+Vij)=0 (ESEIIUE yd/dt[..] 4-Velocity Flow E Scalar:Rest Value 4-Vector A=a U
Dimensiog d/dt[.. o-U=0 L 0-A=0

SR 4-Tensor SR 4-Vector Wy — Wo— TH —
2.0)-T Tov e 3 SR 4-Scalar Trace[T"] =N, T =T =T
( )-Tensor (1 ,0) -Tensor V¥ =V = (V ,V) \VAVAS Vpnuvvv = [(v0)2 _ V'V] = (V00)2

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
, orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

) SRQM Diagram:
i The Basis of Classical SR Physics

o—@
A Tensor Study E S b SciRealm.or
of Physical 4-Vectors < Ve nt> u Stan t I atl O n John B. Wilsog
Now focus on a few more of the main SR 4-Vectors. . A
- 4-Displacement SRQM Diagram 4-Gradient
4-Position R PS E Ll AR=(cAt,Ar) 9=(3./c,-V)=d/oR
< > Z = -V )=
R=(ct,r)=<Event> vent>jLoeaten dR=(cdt,dr) —(at/c’a 9 -0 )u
4-Position N ; T ey
K —— A ote that these main 4-Vectors are all =(8/cot.-0lox ~0ldv.-d1d
4 vEkely U ®----P» <Cyent> Motion mathematical functions of the et R

U=dR/dt=y(c,u)

4-Gradient 0"
9=0/0R,=(3,/c,-V) <Event> Alteration

4-Position R":

4-Displacement dR = d[R"]
4-Gradient d=00R,: R, =nu.R"
4-Momentum P 4-Velocity U = d/d7[R"] = dR¥/dt
P=(E/c,p)=(mc,p)=(mc,mu) <Event> Substantiation
=(E,/c®)U=(m,)U (particle:mass)
4-WaveVector K"
K=(w/c,k)=(w/c,wi/v
phase
=(1/cF,A/*)=(w./c*)U

4-CurrentDensity:ChargeFlux J* <Event> Substantiation
J=(pc.j)=(pc,pu) " "4 (charge Q or q)
=(px)U=(qn)U=(q)N Ak Evert> Sups
n m <Event> Substantiation
“ (El\)jlis(:])(,:lﬂ?;t()r?(rfr:i); ) (dust:number N or n,)
=(No)U

These 4-Vectors give more of the main classical results of Special Relativity,
including SR concepts like:

<Event> Substantiation
(wave:phase oscillation)

)

4-Velocity
U=y(c,u)

Motion of various Lorentz Scalars leads to the
“Substantiation” of the various physical SR 4-Vectors.

SR Particles and Waves, Matter-Wave Dispersion Lorentz 4-Scalar a,
Einstein’s , Rest Mass, Rest Energy 4-Vector A = (a%a) =a U = a_y(c,u) = a(c,u) = (ac,au)
Conservation of Charge (Q), Conservation of Particle Number (N), Continuity Equations

SR 4-Tensor SR 4-Vector ] — Wo— TH —
2,0)-Tensor T 1,0)-Tensor V¥ =V = (\°,v SR 4-Scalar Trace[T] = i
e (1.0 VR (0.0)Tensor s VAV = VY = (V) - vev] = (Ve
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR - QM 4-Vector SRQM Interpretation

SRQM Diagram:
A The Basis of Classical SR Physics
e 4-Momentum, Einstein’s E = mc?

John B. Wilson

Cc—@
4-Position R=(ct, ) 4-Displacement . SRQM Diagram 4-Gradient
4-Gradient 0=(c/c, ) AR=(cAt,Ar) 8=(0,/c,-V)=aléR,
) dR=(cdt,dr) 7 =(,/c,-0.,-0.,-0.)
4-Velocity U = y(c, ) 4-Position P LA A
R=(ct,r) % moU-a[..] [PR] =(d/cat,-0/0x,-0ldy,-0l0z)

mod/dt[..] [P-U]/[U-U] = EJ/c?
[P-RJ/[U-R] = -Sau/C*t

A’ [_ action,free]

4-Momentum P =( , )=mU=ymy(, )=m(, ) (L L ool J[P-dR] (m,) = (E/c?)

Temporal part:

/ which matches:
{energy} A _4-Mome_ntum Suut = JmuC? dt
(rest) + (kinetic) \ P=(E/c,p)=(mc,p) Sea=JE.dt
for a free particle

Sact = '.[(rﬂoo2 + V)d’C
Sact = -J(Eo + V)dt
in a potential

Spatial part: p = Eu/c? = yE,u/c? = ymou = mu
{3-momentum}

4-Momentum P = ( : ) = 'a[Saction,free] - '( ) )[Saction,free] i 4-Velocity Ez|p|ZCZ+Eo2

=y(c,u) = m?|u|?c?+E,2
- EYBE?

Temporal part: ~ e oo = E2(1-|BP?)
(energy} (P-P) = (E/c)-(pp) = (mec) i

. E* = (|plc)* + (msc?)® ki
Spatial part: E? = (Ip|c)’ + (E.)? : Einstein Mass:Energ
{3-momentum} Relativistic Energy(E):Mass(m) vs Invariant Rest Energy(E,):Mass(m_

SR 4-Tensor SR 4-Vector E = yEo= ymoc2 = mc?
(2,0)-Tensor T* (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
L orentz Scalag

Trace[T"] = N T" =T", =
V-V =V, VY = [(VO)? - vev] =
= Lorentz Scalar

(1,1)-Tensor T or T, SR 4-CoVector
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V)




SR —- QM

S

A Tensor Study
of Physical 4-Vectors

4-Position R=(ci, )
4-Gradient 0=(c /c,

4-Velocity U = y(c, )

4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics

4-WaveVector, U * Vphase = C°

SciRealm.org
John B. Wilson

c—o A
4-Displacement SRQM Diagram 4-Gradient

%ET(Cﬁt’ﬁ” 8=(3,/c,-V)=2IdR,
=(cdt,dr) =(8,/c,-0,,-0,,-0,)

4-Position
R=(ct,r =(d/cat,-0lox,-dldy,-0ldz)

Wave Phase Equation

4-WaveVector K = (

Temporal part:
{angular frequency}

Spatial part:
{3-wavevector}

;) = (Wo/c?)U = y(wd/c)( )

|U * Vphasel = 02

(wo/CQ)"{d/dt [] I . ((Ug/Cz)
[K-UJ/[U-U] = w/c?
[K'RI/[U-R] = -®phace/C*t

ProperTime Derivatiye

U'aZ’Yd/dt=d/d’[ 'o' w

q)phase = 'on dT
for a free particle

4-WaveVector K = (

Temporal part:
{angular frequency}

Spatial part:
{3-wavevector}

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

’ ) = 'a[q)phase,free] = '(

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar

orentz Scala

(0,0)-Tensor S

," Wave Velocity 5
: group* phase= \ ‘l .(Dphase = '.[((:Uo + V/h)d‘[
' RestAngular @ : in a potential
' Frequency / -
{ NI ' w
B = [kjPc+wy?
)[Prnase free] 4L-l\_/eI00|ty / = W?|u[2/c?+w,2
il — - wrBHd
\ . = wo*/(1-|BI?)
~~~. _—" :YZU)OZ
(K-K) = (w/c)’~(k-K) = (Wo/c)? | @ =1w,

w? = (|k|c)? + (w,)? : Matter-Wave Dispersion Relation
Relativistic AngFreq(w) vs Invariant Rest AngFreq(w,)

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR —- QM

SRQM Diagram: 4-Vector SRQM Interpre;?tiQo'\;ll
N> The Basis of Classical SR Physics
4-CurrentDensity, Charge Conservation

SciRealm.org
of Physical 4-Vectors

John B. Wilson
o o—e A
4-POSIt_|On R=(ct, ) 4-Displacement SRQM Diagram 4-Gradient
4-Gradient 0=(¢ /c, ) AR=(cAt.Ar) 0=(9,/c,-V)=0loR,
. dR=(cdt,dr) _
4-Ve|OCIty U= Y( , ) 4-Position Conservation of Charge =(6,/¢,-0,,-0,,-9,)
3J=0 =(/cat,-010x,-01dy,-0/0z)
4-CurrentDensity J=( ,)=pU=vpo(, )=p(, )
4-ChargeFlux J 1
Temporal part: 4-Cur<::‘ntDensity
{charge-density} J=(pc.j)=(pc,pu)
Spatial part:

{3-current-density}

- -
S m -

]
1
1
L]
1
- po
1
1
A}

*-- -

. - 'l' p2

Conservation of Charge (Q) Q = Jpd® = Jypod® = Jydr p.dA 4-\=/e£clljt§/  jic o2
— .V R 2 = luflci+p.?

8d = (0/0,V)(pe,)) = (9p + Vi) = 0 N — - olBlees
Continuity Equation:Noether’s Theorem JdT-J = -cQ/V, J-d) = (oclofiei) = . = 7P,
The temporal change in charge density is balanced by ( )2—_(p'C) 'g-l )= (QOC) _
the spatial change in current density. . p = (lil/e)” + (po) b= 1P :
Charge is neither created nor destroyed Relativistic ChargeDensity(p) vs Invariant Rest ChargeDensity(p.)

It just moves around as charge currents...

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Rest Volume
V, = Jyd® = [ydr dA

emphasizing linear contraction along direction dr

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(VO)? - vev] = (V0)?
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR — QM SRQM Diagram: 4-Vector SRQM Interpre;?tiQo,\;ll
- > The Basis of Classical SR Physics
e, A-(DUst)NumberFlux, Particle # Conservation

SciRealm.org

of Physical 4-Vectors John B. Wilson
o —o A
4-POSIt_|On R=(ct, ) 4-Displacement SRQM Diagram 4-Gradient
4-Gradient 0=(7/c, ) AR=(cAt,Ar) 0=(3,/c,-V)=aleR,
dR=(cdt,dr) A
4-Ve|ocity U= Y( , ) 4-Position Conservation of Particle # =(6,/¢,-0,,-0,,-9,)
=(olcat,-0/ox,-010y,-010z)

4-NumberFlux N=( ", )=nU=yn,(, )=n(, )
Temporal part: 4-NumberFlux
{number-density} N=(nc,n)=(nc,u)

Spatial part:
{3-number-flux}

- -
S m -

]
1
1
L]
1
- N,
1
1
A}

*-- -

. 2
Conservation of Particle # (N) N = [nd® = Jyn.d*= Jvdr n.dA 4-Velocity 2 2|n|2/02+n02
Y o) Y [0} ='Y(C,u) 'o _ o )
— noVo 7/ - n2|u|2/C +2no
a.N = ( ’ ).( ) ) = (atn + V.n) = 0 ~~~ ‘o' =n |B| +n0

r— = no/(1-|BI?)
Continuity Equation:Noether’s Theorem w =g’

N\ = 2 o NEC 2
The temporal change in number density is balanced by (N N)2— (nc) '(? n) = gn°c) =
the spatial change in number-flux. n® = (|n|/c)” + (no) e
Particle # is neither created nor destroyed Relativistic NumberDensity(n) vs Invariant Rest NumberDensity(n,)
It just moves around as number currents...

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Rest Volume
V, = [yd® = [ydr dA

emphasizing linear contraction along direction dr

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(VO)? - vev] = (V0)?
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



Lorentz Transforms A%, = 9,[X"] “==orus
i (Continuous) vs (Discrete)
wese  (Proper Det=+1) vs (Improper Det=-1) s

John B. Wilson

The main idea that makes a generic 4-Vector into an SR 4-Vector is that it must transform correctly according to an SR Lorentz Transformation { A", = aX"/oX" = a,[X"]},
which is basically any linear, unitary or antiunitary, transform (Determinant[A"\] = 1) which leaves the Invariant Interval unchanged SR:Lorentz Transform
The SR continuous transforms (variable with some parameter) have {Det = +1, Proper} and include: aIR"1 = 8R"/ER" = AV
“Rotation” {a mixing of space-space coordinates} and “(Velocity) Boost” {a mixing of time-space coordinates}. vi 1] - A
The SR discrete transforms can be {Det = +1, Proper} or {Det = -1, Improper} and include: NS = (W) NN =ty = 8%
“Space Parity-Inversion” {reversal of the all space coordinates}, Tlme Reversal” {reversal of the temporal coordinate} ,
“Identity” {no change}, various single dimension “Flips”, “Fixed Rotations”, and combinations of all of these discrete transforms

Continuous: Boost depends on variable parameter B, with y=1/[1-8?]

Typical Lorentz Boost Transformation,
for a linear-velocity frame-shift X-Boost:

x-Boosted 4-Vector
= = A=A"=A\" A'-B" A'=(a”,a’)
—(ya' - yBa*, -yBa' + ya*, @, a*)

=B* AY ;
=( V ) ) 4-VeCt(gr Det[B‘;V]=24;1 , Proper Proper: preserves orientation of basis
A=A"=(a",a) V2 - B2 = +1

—(a, a*, a’, a%)

Discrete: Parity has no variable parameters

—

A= (a, ) 'ISC;;?S& " Parity-Inversed 4-Vector

, N I_AN=AN AV BAV=(/0 47
A = (a, ) Transform X[ O o A=AY=A QIA —P"A=(a",a’)
= PV A" NP, = Y[ 0 —(a, -a*, -@’, -a’)
= ., ) 2

ki uv
Det[P V](_1 -1, I:nproper Improper: reverses orientation of basis

SR 4-Tensor SR 4-Vector V] = v — —

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar TracelT] = NN

(0,0)-Tensor S
orentz Scala

V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




4-Vector SRQM Interpretation

Lorentz Transforms A", = 9,[X"]
Proper Lorentz Transforms (Det=+1):
e Continuous: (Boost) vs (Rotation) s

B = v/c: dimensionless Velocity Beta Factor { =(0..1), with speed-of-light (c) at (B=1) } 4-\/ector
y = 1~[1-p?% = 1N[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..«) } A=A'=(a’a

Lorentz Transforms: Space-Space Time-Space
Typical Lorentz Boost Transform (symmetric): Lambda ( A\) for Lorentz Lorentz Rotation

for a linear-velocity frame-shift (x,t)-Boost in the %-direction: ~ 'B" (B for Boost Transform
A, — B, [C] = e(TK) = R (R) for Rotation ARV
By 0 O -sinh[C] 0 O A& ? (1) 8 8 )) Proper Transforms ~ aceeccenccacaaaaa.- Det[R”i]il;])et[B“'v] ......................

-By 0 07 -sinh[ ] 0 0= e Determinant = +1 =

00 10| O 0 of (0000 ., et Rotated 4-Vector B Boosted 4-Vector

0 0 O 0 0 0 (j0000}) Circularly-Rotated . Hyperbolically-Rotated
AY = ( , ) {coYszhz : 52’;2 : ::II % A’:A“':R“’VAVz(aO”a,) : A’:AP':BH'Vsz(aO',as)
AIJ' = ( , )l = BH'VAV — ( ’ )

¢ = rapidity = hyperbolic angle
y = cosh[ {]= 1N[1-B’]
By =sinh[ (]

= tanh
Typical Lorentz Rotation Transform (non-symmetric): B=tanh[¢]
for an angular-displacement frame-shift (x,y)-Rotation about the z-direction:
/\ulv — R“‘V [9] = e/\(B.J) =

SR:Lorentz Transform

0000O0 , , :

b conrd) wna) o mexedo 0-1 o (RIS

0 0 ( 1010 0 ) EEIANIAAYRLEE

0 0 0 (0000)
A= (8, )@
A" = (a, ) =RLAT= (@), )

SR 4-Tensor SR 4-Vector : . . .
- Ny 1 The Lorentz Rotation R, is a 4D rotation matrix. Trace[T"] =N T* =T, =T
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V/,v) SR 4-Scalar It simply adds the time component, which remains V-V = VY = [(UVO)z . v-viJ = (V)2

o W v o (0,0)-Tensor S
(1.1 Tensor T or T, SR 4-CoVector orentz Scala unchanged, to the standard 3D rotation matrix. = Lorentz Scalar



4-Vector SRQM Interpretation

Lorentz Transforms A", = 9,[X"]
Proper Lorentz Transforms (Det=+1):
setieo. (BOOSE) VS (Rotation) vs (Identity) s

4-\ector
A=A'=(a’a

General Lorentz Boost Transform (symmetric.continuous):
for a linear-velocity frame-shift (Boost)
in the v/c=R=(B’,p?B°)-direction:

" i : Space-Space Time-Space
Ny —> B = A¥, Lorentz Identity Lorentz Rotation
) (0} 0,
Y 1B, [ A%,/\%] T =4 ) o, lransiorm. Transform LEgm L)
v Detln,J=+1 £ \"v—N"y = 8" = 1 N —RY, Det[BY.]=+1

General L orentz Rotation Transform (non-symmetric.continuous):
for an angular-displacement frame-shift (Rotation)

R e e Identical 4-Vector Rotated 4-Vector : Boosted 4-Vector
angle 6 about the n=(n",n*,n°)-direction: . .
AV, s RV, = Un-Rotated Circularly-Rotated ‘ Hyperbolically-Rotated
5 A=A"=n"\A'=(a",a’)=A A=A"=R¥ A'=(a",2’) BRI A’=AY=B¥\A"=(a’,a’)
0 ! The Lorentz Identity Transform is
the limit of both the Rotation and
Lorentz Identity Transform (symmetric,”discrete:continuous”):

: ! respective “rotation angle” is 0
for a non-frame-shift (Identity)

in any direction SR:Lorentz Transform
Ny — n, = 8", = Diag[1,8] = I = A[R"] = OR¥/ORY = N\¥,

Oj /\pv = (/\-1 )vp 5 /\ua/\av = npv = BPV
Oi Q

B = v/c: dimensionless Velocity Beta Factor { B=(0..1), with speed-of-light (c) at (B=1) }

y = 1~[1-B% = 1\[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..) }

Identity transformation for zero relative motion:boost/rotation: B[0] = R[0] = 14

Proper Transformation = positive unit determinant: det[B] = det[R] = det[n] = +1. '
Inverses: B(v)™" = B(-v) (relative motion in the opposite direction), and R(8)™" = R(-8) (rotation in the opposite sense about the same axis)
Matrix symmetry: B is symmetric (equals transpose, B=B"), while R is nonsymmetric but orthogonal (transpose equals inverse, R" = R™")

Boost Transfoms when the :

SR 4-Tensor SR 4-Vector The Lorentz Rotation R*, ( Tr={0..4} ) meets T W=, TV = TH =
- v - =V= SR 4-Scal Y - race[T"] =n, " =T, =T
(2,0)-Tensor T (1,0)-Tensor V* = V = (v°,v) carar the Lorentz Boost B¥, ( Tr={4..~} ) at V-V =V, V" = [(”\/0)2 - v-viJ = (V%)

(0,0)-Tensor S - ,
orentz Scala the 4D Identity Is) = ", ( Tr={4} ) = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



4-Vector SRQM Interpretation

Lorentz Transforms A, = 9,[X"]

£ Discrete (non-continuous)
sy (PAFILY-INVersion) vs (Time-Reversal) vs (Identity) ...

of Physical 4-Vectors John B. Wilson

4-\ector
General Lorentz Parity-Inversion (Space-Reversal) Transform: A=A"=(a’a)

/_\u'v — P¥, (Improper,symmetric,discrete) No mixing Time

|10 Lorentz ﬁm @ m

0 Identity

@ Transform
0} WK =
General Lorentz Time-Reversal Transform: - Nv—n' =8 I(4)

N, — T, (Improper,symmetric,discrete)
=10

Time-Reversed 4-Vector §Parity-Inverted 4-Vector
A=A"=T" A'=(a’,a’) A=A"=P" A'=(a’,a’)

TimeSpace

Parity-Inversion
Transform

General Lorentz Identity Transform: Identical 4-Vector Combo PT’d 4-Vector
A, — ¥, =&, = I, (Proper,symmetric) A=A"=n" A'=(a’,a’)

=(a’,a)=A

A=A'=(PT)" A'=(a°,2")
=(-a’-a)

:(_aO,a) :(ao,-a)

SR:Lorentz Transform
a,[R"] = OR"/ARY = N\, Lo
Ny = (N2 NGNS = 0, = 8%, Identity
g Transfprm’
N* v_’r]pv=8“v

Lorentz
Parity-Inversion

Transform
/\p v_’l:,H v

Both the Parity-Inversion (P) and Time-Reversal (T) have a Determinant of -1, which is an improper transform.
However, combinations (PP), (TT), (PT) have overall Determinant of +1, which is proper.

Classical SR Time Reversal neglects spin and charge. When included, there is also a Charge-Conjugation(C) transform. R IUEIRQVEely
Then one gets (CC),(PP),(TT),(PT)(PT), & permutations of (CPT) transforms all leading back to the Identity (1) A=A'=(a",a)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)

SR 4-Scalar Note that the Trace of Discrete Lorentz Transforms goes in Trace[T"] =N T"=T" =T
(0,0)-Tensor S steps from {-4,-2,2,4}. As we will see in a bit, this is a major | W\ = Vi, V¥ = [(V0)? - vev] = (V)2
orentz Scala hint for SR antimatter and CPT Symmetry. = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




A Tensor Study
of Physical 4-Vectors

4-V§ctor SRQM Interpretation

SRQM Lorentz Transforms A", = 9,[X¥] ™

Discrete & Fixed Rotation — Particle Exchange
Lorentz Coordinate-Flip Transforms o Wi,

Lorentz
Flip-t
Transform
N\ —Ft, =
= T“‘V

IN < X '
—_———

coo i
OO — OIX
o — O oK
- OO OIN

TrFy"\]= 2
Det[Fy".]= -1

Y TriFt]=2
Det[Ft\]= -1
TriFx"J= 2
Det[Fx".]= -1

Tr[R",]=2+2cos[8]={0..4}

—

X y

0 0
cos[0] -sin[6]
sin[B] cos[0]

0 0

Tr[Fxy",]= 0
Det[Fxy"\]= +

[eoNeNe]

IN < X =+
—_————

N,
[ A%,A%]
/\i'0 ,/\\'j

Tr[Fz¥\]= 2
Det[Fz*\]= -1

Det[R",]=cos[08]2 + sin[6]2= +1

- OO OIN
— e

SR:Lorentz Transform
a,[R"] = R"/ARY = N\,

Ny = (NS AR = 1, = 8,

Any single Lorentz Flip Transform is Improper, with a
Determinant of -1. However, pairwise combinations a
Proper, with a Determinant of +1.

The combination of any two Spatial Flips is the equivalen
of a Spatial Rotation by (1) about the associated rotationa
axis. Since this is a Proper transform, it is also the
equivalent of a particle location exchange.

The combination of all three Spatial Flips, Flip-xyz, gives
the Lorentz Parity Transform, which is again Improper.

The Flip-t is the standard Lorentz Time-Reversal,
Improper.

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S

(0,2)-Tensor Ty,

(0,1)-Tensor V, = (Vo,-V)

| orentz Scalar,

Trace[T"] =N, T" =T, =T
V-V = Vi VY = [(V)7 - vev] = (Vo)
= Lorentz Scalar



4-Vector SRQM Interpretation

% SRQM Lorentz Transforms A%, = d,[X"] |
-, LoOrentz Transform Connection Map

of Physical 4-Vectors

SciRealm.org
John B. Wilson

Boost (any Axis) Other Axis SR:Lorentz Transform
AV, BY, Rotations a.[R"] = dR"/OR" = A\¥,
tx |ty | t:z Ny > RY THRY (11/2)]=2 — ATy b - Cm

B =4, Infinity N Y "R 1=(0..4} Rotation-2 (NI A= (NP D AGAS, = Y, = 8,
- . W[, R [mi2] | g
N, ) E L . X: I Discrete
. Continuous } K. _ y i Various Det[ Proper | = +1
, 5 Various » ,* Continuous Discrete Continuous * :
Continuous's Rotations 1,/ Rotate-z ' =Fli . Rl
Various “‘ i Particle Exchange=Flip-xy Rotate-z . Det[ Improper ] = -1
B i . o . '
R s / Flip-x ] Flip-xy * Rot-z[8] = Rot-z[8+T1]
III:)li_screte N, — Fx¥, Discrete Particle Exchange
1p-X X — =X . ) /- H
R PPy Rotation-2™.  piscrete Pa;\'t,},’ 'i"g’fm” Flip-ij * Rot-k[6] = Rot-k[8+1]
Ny — RAT | Flip-z y " Particle Exchange
resessaas s % Discrete =Flipxy —<— C (orthogonal ijk)
H in- = H
" Flip-xy I:(x;/ ¥ space parity
: Eli-SCtrete Tr[r]p'v]=4 F||p-y Tr[Rp'v(_n_)]zo unltal’y
B TrRY,(217)]=4 Discrete A, > Fy¥, Do : Det[]=+1 .-
Det[n*.J=+1 g y— -y Flip-x : Flipt
Sre b unitary H
iscrete |% 5 :
Time-reversal Various |, Continuous Continuous,,* Neg Identity -1 .
N, — TH, Al " Rotate-z Rotate-z ,* Ny = s 3 (R
‘... Rotation-z s =ETCOTREO penars
T Other Axis ™, "*=--.. Ny — RABT2] o -~ . e
time parity EITILNE] Flips . R“'V(31'r/2)]:2 - all flipped Tr[CY =4
anti-unitary OGRS A, — B Xy Det[j=+1 unitary Det[]=+1
4 4 By CPT Symmetry,Sthis should

Discrete Space-Parity=Flip-xyz be equiyalSHSETIE

CPT Symmetric Equivalent Feynman-Stueckelberg



o SRQM Lorentz Transforms A", = g,[X"] ="
Lorentz Transform Connection Map — Discrete Transforms

R CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time S

of Physical 4-Vectors John B. Wilson

xamine all possible combinations of Discrete Lorentz Transformations which are Linear (Determinant of +
SR:Lorentz Transform
A lot of the standard SR texts only mention (P)arity-Inverse and (T)ime-Reversal. However, there are many others, i a,[R"] = R"/ARY = N\,
(F)lips and (R)otations of a fixed amount. However, the (T)imeReversal and Combo(P)arity(T)ime take one into a sepa A, = ( /\-1)\)J t NG =0t = 64
of the chart. Taking into account all possible discrete Lorentz Transformations fills in the rest of the chart. The resulting AM AV, =
interpretation is that there is CPT Symmetry (Charge:Parity:Time) and Dual TimeSpace (with reversed timeflow). In other w
one can go from the Identity Transform (all +1) to the Negative Identity Transform (all -1) by doing a Combo PT Lorentz Trans ‘m’ (m’

or by Negating the Charge (Matter—Antimatter). The Feynman-Stueckelberg CPT Interpretation (AntiMatter moving spacetime

backward = NormalMatter moving spacetime-forward) aligns with this as a Dual-Universe “AntiMatter” Side.

This is similar to Dirac’s prediction of AntiMatter, but without the formal need of Quantum Mechanics, or Spin. In fact, it is more
general than Dirac’s work, which was about the electron. This is from general Lorentz Transforms for any kind of particle:event.

AM-Flip-txyz=AM-ComboPT

AM-Flip-t=AM-TimeReversal

: AM-Flip-xyz=AM-Paritylnverse
AM-Flip-xy=AM-Rotate-xy(1T)
AM-Flip-xz=AM-Rotate-xz(1)

Dual bal 'L\rllti'\llatTtelr [ AM-Flip-x
uaBir?aarSCSepztci):Igst:trgsp = AM-Flip-yz=AM-Rotate-yz(1r)
for 3 units:dimensions | AM-FIip-y
AM-Flip-z AntiMatter

AM-Minkowski-ldentity :
Discrete AntiMatter (AM) Lorentz TransformType




Lorentz Transform Connection Map — Trace Identification
CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

All Lorentz Transforms have Tensor Invariants: Determinant = £1 and InnerProc
However, one can use the Tensor Invariant Trace to Identify CPT Symmetry & Ant

Tr[ AM-Rotate ] = { } Tr[AM-Identity] = Tr[AM-Boost] = {

AM-Flip-txyz=AM-ComboPT

AM-Flip-xyz=AM-Paritylnverse 1

AM-Flip-xy=AM-Rotate-xy(11), AM-Flip-xz=AM-Rotate-xz (1), AM-Flip-yz=AM-Rotate-yz() A ntiMatte r

Rotations

- -la)
AntiMatter AntiMatter

AM-Flip-t=AM-TimeReversal, AM-Flip-x, AM-Flip-y, AM-Flip-z

AM-Minkowski-ldentity :
Discrete AntiMatter (AM) Lorentz TransformType

Flips i Identity
Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example: :
SR:Lorentz Transform Trace = Sum (%) of EigenValues : Determinant = Product (IT) of EigenValues AntiMatter Boosts :
3V[RH'] = dR¥/ORY = N\, AL As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV’s).
AR = (A AR A = b = gt Create an Anti-Transform which has all EigenValue Tensor Invariants negated.
v~ ( )v AN AN | VN Y 3[-(EV’s)] = -Z[EV’s]: The Anti-Transform has negative Trace of the Transform.

/\”G/\Vg = Ngg , RN I[-(EV’s)] = (-1)II[EV’s] = II[EV’s]: The Anti-Transform has equal Determinant. v
0 b -
m’ (m’ The Trace Invariant identifies a “Dual” Negative-Side for all Lorentz Transforms.



SR o SRQM Lorentz Transforms A¥, = g,[XV]  vecorsomnermaen

Lorentz Transform Connection Map - Interpretations
CPT, Big-Bang, (Matter-AntiMatter), Arrow(s)-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
Based on the Lorentz Transform properties of the last few pages, here is interesting observation about Lorentz Transforms: L SR:Lqrentz TranSform
They all have Determinant of {+1}, and Inner Product of {+4}, but the Trace varies depending on the particular Transform. aV[RP] = JdR"/ORY = A\¥,

Ny = (N NS = 1, = 8,

The Trace of the Identity is at {+4}. Assume this applies to normal matter particles.

The Trace of normal matter particle Rotations varies continuously from {0..+4}

The Trace of the normal matter particle Boosts varies continuously from {+4..+Infinity (+=)}

So, one can think of Trace = {+4} being the connection point between normal matter Rotations and Boosts.

Now, various Flip Transforms (inc. the Time Reversal and Parity Transforms, and their combination as PT transform), NormalMatter
take the Trace in discrete steps from {-4,-2,0,+2,+4}. Applying a bit of symmetry: This-Side of Universe
The Trace of the Negative Identity is at {-4}. Assume this applies to anti-matter particles. ) (+) +

The Trace of anti-matter particle Rotations varies continuously from {0..-4} w’/ NM *

The Trace of the anti-matter particle Boosts varies continuously from {-4..-Infinity (-=)}

So, one can think of Trace = {-4} being the connection point between anti-matter Rotations and Boosts. Paili:-rr:iosd;ztéon

This observation would be in agreement with the CPT Theorem:(Feynman-Stueckelberg) idea that normal matter particles moving CPT Symmetry:

backward in (space)time are CPT symmetrically equivalent to antimatter particles moving forward in (space)time. each side folE S Big-Bang!
Now, scale this up to Universe size: The Baryon Asymmetry problem (aka. The Matter-AntiMatter Asymmetry Problem). 't’_s own t|me‘3erW 9 Crea’“or? of
If the Universe was created as a huge chunk of energy, and matter-creating energy is always transformed into matter-antimatter ~ with “matter” acting SpaceTime
mirrored pairs, then where is all the antimatter??? Turns out this is directly related to the Arrow-of-Time Problem as well. “properly”. ) itself
Answer: It is temporally on the “Other/Dual-Side” of the Big-Bang! The antimatter created at the Big-Bang is travelling in the Pair-Production

negative time (-t) direction from the Big-Bang creation point, and the normal matter is travelling in the positive time direction (+t). in Dual side

Universal CPT Symmetry. So, what happened “before” the Big-Bang? It “is” the AntiMatter Dual to our normal matter universe! »~

Pair-production is creation of AM-NM mirrored pairs within SpaceTime. The Big-Bang is the creation of SpaceTime itself. F\lz\/l +

This also resolves the Arrow-of-Time Problem. If all known physical microscopic processes are time-symmetric, why is the flow of
Time experienced as uni-directional??? {see Wikipedia “CPT Symmetry”,“CP Violation”,”Andrei Sakharov”}

Answer: Time flow on This-Side of the Universe is (+t) direction, while time flow on the Dual-Side of the Universe is (-t) direction.
The math all works out. Time flow is bi-directional, but on opposite sides of the Big-Bang! Universal CPT Symmetry.

This gives total CPT Symmetry to all of the possible Lorentz Transforms ( , NM=Normal Matter): This solves the:
Trace Various ( ) : Trace Various (NM_Flips) Baryon (Matter- ) Asymmetry Problem
-Infinity...( )eue( =-4)...( )...0...(NM_Rotations)...(+4=NM_Identity)...(NM_Boosts)...+Infinity & Arrow(s)-of-Time Problem (+/ )
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Lorentz Transform Connection Map — Interpretations 2
CPT, Big-Bang, (Matter-AntiMatter), Arrow(s)-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
This idea of Universal CPT Symmetry also gives a Universal Dimensional Symmetry as well. g ) SR:Lqrentz TranSform
a[R"] = dR"/OR" = N\,
Consider the well-known “balloon” analogy of the universe expansion. The “spatial” coordinates are on the surface of the balloon, T A\ M. AM AG — ~H — SH
/\v-(/\)v-/\c/\v_nv_sv

and the expansion is in the (+t) direction. There is symmetry in the (+/-) directions of the spatial coordinates, but the time flow is
always uni-directional, (+t), as the balloon gets bigger—inflates.

By allowing a “Dual-Side”, it provides a universal dimensional symmetry. One now has (+/-) symmetry for the temporal directions.

The “center” of the Universe is, literally, the Big Bang Singularity. It is the “center = zero” point of both time and space directions. NormalMatter
e _ , - , _ This-Side of Universe
The expansion gives time flow always AWAY FROM the Big Bang singularity in both the Normal-Side (+t) and the Dual-Side (-t). +t
The spatial coordinates expand in both the (+/-) directions on both sides. (+) *
NM
-

Note that this gives an unusual interpretation of what came “before” the Big Bang.

The “past” on either side extends only to the BB singularity, not beyond. Time flow is always away from this creation singularity. Pai‘i]r'fr:iosdsizﬁeon
This is also in accord with known black hole physics, in that all matter entering a BH event horizon ends at the BH singularity.
Time and space coordinates both come to a stop at either type of singularity, from the point of view of an observer that is in the
spacetime but not at one of these singularities.

9
So, the Big Bang is a “starting” singularity, and black holes are “ending” singularities. This also provides for idea of “white holes”
actually just being black holes on the Dual-Side. White hole = time-reversed black hole. Always confusion about stuff coming out.
This way, the mass is still attractive. Time flow is simply reversed on the alternate side so stuff still goes INTO the hole...
which makes way more sense than stuff that can only come out of the “massive=attractive” white-hole. Pair-Production

in Dual side
So, Universal CPT Symmetry = Universal Dimensional Symmetry. " » +
And, going even further, | suspect this is the reason there is a duality in Metric conventions. NM
In other words, physicists have wondered why one can use Metric signature {+,--,-} or {-, }.
| submit that one of these metrics applies to the Normal Matter side, while the other complementarily applies to the Dual side.
This would allow correct causality conditions to apply on either side.
Again, this is similar to the Dirac prediction of antimatter based on a duality of possible solutions.
This gives total CPT Symmetry to all of the possible Lorentz Transforms ( , NM=Normal Matter): This solves the:
Trace Various ( ) : Trace Various (NM_Flips) Baryon (Matter- ) Asymmetry Problem

-Infinity...( )eue( =-4)...( )...0...(NM_Rotations)...(+4=NM_Identity)...(NM_Boosts)...+Infinity & Arrow(s)-of-Time Problem (+/ )
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Model

SpaceTimes A Klein geometry is a pair (G,H) where G is a Lie group and H is a closed

Klein Geometry G/H Lie subgroup of G such that the (left) coset space X:=G/H is connected.

Anti de Sitter G acts transitively on the homogeneous space X.

S0(3,2)/S0(3,1)

De Sitter
S0(4,1)/SO(3,1)

Minkowski
ISO(3,1)/SO(3,1)
ds? = (cdt)? - dx-dx

Lorentzian

pseudo-Riemannian
We may think of H>G as the stabilizer subgroup of a point in X.

Euclidean
ISO(4)/SO(4)
ds? = (cdt)? + dx-dx

Riemannian Hyperbolic

SO(4,1)/SO(4)

Spherical
SO(5)/SO(4)

Geometric Context

Differential
geometry

Gauge Group

Lie group/algebraic group
G

Stabilizer Subgroup

subgroup
(monomorphism)
H>G

Local Model Space

quotient (“coset space”)
G/H

Local
Geometry

Klein
geometry

Global Geometry

Cartan geometry

Differential
Cohomology

Cartan
connection

First Order
Formulation
of Gravity

Examples:

Fits known
observational data

Euclidean group
Iso(d)

Poincaré group
Iso(d-1,1)

anti de Sitter group
0(d-1,2)

de Sitter group
O(d,1)

linear algebraic group

conformal group
O(d,t+1)

rotation group
O(d)

Lorentz group
0O(d-1,1)

0(d-1,1)

0(d-1,1)

parabolic subgroup/
Borel subgroup

conformal parabolic
subgroup

Cartesian space
IR ¢

Minkowski spacetime
|R d-1,1

anti de Sitter spacetime
AdS¢

de Sitter spacetime
ds¢

flag variety

Maobius space
Sd,t

Euclidean
geometry

Lorentzian
geometry

Parabolic
geometry

Riemannian
geometry

Pseudo-Riemannian
geometry

Conformal
geometry

Affine
connection

Spin
connection

Conformal
connection

Euclidean
gravity

Einstein
gravity

AdS
gravity

de Sitter
gravity

Conformal
gravity




4-Vector SRQM Interpretation

Classical Transforms: Venn Diagram

Full Galilean = Galilean + Translations

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
- : : : Lie Groups
Galilean Transformation Group aka. Inhomogeneous Galilean Transformation
Lie group of all affine isometries of Classical:Euclidean Time + Space (preserve quadratic form &;) de Sitter Group SO(1,4)
General Linear,Affine Transform with Det[ ]= %1 de Sitter invariant relativity
(maybe?)
Galilean Transform Translation Transform
4-Tensor {mixed type-(1,1)} 4-Vector Poincaré Group I1SO(1,3)
. , r <<r__ = de Sitter Radius
Discrete Continuous Discrete Continuous { ds )

ro = VIB/A] = LuN[QA]

Time-reversal

. SpatialFlipCombos SR & GR Physics
=t (** currently thought correct **)
t|nt1_e p:?trlty Temporal
anti-unitary {xlylz} — -{xly|z} : u T
. . unitary Rotation N, — B¥, =
Parity-Inversion 4-Zero At Boost
Identity 1) Xy | xz|yz
= no motion Spatial ——
space parity 4 Galilei Group
: no mixin
BlLEETgy unitaryg Motion:Shear Ax | Ay | Az cl { |V| T;ﬁ} .
assica YSICS
tx |ty |tz
/\p'v - Sp‘v =
. — Motion:Shear
Isotropy Homogeneity

{same all directions} {same all points}




A Tensor Study
of Physical 4-Vectors

General Linear,Affine Transform

Lorentz Transform
4-Tensor {mixed type-(1,1)}

Discrete Continuous
Time-reversal
SpatialFlipCombos
t— -t
time parity
anti-unitary — {xjy|z} — -{xlylz} -
unitary Rotation
Parity-Inversion
Identity I, Xy | xiz|y:z
r—-r
spacgt parity no mixing
unita
i unitary Boost
harge-Conjugation
tx |ty |tz
» CPT Symmetry
R—-R%q—--q {Charge}
charge parity {Partiy} Isotropy
anti-unitary

{Time}  |{same all directions}

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
Lie group of all affine isometries of SR:Minkowski TimeSpace (preserve quadratic form n,,)

with Det] ] = +1

Translation Transform

4-Vector
Discrete Continuous
Temporal
4-Zero At
no motion Sl
Ax | Ay | Az

Homogeneity
{same all points}

4-Vector SRQM Interpretation

SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

SciRealm.org
John B. Wilson

-AngularMomentum M* = X" A PY = X*PY - X'P*
enerator of Lorentz Transformations (6)
I-rv_’RI-llv + /\pvv_’Bp'v

4-LinearMomentum P*
= Generator of Translation Transformations (4)
= { AX"—(cAL,0) + AXY—(0,Ax)

Det[A",] = +1 for Proper Lorentz Transforms
Det[A",] = -1 for Improper Lorentz Transforms

Lorentz Matrices can be generated by a matrix M

with Tr[M]=0 which gives:

{A=er*M=¢e”(+0-J - TK) }

{(N'=(Ee*"M)'=e M}

WY SRS VEY SR:Lorentz Transform
A[R"] = OR¥IARY = AV,

M= +0-J - K

/\pv = /\-1 vu - /\pcx/\av = pv = Spv
B[Z] = eN-K) ) i

N\ =
R[O] = eA(+8-J) o\'s = Nas
ROZNER 0 - o RO Y

Rotations J; = -€mi\M™/2, Boosts K = M



SR — QM - 4-Vector SRQM Interpretation

Review of SR Transforms
10 Poincarée Symmetries, 10 Conservation Laws
rmeans 10 Generators : Noether’s Theorem Sesamary

o—e =" Minkowski

: Lagrange “Shift Operator” version of Taylor’'s Theorem: e*@® f(x)=f(x+a)

Tava% Hv )

4-5)|(Sp(lagege)nt SpaceTlme o[X]= N?e[[);c] n Bloch Theorem:Translation Operator: e®®y(X) = w(X+R), with K as reciprocal lattice
=(cAt,Ax

ATime Transform AX¥—( ,0)
Generated by energy E = ¢cp°

Conservation of
elativistic 3-mass-moment
(temporal-spatiall)

-YB;
1)B'Bi/(B-B)+3]

Conservation of scalar Energy (temporal)

.
B (v-

Translation Transform Conservation of 4-Momentum
Generated AX¥(t,x) = exp[X-P/Al* NEREIOEENS Conservation of
4-AngularMomentum

Conservation of linear Lorentz Transform &,[X”Y] = XM IOXY = N\, (3 +3) =(6) Laws
S-momentum (spatial) Generated \¥,(Z,8) = exp[1/2 WM, = exp[T-K + 8-J], !

1 0
Generator 0" ( &'-n'n; )cos(B)-( €xn* )sin(B)+n'n;

M
Conservation of angular
4-AngMomentum 3-momentum ( )

Tensor Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation

MY = X'PY - X'PHY=X AP The group of all isometries of SR:Minkowski Spacetime (6 + 4 = 10)
s, (preserve quadratic form)
i i M= AM XV M Wi 1=
4-Velocity [0 -cn* -cn’ -cnf A General Linear,Affine Transform X" = A*, X" + AX" with Det[A",] = +1
X z Y
=y(c,u) [+Cny OZ * lx] WETERI | 4-AngularMomentum M™ = X A P = X*P" - X'P¥ 0 -cn
=dX/dt [tcn” -l 0 +] a=3/c,-V) | of Lorentz Transformations (6) = 5
, [fen® + 0] : S VR Hy vl } on” 1=x"p
Geng:ator [ 0 __an ] 4-LinearMomentum P* = P E/c=p°
N ; i |k = of Translation Transformations (4) :
o - [+cn', 0] = { AX"(cA1,0) + AX¥(0,/%) y (P=P
. Angular M+ LinsaiiEe Jacobi’'s Formula for Complex Square Matrix A: Det(Exp[A])=Exp(Tr{A])
“AUOMAN O Det(A)io = ((tr A - 6 tr(A2)(tr A)? + 3(tr(A%))? + 8 tr(A°) tr A - 6 tr(A%))/24

= 10 Symmetries = 10 Generators = 10 Conservation Laws: Noether’s Theorem
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The (10) one-parameter groups can be expressed directly as exponentials of the generators: Poincaré Algebra is the Lie Algebra of the Poincaré Group.
U[l, (a°,0)] = e”(ia®-H) = e*(ia’-p°): (1) M= -cn' | M%=-cn?2 | M%= -cn® po

Ull, (0,A8)] = e”(-iAa-p): )

UIA(INGT2), O] = e/(iA8%j): ©) M= cn' M= M= ]2 P!
U[/\()\(p"72), 01 = eA(i)\(p“-_k): ' ©) Loren'tz Bopst k M= cn? ME'= P M= | p2
The Poincaré Algebra is the Lie Algebra of the Poincaré Group:

Total of (1+3+3+3 = (1+3)+(3+3) = 4+6 = 10) Invariances from Poincaré Symmetry M®=cn® | M= |2 M= |1 p3
Covariant form: 0 en —
These are the commutators of the the Poincaré Algebra : M"Y = X A P = XHPY - XYP¥ c Elc=p
[X¥, X'] = O pi=p en”  I=xAp p=p
[P¥, P'] = -ihq(F") if interacting with EM field; otherwise = 0" for free particles

M = (X"P" - X'P¥) = ih(X"9" — X*0") M = Generator of Lorentz Transformations (6) = + }

[, P?] = in( n°'P* - n®*P")
M, M?°] = iR(n"°MH° + n*M* + n°M™ + M)

Rotations J; = -€mnM™/2, Boosts K = My

Component form: Rotations J; = -&»,»M™/2, Boosts K; = Mio
[Jm,Pn] = igmnkPk

P = Generator of Translation Transformations (4) = {

The set of all Lorentz Generators V = {¢-K + 0-J} forms a vector space over the real numbers.
The generators {Jx , J,, J., K«, K, , K} form a basis set of V. The components of the axis-angle

[Jm,Po] =_O R vector and rapidity vector {6, 6y, 6, , {, (,, (;} are the coordinates of a Lorentz generator wrt.
%ﬁhgk::ll = Ir]gP this basis.
j,o] = I

[Jmydn] = i€mnid®

[Jm,Kn] = i€mnkK®

[Km, K] = -iemnd*, @ Wigner Rotation resulting from consecutive boosts
[Um + iKn,dn - iIK] =0

Poincaré Algebra has 2 Casimir Invariants = Operators that commute with all of the Poincaré Generators

These are {P? = P'P, = (m.c)?, W? = W*W, = -(m,c)3(j + 1) }, with W* = (-1/2)e"*°J,,P, as the Pauli-Lubanski Pseudovector

[P?,P°] = [P?,P] = [P?,J] = [P?K] = 0: Hence the 4-Momentum Magnitude squared commutes with all Poincaré Generators
[W2,P%] = [W2,P] = [W?,J]] = [W? K] = 0: Hence the 4-SpinMomentum Magnitude squared commutes with all Poincaré Generators

Very importantly, the Poincaré group has Casimir Invariant Eigenvalues ={ Mass m, Spin j },
hence Mass *and* Spin are purely SR phenomena, no QM axioms required!

This Representation of the Poincaré Group or Representation of the Lorentz Group
is known as Wigner's Classification in Representation Theory of Particle Physics
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10 Poincaré Symmetry Invariances

Noether’s Theorem: 10 SR Conservation Laws

A Tensor Study
of Physical 4-Vectors

d’Alembertian Invariant Wave Equation: -9 = (8/c)* - V-V = (d./c)?
Time Translation:

Let Xr = ( %), then a[X] = (8/c,-V/)(
s0 9[X:] = 3[X] and J[K] = [[0]]

(8-0)[K-X1] = 8-(3[K-X1]) = A[K]-Xr+K-9[X:] = 0+K-3[X] = J[K]-X+K-3[X] = 8-(3[K-X]) = (-0)[K-X:

,x) = Diag[1,-1] = 9[X] = n*

Space Translation:
Let Xs = (ct, ), then 9[Xs] = (@/c,
so d[Xs] = 9[X] and J[K] = [[0]]

)(ct, ) = Diag[1,-1] = &[X] = n*"

(0-9)[K-Xs] = 9-(3[K-Xs]) = O[K]-Xs+K-3[Xs] = 0+K-9[X] = [K]-X+K-3[X] = 2-(3[K-X]) = (8-9)[K-XI:

Lorentz Space-Space Rotation:
Let Xr = (ct, ), then 9[Xg] = (d/c,

so 9[Xg] = 9[X] and 9[K] = [[0]]

)(ct,R[x]) = Diag[1,-1] = &[X] = n**

(9-9)[K-Xr] = 9 (O[K-Xr]) = O[K]-Xr+K-0[Xr] = 0+K-9[X] = J[K]-X+K-3[X] = 8-(3[K-X]) = (8-3)[K-X]:

Lorentz Time-Space Boost:

Let X5 = y( ), then 9[Xe] = (d/c,-V)¥( : ) = [Iy,-yBL[-YB.vIl = A
J[K-Xg] = 9[K]-Xs+K-9[Xs] = A"'K = Kg = a Lorentz Boosted K, as expected

0'Ks = 0-A"K = A, (0-K) = A*(0) = 0 = 0K = Divergence of K = 0, as expected
(0-9)[K-Xz] = 9(9[K-Xz]) = 9-Ks = 0-K = 9+(9[K-X]) = (2-9)[K-X]:

SR Waves:
Let ¥ = ae™-i(K-X), Wr = ae’-i(K-Xr), Ws = ae-i(K-Xs), Wr = ae’-i(K-Xgr), Ws = ae”-i(K-Xs)

SciRealm.org
John B. Wilson

4-Gradient
0=(9, /c,-V)

Invariant
d’Alembertian
Wave Equation

3-9=(3,Ic)-V'V/

=(8,/c,-9,,-0,,-,)

=(8/cat,-010x,-013y,-8/0z)

Time Translation Invariance (1)

Conservation of Energy = (Temporal) 1-momentum E
partof Pt =( ,p)

Space Translation Invariances (3)
Conservation of Linear (Spatial) 3-momentum p
part of P¥ = (E/c.p)

Lorentz Space-Space Rotation Invariances (3)
Conservation of Angular (Spatial) 3-momentum |
part of M¥ = X*P

Lorentz Time-Space Boost Invariances (3)

Conservation of Relativistic 3-mass-moment n
- part of M¥ = XAP

see Wikipedia: Relativistic Angular Momentum

(0-9)[K-X7] = (0-9)[K-Xs] = (9-9)[K-Xg] = (9-9)[K-Xg] = (9-9)[K-X]: Wave Equation Invariant under all Poincaré transforms

Total of (1+3+3+3 = 10) Invariances from Poincaré Symmetry

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

Trace[T"] = nuT" =T =T

V-V = Vi VY = (V)7 - vev] = (Vo)

= Lorentz Scalar

4-Vector SRQM Interpretation
of QM
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SR 4-Vector Magnitudes
Dot Product, Lorentz Scalar Product
it EINSteIn Summation Convention ST

An example of the magnitude of a 3-vector is the length of a 3-displacement Ar = (r, - r ).

Examine 3-positionr, —r = ( ), which is a 3-displacement with the base at the origin r,—0= ( )- Galilean Invariant
The Dot Product of r, { r-r =.r"81krk =rr<= rjrj = (X*X + y*y + z*z) = (X2 + y? + Z%) = r? } is the Pythagorean Theorem. e rjéjkrk =(X)PH(y P +H(2) = (1
The Krone.cker I;)e\l/’(a S;k:\?'?g_[ 1 =1a). | ) 3-position length r
The magnitude is V[r-r] = V[r“] = |r|]. 3D magnitudes are always positive. r=ri=(r') = (r) = <location> — (x,y,z)
The magnitude of a 4-Vector is very similar to the magnitude of a 3-vector, but there are some interesting differences. AR ) )
One uses the Lorentz Scalar Product, a 4D Dot Product, which includes a time component, and is based on the SR:Minkowski Metric
SR:Minkowski Metric Tensor. | typically use the “Particle Physics” convention of the Minkowski Metric JR]=0"R"=n"=V"+ H" — _
n,— Diag[+1, ] {Cartesian form}, with the other entries zero. Diag[1,-1,-1,-1] = Diag[1,-1;3] = Diag[1 -]
{in Cartesian form} "Particle Physics” Col i
AA = AA= A A= AA = AA =5 [aa]=(ae’ +aa’ + el + aa) =3, [a'al] = N} = 140 2 0, =5,
= (a’a’-a'a’ - a%a? - a’a®) = (a’a’ - a-a) : }
using the Einstein summation convention where upper-lower paired indices are summed over. orentz Invariant SR:Lorentz Transform

A[R*] = ORY/AR" = \¥,
A= (N NS = 1, = 8,

RR=Rn R’ =(ct)%rr = (c1)’
R-R = (ct)? - rr = (ct)? - (x* + y* + Z%) = (cAr)?
for 4-Position R = (ct,r) 4-Position Interval ct
4D magnitudes can be negative(-),zero(0),positive(+) I ==l =1T3 () = (ct,r) = (ct,r) = <Event> — (ct,x,y,2)

The 4-Vector version has the Pythagorean element in the spatial components, the temporal component is of opposite sign. SpiceTlum_e
This gives a “causality condition”, where SpaceTime intervals (in the [+,-,-,-] metric) can be: oR=9R" =4

Dimension

(cAt)? (+) {causal = 1D temporally-ordered, spatially relative}
AR-AR = [(cAt)? - Ar-Ar] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Ar/At|=c)} 1
-(Ar,)? () {temporally relative, topological = 3D spatially-ordered} =75
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T §(1,0)-Tensor V* =V = (\,v) . SR 4-Scalar Classical (scalar f 3-vector) Trace[T*1 =Nl "= T =T "
SR 4-CoVector (0,0)-Tensor S Galilean Not Lorentz V-V = Vi VY= [(v0) - vevl = (Vi)

(1,1)-Tensor T*, or T,

orentz Scala Invariant Invariant = Lorentz Scalar



4-Vector SRQM Interpretation

SRQM Study: 4-Vector Operations
Lorentz Scalar Product A-B = A B"
smaeos  EXtErior Product A*B = A"B"-A'BY Pt

Minkowski Lorentz
ARI=¢[R1=n"] &[R'I=\", §
Metric Transfor

|
A 4-Gradient
9=(9, Ic,-V)=dloR,

9-9=(0, c)-V-V
d’Alembertian

There are at least three 4-Vector relations which use the Exterior (Wedge) Product.

oMA = 0" M A" = 0"A"-0"A" = F* . the Faraday EM 4-Tensor
RAP = R* A P" = R*P'-R'P* = M* : the 4-Angular-Momentum
RAF = RY A F' = R'F'-R'F* = "' : the 4-(Angular-)Torque

This gives the components of each remarkably similar properties.
Likewise, each of these has a physical Dot Product relation as well.

d-A = 9,A" = 0 : the Lorenz Gauge, a conservation of 4-EMVectorPotential
R-P = R,P" = -S.cionfree : the Action Scalar
R-F = R,F¥ = 7?7 : probably something important

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

[ J
| 4;3_0(iitti8n U-a[..]
o yd/dt[..]

d/dt[..]

R-P = 'Saction,free 4-Ve|OCity 3"A=8“A"-8VA”
Action Scalar U=y(c,u)=dR/dtf} EM Faraday

M =

4-Tensor

RAP=R'P'-R'P"

4-AngularMomentum

4-Tensor

4-EMVectorPotential
A=(op/c,a)

Energy:Mass

""" (0-9)A-0(0-A)=poJ
4-Momentum Maxwell EM Wave Eqn

P=(mc,p)=(E/c,p)

g
4-ChargeFlux @
4-CurrentDensity

J=(pc,j)=p(c,u) 'f/'acgigrll/lignetic

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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4-Vector SRQM Interpretation
SRQM Study:
]

4-Momentum — 4-Force

A Tensor Study
of Physical 4-Vectors

.
Linear@ * ~
4-Force Is the o >
ProperTime Derivative of 4-Momentum.
(>\|
Angular: \g* ."‘,
4-Torque is the @’

ProperTime Derivative of 4-AngularMomentum.

dide[ M ] = d/di{ X A P ]

= dide] X°P’ - X'P* ]

= [UPPY + XPFY — U'P¥ — XYF* ]

= [U'moU" + X¥FY — U'moU — X'F* |
= [U'moU’ — U'mol¥ + X*FY — X'F* |
= [ mo(UPU" — U'UY) + XHFY — X'F¥ |
= [ mo(0™) + X*F' — X'F¥ ]

= [ XF' = X'F*]

d/dd M* ] = = [ X*F' = X'F*]= X AF
SR 4-Tensor

(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

4-AngularMomentum — 4-Torque

SR 4-Scalar

(0,0)-Tensor S
orentz Scala

SciRealm.org
John B. Wilson

paceTime Minkowski Lorentz 4-Gradient
o-X=9,X'=4 g dX|="[XT=n" & a[X"|=A", & a=(3/c I-V) A
. . t )

Transfor

Dimensio

4-Position
X=(ct,x
|

4-AngMomentum
Tensor
M¥ = XPPY - X'P* =X AP
—
[0 -cn* -cn’ -cn?]
[+cn* 0 +F  -P]
[+cn - 0 +*]

yd/dt[..]
d/dtr..

Tensor
M=XF'-XF'=XAF

dM*/dt

4-Velocity
U=y(c,u)

[+cn® +F - 0]

[0 ,-cn']
[+cn', €6 ]

4-Momentum
P* = P=(mc,p)=(E/c,p)

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & 4-Tensors
Lorentz Scalar Product & Tensor Trace
Alensorstudy Invariants: Similarities SeRsamarg

All {4-Vectors:4-Tensors} have an associated {Lorentz Scalar Product:Trace} Lorentz Scalar Invariant

V-V=VAV=(vVY - vev)=(V0)
Each 4-Vector has a “magnitude” given by taking the Lorentz Scalar Product of itself. IVecior
V-V = Vi VY = VRV, = VWY = (Vv + viv! + vov? + vav®) = (VOVO - vev) = (V0)?

The absolute magnitude of V is V[|V-V]]

Trace Tensor Invariant

Each 4-Tensor has a “magnitude” given by taking the Tensor Trace of itself. TrT*]=TH=(T2-TH-T2-T%)=T

Trace[T"] =TrT"] =N T =T, =T = (T + T + T2+ T3) = (TP -T"-T>2-T¥) =T ~_4-Tensor
Note that the Trace runs down the diagonal of the 4-Tensor. ™= Eﬁiﬁ:ﬁﬁ%
Notice the similarities. In both cases there is a tensor contraction with [T20,72, T2 7%

[TSO T31 T32 T33

the Minkowski Metric Tensor n, — Diag[+1, ] {Cartesian basis}

P-P=(m,c)’=(E./c)

ex. P-P = (E/c)? - p'p = (EJ/c)? = (M,C)?
which says that the “magnitude” of the 4-Momentum is the RestEnergy/c = RestMass*c  Ls&AIE(=1A:

)Y (0]0] 11 22 33 m
ex. Trace[n™] =(n"-n"-n"-n")=1-(-1)-(-1) -(-1) = 1+1+1+1 =4 Minkowski Metric
which says that the “magnitude” of the Minkowski Metric = SpaceTime Dimension = 4 €]iElEamsI:Ye| i I

SR 4-Tensor SR 4-Vector V] — v — —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace i r]pv;l"; = Tl To 2
(0,0)-Tensor S V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, o 0,1)-Tensor V, = (Vo,-V
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SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants
e Phase Space Integration b

Some 4-Vectors have an alternate form of Tensor Invariant: dv’/v° = dv/\/°
in addition to the standard Lorentz Invariant V-V = V¥V, = (v’ - v-v) = (v )?

Lorentz Scalar Invariant

V-V=V*V, =(VV° - v-v)=(V°)

(0]

hence (V-dV) = 0 = V°dv° - v-dv
dv® = v-dv/\° dv/v® — d*v/V° if V-V=(constant

If V-V = (constant):, with V = (v",v) 4-Vector
then d(V-V) = 2*(V-dV) = d(constant) = 0

. Ph S | iant
Generally:, with A = A", = Lorentz Boost Transform in the B-direction -

V’ = AV : from which the temporal component v% = (yv° - yB-v)
dV’ = AdV : from which the spatial component dv’ = (ydv - yBdv®)

Combining:

dv’ = (ydv - yB(v-dv/V°))

dv’ = (1V°)*(yvPdv - yB(v-dv))
dv’ = (1V°)*(yv°- yB-v)dv

dv’ = (yv°- yB-v)*(1/v°)*dv

dv’ = (V*/v°)dv . An alternate approach is:
dv’/v¥ = dv/V® = Invariant of V = (\°,v) for V-V = (constant) Jd*p 8[p-(MeC)] P-P=(m,c)*=(E./c)’
_ = Jd'p (1/2]m.c]) (3[p+m.c] + 3[p-m.c]) 4-Momentum
I§OP fi)r(r(;xca;])r?‘I((e(-:onstant) ~cd'p/2E P=(mc,p)=(E/c,p
=Ly = = Invariant m

Thus, dp’/(E’/c) = dp/(E/c) = Invariant
Or: dp’/E’ = dp/E — d°p/E = dp*dp’dp?/E = Invariant, usually seen as | F(various invariants)*d°p/E = Invariant

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants
e Phase Space Integration b

d*X = -(Vo)dT-dX = ~(dV,)T-dX = cdt d®x = cdt-dx-dy-dz
The 4D Position coords that are integrated to give a 4D volume: S| units [m*]

4-UnitTemporalDifferential 4-Differential
4-Differential dX = (cdt,cx); dR = (cdt,dr); dT=(d[y].d[vB]) dR=dR"=(cdt,dr)
4-UnitTemporal T = y(1,8) = (v,78)
4-UnitTemporalDifferential dT = d[(y, )] = (d[y], )

V = [dV = [dx [dy Jdz = [[[dx dy dz = [d®x

V = V,/y = 3D Spatial Volume: S| units [m?]
dV = d°x = 3D Spatial Volume Element
= VoV

dy = -(Vo/V2)dV

-(Vo)dT-dX = Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant Phase Space

= -(Vo)(dIy], )-(cdt,dx) Tensor Invariant
= -(Vo)(d[y]cdt - d[yB]-dx) = cdt-dx-dy-dz
-(Vo)(-(Vo/V?)dVedt - d[yR]-dx)

-(Vo)(-(Vo/Vo2)dVedt - d[(1)(0)]-dx) by taking the usual rest-case
-(Vo)(-(Vo/Vo?)dVedt)

-(Vo)(-(1/Vo)dVedt)

dVcdt

= cdtdVv

= cdt ' [Flvarious Invariants]d‘X U
= d*X = Invariant =ydx-dy-dz

And, this makes sense. =(Ydr)'(dA)
T is a temporal 4-Vector with fixed magnitude: T-T = 1. d(T-T) =d(1) = 0 = 2(dT-T) = 'Yd3x
Since (dT-T)=0, dT must orthogonal to T and thus must be a spatial 4-Vector

If dX is also spatial, then the Lorentz scalar product { (dT-dX) = -magnitude } will be negative with this choice of Minkowski Metric.
Thus, multiplying by -(V,) gives a positive volume element{ cdt dx dy dz = d*X}

It is sort of quirky though, that the temporal (cdt) comes from the dX part, and the spatial (d°x) comes from the dT part.

= cydt-dx-dy-d

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =N, T =T =T
(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
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4-Vector SRQM Interpretation

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants
e Phase Space Integration b

p d° = p' d*" = (-V,/c)dT-J = Lorentz Scalar Invariant
n d®x = n' d®' = (-V,/c)dT-N = Lorentz Scalar Invariant

4-CurrentDensity J = (pc,])

4-NumberFlux N = (nc,n)

4-UnitTemporal T = y(1,8) = (v,78)
4-UnitTemporalDifferential dT = d[(y,/8)] = (d[y], )

V = Vly
dy = -(Vo/V?)dV

(-Vo/c)dT-J = Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant
= (-Vo/c)(d[y], *(pc,j)

= (-Vo/c)(d[y]pc - d[yB]- J)

= (-Vole)(-(Vo NZ)(dV)(pC) d[yBIj)

= (-Vole)(-(Vo/Vo?)(dV)(pc) - d[(1)0]))

= (-Vo/e)(-(Vo/Vo?)(dV)(pc))

= (dV/c)(pc)

= (pc)(dV/c)

= (p)(dV)

=p d®

Total Charge Q = Jyp, d°x = [p d° = Lorentz Scalar Invariant
Total Particle # N = [yn, d® = |n d°x = Lorentz Scalar Invariant
Total RestVolume V, = [yd®x = Lorentz Scalar Invariant

This also gives an alternate way to define the RestVolume Invariant V..
(-Vo/c)dT:N = nd®x

N = [nd*x = [(-Vo/c)dT:N

cN/V, = -[dT-N

V, = -cN/[dT-N

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

(1,1)-Tensor T*, or T, SR 4- CoVector

4-(Dust)NumberFlux

N=N"=(cn,nu)=

LU-U=c’

4-\elocity

(] U=Ur=y(c,u) (0,
4-UnitTemporalDifferential 4-ChargeFlux
dT=(d[y],d[yB]) 4-CurrentDensity

J=J"=(cp,j)=p(c,u)
L -Vo/c ] =p.U=gn,U=gN

n(c,u)

Phase Space
@ Tensor Invariants @

N = (-VJ/c)[dT-N Q = (-Vo/c)/dT-
= [nd® = Jyn.d®x = [pd®x = Jyp.d®x
— noVo — poVo
Total # Particles N is a Total EM Charge Q is a
Lorentz Scalar Invariant Lorentz Scalar Invariant

V, = Jyd®x

= -cN/[dT-N = -cQ//dT-

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants
e Phase Space Integration b

gjz = %""iﬂ?ﬂi = ((zE/;:))cgsr;( = (((ij//c))ddp; ciljpkyy%pkz 4-UnitTemporalDifferential 4-MomentumbDifferential
= (Vio)dT-dK = (dw/c) d’k = (dw/c) dk* 3 = =dPH=

The 4D Momentum coords that are integrated to give a 4D Momentum Volume: S| Units [(kg-m/s)‘] dT (d[y],d[yB]) dP=dP _(dE/C’dp)
The 4D WaveVector coords that are integrated to give a 4D WaveVector Volume: Sl Units [(1/m)*]

4-DifferentialMomentum dP = ( ,dp)
4-DifferentialWWaveVector dK = ( ,dk)
4-UnitTemporal T = y(1,8) = (v,78)
4-UnitTemporalDifferential dT = d[(y,y£)] = (d[y], )

Ve = [dVe = [dpXdpY[dp? = [[[dp* dp dp? = [d°p

Ve = 7(Veo) = 3D Volume in Momentum Space: S| Units [(kg-m/s)’]

dVp = dy(Ve,) = 3D Volume Element in Momentum Space d‘P

¥ = (Ve)(Veo)

dy = (dVe)/(Veo) = (dE/c) dp* dp’ dp?
= (dE/c) d®

(Veo)dT-dP = Invariant, because Rest Scalar * Lorentz Scalar Product Phase Space

= (Vro))(d[y], )+ ( ,dp) Tensor Invariant

= (Veo)(d[y]dE/c - d[yB]-dp)

(Vro)((dVe/Veo)dE/c - d[yB]-dp)

(Vro))((dVe/Veo)dE/c - d[(1)(0)]-dp) by taking the usual rest-case

(Vro))((dVe/Ve,)dE/C)

(dVe) (dE/c)

d’p (dE/c)

= (dE/c) d°p

= (dE/c) dp* dp* dp?

= d*P = Invariant

[F[various Invariants]d‘P

Likewise, d’K = Invariant [F[various Invariants]d*‘K

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =n,T" =T =T
(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?

(1,1)-Tensor T*, or T, SR 4-CoVector
= Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants
e Phase Space Integration b

4-UnitTemporalDifferential § 4-UnitTemporalDifferential

dT=(d[y],d[vBI) dT=(d[y].d[vBI)

d°p X = (Veo)dT+(-Vo)dT = (-Vo)(Veo)dT-dT @ ”
4%k 0% = (Vi)dT+(Vo)dT = (Vo)(Vio)dT-dT

4-UnitTemporal T =y(1,B) = (v,7B) @
4-UnitTemporalDifferential dT = d[(y,7£)] = (d[y], )

(Vpo)dT-(-Vo)dT = Invariant
= (Veo)(dly], )*(-Vo)(dly], ) d’p d*x
= (Vro)(-Vo)(d[yId[y] - d[yB]-d[vB]) X z
= (Vo) (Vo) (-(Va/V2)V(@Ve/(Veo)) - dlyBI-dfyB]) > dp” dp” dp” dx dy d
= (Voo)(Vo)(-(VolVe)dV(dVe/(Vro) - d(1)01-d[(1)0]) or
= (Veo) (Vo) ((Vo/Vo?)dV(AVe/(Veo)) Tonsor Ve
= (Vpo)dV(dVe/(Veo))

=dV dVp

=dVp dV

= d’p d°x = Invariant
F[various Invariants]dp d*x
Likewise, d°k d°x = Invariant ] [vario 1d°p

[F[various Invariants]d®k dx

SR 4-Tensor SR 4-Vector
. Trace[T"] =N T" =T =T
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v SR 4-Scalar W |
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensor Properties
e eneral — Symmetric & Anti'symmetric

of Physical 4-Vectors

SciRealm.org
John B. Wilson

Any SR Tensor T* = (S* + A*') can be decomposed into parts:
Symmetric SH = (TW+T™)/2 with S* = +S*
Anti-Symmetric AP = (TW-T™)/2 with A" = -A"

Importantly, the Contraction of any
Symmetric tensor with any

Anti-Symmetric tensor on the same index is
always 0.

SH+ AN = (TW+TW)2+(TH-T™)/2 = T2 + T2 + T2 - T2 =T + 0 = T *Note* These don’t have to be composed from a
single general tensor.

Independent components: {4°=16=10+6} S™AL=0

Max 16 possible Max 10 possible Max 6 possible

Proof:

General
4-Tensor
T =
[TOO’TO1 ,TOZ’TOB]
[T10,T11,T12,T13]
[TZO,T21 ,T22,T23]
[TSO,T31 ,T32,T33]

Symmetric
4-Tensor
S =
[800,801 ,802,803]
[810,811 ,812,813]
[820,821 ,822,823]
[830,831 ,832,833]

[SOO 801 _802 803]

Anti-Symmetric
4-Tensor
A¥ =
[AOO,Am ,AOQ,AO3]
[A10,A11 ,A12,A13]
[A20 A21 A22 A23]

[A30 A31 A32 A33]

[0’ A01 ,_AOZ, AO3]

SY Aw

= 8" A,.: because we can switch dummy indices
= (+S")A,,: because of symmetry

= S"(-A.): because of anti-symmetry

=-S" A

= 0: because the only solution of {c = -c} is 0

Physically, the anti-symmetric part contains
rotational information and the symmetric part
contains information about isotropic scaling and
anisotropic shear.

[+SO1 S11 812 813]
[+SOZ’+S15 825 823]
+803:+S13:+82;§,S33

[_A01 0 A12 A13]
[_AO2 ,_A’12 0 ’ A23]
[_AOS’ _A1 3, _A:23 0]

aka
Skew-Symmetric

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
(1,1)-Tensor T*, or T, SR 4-CoVector

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S
orentz Scala




SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensor Properties
s OYMMeEtric — Isotropic & Anisotropic

SciRealm.org

of Physical 4-Vectors John B. Wilson
Any Symmetric SR Tensor S = (T_* + T__ ") can be decomposed into parts: Importantly, the GanirSCASNIEIE

iso aniso Symmetric tensor with any
Isotropic TiSONV = (1/4)Trace[SPV] n" = (T) n* Anti-Symmetric tensor on the same index is always 0.
Anisotropic T_ " =8"-T_" *Note* These don’t have to be composed from a

single general tensor.

The Anisotropic part is Traceless by construction, and the Isotropic part has the same Trace asthe gwpa -9
original Symmetric Tensor. The Minkowski Metric is a symmetric, isotropic 4-tensor with T=1.

Proof:
Independent components: SW A,
Max 10 possible Max 1 possible Max 9 possible =S" A, because we can switch dummy indices
. = (+S")A,: because of symmetry
. . Symmetric = S*(-Aw): because of anti-symmetry
y !
Symmetric Symmetric Anisotropic = S% A

4-Tensor Isotropic T = 0: because the only solution of {c = -c} is 0

M = =
S 4-Tensor W = Physically, the isotropic part represents a direction

[SOO,SO1 ,802,303] TiSO”V = [SOO-T,ag?)C;,SOZ,SOS] independent transformation (e.g., a uniform scaling or

[810’811,812,813] [T, 0’0’0]

uniform pressure); the deviatoric part represents the

[810,811"'-'-,812,813] distortion
[SZO 821 SZ2+T 823]
[830’831 ,832 83’3+T]

[820,821,822,823] [0,-T,0,0]
[830,831,832,833] [0’0’_1—,0]
= [0,0,0,-T]

An Isotropic Tensor has the same components in all
possible coordinate-frames.

00 01 02 03 =
[S”, S7, S, S™] [SOO-T go1 go2 803] Rank 0: All Scalars are isotropic
[+S°%', 8", S™ S with T= T Rank 1: There are no non-zero isotropic vectors
+S%2 +g12 g2 g8 1/4)Tra e[spV] [+S , S"+T, S, S ] Rank 2: Most general isotropic 2™ rank tensor must
[ ’ S, S'] (i€ Hlrae +S% +8'2 g224T S2 equal to A3*, = A, for some scalar A
03 4 g13 4 g23 833] [ ] : ) | q v = Al Tor Scalariy

[+S ) ) ) 03 +g13 +G23 G334 T aka Rank 3: Most general isotropic 3" rank tensor must
W 2 2 2 Deviatoric equal to Ae* for some scalar A.
aniso ]‘0 Rank 4: Most general isotropic 4" rank tensor must
equal to a6 + bs*5v8 + cd**8" for scalars {a,b,c).

Tr[T

SR 4-Tensor SR 4-Vector V] — v — —

(2,0)-Tensor T 1,0)-Tensor V* =V = (V°,v SR 4-Scalar Tiac“e[T” ]v: r]uv;l"; =T 3 To 2

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi VY= [(V)7 - vev] = (Vo)
= Lorentz Scalar
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SRQM Study: SR 4-Tensors
4-Tensor Decomposition

of Physical 4-Vectors John B. Wilson

General rank=2
4-Tensor
Symmetric 4-Tensor ™ Anti-Symmetric 4-Tensor
Ty = (T + T)/2 Tontagmn = (T - T)/2

symm

Isotropic Symm Anisotropic Symm
4-Tensor 4-Tensor

T =(Tr[T

“1/4) 0 Tone™ = Ty = T ™

aniso symm iso

Tr[TaniSOpv]zo

max DoF = 1 max DoF =9

symm

BV = _ vy
anti-symm anti-symm

max DoF = 6

max DoF = (dim)”(rank) = 42 = 4x4 =16 = (10+6)

Maximum Degrees of Freedom (DoF)
= # of possible independent components

SR 4-Tensor SR 4-Vector _ . . A s W= TH =
2,0)-Te Tw 2 VY SR 4-Scalar = (Tensor dimension)*(Tensor rank) Trace[T"] =n, " =T, =T
(2,0)-Tensor 1,0)-Tensor V¥ =V = (v°,v) V-V = Vi, Y = [(Vo)z e (v°o)2

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants

SciRealm.org

of Physical 4-Vectors John B. Wilson
(0,0)-Tensor = Lorentz Scalar S: Has either (0) or (1) Tensor Invariant, depending on exact meaning Tens;r?:fariant
(S) itself is Invariant Tr[T* =T, =(TO-T"-T2-T%)=
Set of 4 4-Tensor
(1,0)-Tensor = 4-Vector V*: Has (1) Tensor Invariant = The Lorentz Scalar Product igenValues[T,” T = [T T T2, 7%
V-V =Vin, VY = N VPV = TriVEPV] = VY = (VoW + vav! + vov? + vav®) = (VVO - vev) = (V)2 J b [T0T" 72T
Eigenvalues Tensor 21 22
V=VE=(V)=(vE, VL VA V) C VRV = (VA - vev) = (V)2 e [T, 74,7, T
® [T, T3 7% 7%
(2,0)-Tensor = 4-Tensor T*': Has (4+) Tensor Invariants (though not all independent) @'
a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) T'””er 'IDFOdU.'Ctt Determinant
b) T T?; = Asymm Bi-Product — Inner Product NS Asymm Tri-Product Tensor Invariant
c) T%TPTY,; = Asymm Tri-Product — ?Name? Tensor Invariant
d) T TP TY, T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors owered 4-Tenso
eg. TouTP = ToTPs - TTP, = (TY,)? - TSTPL{1} = (TY)? - T%TP{(%)n,sn"} The lowered-indices form of a Tuv = NueNve T°°
and, bending tensor rules slightly: = (T%)? - T TP{(Va)Nesn™} = (T%)? - To%(NP) TPa(Nes){(Va)} = (T4 ) - TToo{(V4)} tensor just negativizes the =
and, since linear combinations of invariants are invariant: (time-space) and (space-time) [Too ,Tor ,Toz , Tos]
Examine just the (T®Ts,) part, which for symm|asymm is (£)(T®T.s) ie. the InnerProduct Invariant sections of the upper-indices 10 oL B g L2 p 108
tensor [T10 11, Th2 ,T13]
@) Traco[T) = THT] = T2/ = T = T = (T Ty T T4 = (12 T T2 T9= (1) s somtime soena WF gllon ol ol
for anti-symmetric: = 0 | _ ) | _ “ 1 = (1)TA(T™)] [Ts0,T31,Ts2, T3]
b): InnerProduct T, T* = ToeT® + TioT® + T T% + TyT' = (T®)? - LT - Z[TP + [T ) = (1/2)Tr[(T*Y] -
for symmetric | anti-symmetric: = (T®)? - 25[TP + &[T = - [TV]? - 25[TP + 25T 2 = (1/3)Tr(T™Y] [+T%, -T°" -T% -T%]
c): Antisymmetric Triple Product T TPTY; = Tr[T*]® - 3(Tr[T*])(T%TP) + To%TA TV + T, 5T f = (1/4)Tr(T™Y] [T +T" 4T +T"9)
for anti-symmetric: = 0 I I got all the math right... ! [T +T?" +T%2 +T%)

d): Determinant Det[T"'] =?= -(1/2)€qp,5 T*T*®
for anti-symmetric: Det[T"] = Pfaffian[T*']? (The Pfaffian is a special polynomial of the matrix entries)
SR 4-Tensor SR 4-Vector - . Trace[TuV] = TV=T =T
(2,0)-Tensor T (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Det[Te] = TI([A]; with {A} = Set of Eigenvalues Mo H

. P V-V = Vi, VY = [(V0) - vev] = (Vo)
(0.0)-Tensor S Characteristic Eqns: Det[T® - Ad(4]=0 Z“Loren[,fz écalar] (Vo)

[_TBO ,+T31 ,+T32 ,+T33]

SR 4- CoVector

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants
Gl Tensor Gymnastics e

Some Tensor Gymnastics: a = Tr[A]
Matrix A = Tensor A", A% A% = A% A% - A% A, = (Tr{A])? - Tr{A?]
with rows denoted by “r’, columns by “c”

Aa[a Abb Acc]
+ Aaa Abb Acc - Aaa Abc Acb + Aab Abc Aca = Aab Aba Acc + Aac Aba Acb - Aac Abb Aca
+(Aaa Abb Acc) n (Aaa Abc Acb + Aab Aba Acc + Aac Abb Aca) + (Aab Abc Aca + Aac Aba Acb)
+(Aaa Abb Acc) - (Aaa Abc Acb + Acc Aab Aba + Abb Aac Aca) + (Aab Abc Aca + Aac Acb Aba)
+(Tr[A])° - 3*(Tr[A])(Tr{A%]) + 2*(Tr[A%])

Example with dim=4: r,c={0..3}
Matrix A =

[Ar=0C=O Ar=00=1 Ar=0C=2 Ar:00=3]
[Ar=1c:O p\r=ﬂcz1 Ar=1c=2 Ar=1c=3]
[Ar=2c=0 p\r=2C:1 A\r=2c:2 Ar=zc:3]
[Ar=30=0 Ar=3c=1 Ar=3c=2 Ar=30=3]

An A% A Add] =
M=Ax B = A% B, = M, AP A P ATAY G -AT AP AGAT -ATAP A A% AT AP ATAY, +ATAAGAY A% AN AAY,
,with the rows of A multiplied by the columns of B AT A A A FATLA A GA S HATAPA A -ATAAA S -ABA A%AY HATAY A A
due to the summation over index “c” +A2 AP AS AY -AZ AP ASAY A2 AP AC AL +A AP ACAY +ATAPACAY -AZAPAGAY,

-APAPAGAY, +AZARAC AT, FATAPACAY -AZAPACAY, -ATAPACAY +AZACASAY,
If we have sums over both indices: =
Acd Bdc = dd = Trace[M] +AaaAbbACoAdd
Th sum over " gues e malrx mlipicaion and e 1 SUT 0 A 05 e A A AP A AL A ATy AT
+HATA A A, +ATAPGAGAY FATACATGAY +ACACATAY, +ATAATAY +ATACA A, +APAAATY, +ATAA%A
A% A% = (AxA)%s = (NY% = Trace[N] = Trace[A?] = Tr[A?] +HALAATGAY HATAA%A% ATAAA

A% A% = (NPA%)AL = N (A%AL) = Nee(N%) = 8:5(N%) = Tr[N] = Tr[AZ]  -A%APA%GA% -ABAPGAAY -AZAAGGA -A%APAGAY -A%A AGAY -A%A ASAY,
A% A%y = A% A% - A% A% = (Tr[A])? — Tr[A?] +(Tr[A])*
,with brackets [..] around the indices indicating anti-symmetric -6*(Tr[A])2(Tr[A2])
T +8*(Tr[A])(Tr[A°])
* 21\2
The Trace formula’s are independent of tensor dimension. +3 (Tr[P; )
-6*(Tr{A"])

+(Tr[A])* -6*(Tr[A])*(Tr[A%]) +8*(Tr[A])(Tr[A’]) +3*(Tr[A%])* -6*(Tr[AY])
SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (\°,v) |’ SR 4-Scalar Det[T,] = II[A]; with {\} = Eigenvalues

(0.0) Tonsor 8 Characteristic Eqns: Det[T° - Ad]=0

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
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SRQM Study: SR 4-Tensors
SR Tensor Invariants
e Cayley-Hamilton Theorem S

General Cayley-Hamilton Theorem
A%cy 1A'+ +CoA’= 0, With A = square matrix, d = dimension, A® = Identity(d) = I
Characteristic Polynomial: p(A) = Det[A - Al

The following are the Principle Tensor Invariants for dimensions 1..4

dim=1: A1+CoA0=0 cA-I; I(])=0
I, = tr[A] = Det1D[A] =\

Q.

im = 2: Az'*‘C1A‘|+C()A0 =0 : A2 - I1 A1 + /2 I(z) =0
tr[A] = Z[Eigenvalues] = A; + A,
( tr[A]? - tr[A?] )/2 = Deto[A] = II[Eigenvalues] = AA,

I
l2

dim = 3: A3+C2A2+C1A1+C0Ao =0 : A3 - l1 A2 + /2 A1 = I3 1(3) =0

I; = tr[A] = 2[Eigenvalues] = A + A, + A3

I = (tr[AP - tr[A?] )/2 = MAs + MAs + AoAs

Is = [ (tr A)® - 3 tr(A?)(tr A) + 2 tr(A%) /6 = Detsp[A] = II[Eigenvalues] = AAzA;

dim = 4: A4+03A3+CQA2+C1A1+00A0 =0 : A4 = I1 /A3 + I2 A2 = I3 /A1 + I4 1(4) =0

I; = tr[A] = Z[Eigenvalues] = A + A, + As + Ay

I2 = ( tr[A]2 - tr[Az] )/2 = )\1)\2 + )\1)\3 + )\1)\4 + )\2)\3 + )\2)\4 + )\3)\4

I3 = [ (tr A)3 -3 tr(Az)(tr A) + 2 tr(Aa) ]/6 = )\1)\2)\3 + )\1)\2)\4 + )\1)\3)\4 + )\2)\3)\4

I = ((tr A)* - 6 tr(A2)(tr A)? + 3(tr(A%))? + 8 tr(A%) tr A - 6 tr(A%))/24 = Detio[A] = I[Eigenvalues] = AAAshe

lo = X[Unique Eigenvalue Naughts] = 1 (1)
I; = £[Unique Eigenvalue Singles] = A1 + Ay + A3 + A4 (4)
I2 = Z[Unique Eigenvalue DOUb'eS] = )\1)\2 + )\1)\3 + )\1)\4 + )\2)\3 + )\2)\4 + )\3)\4 (6)
I3 = X[Unique Eigenvalue Triples] = AMA2As + AA2As + AAshs + AAshs (4)
I, = 2[Unique Eigenvalue Quadruples] = AiA2AsAs )

Each dimension gives the number of elements from it’'s row in Pascal’s Triangle :)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (\°,v

SR 4-Scalar Det[T%,] = ITJAJ; with {A} = Eigenvalues Trace[T™] = M TESeuE
(0,0)-Tensor S

W = V= 1(vO\2 _ eyl = (VO )2
Characteristic Eqns: Det[T% - Adl4)]=0 V-V = VP, VY = [(VO)2 - vev] = (V)

1,1)-Tensor T%, or T, SR 4-CoVector
(1) ) = Lorentz Scalar




SRQM Study: SR 4-Tensors

SR Tensor Invariants

4-Vector SRQM Interpretation

of QM

-
A Tensor Study SciRealm.org
Cayley-Hamilton Theorem
General Cayley-Hamilton Theorem Dim =1 Dim =2 Dim=3 Euclidean Dim=4 Minkowski
A%y A%+ +CoA'= 0, With A = square matrix, 3-Space SpaceTime
d = dimension, A’ = Identity(d) = I A=[ a ] A=[ a b ] A=[ a b c ] A=[ a b c d ]
A -1, A+ LA?-;A"+ [,A’ =0 : for 4D [ cd] [ de £ ] [ e fgh]
Characteristic Polynomial: p(A) = Det[A — Aly)] [ ghi] [ 13 k1]
[ mnop ]
Tensor Invariants /, = A - j,k={1} = A, :j,k={1,2} = A 1 j,k={1,2,3} =AY : u,v={0,1,2,3}
l=1/0! =1 (1) (1) (1) (1)
=1 =1 =1 =1
I, = tr[A}J/1! (1) (2) (3) (4)
=M =M+ A =AM+ A+ As =Mttt
=A% = (a) =(a+d) =(ateti) =(a+f+k+p)

= X[Unique Eigenvalue Singles]

Y[Eigenvalues]
Detm[A]
= TI[Eigenvalues]

= Y[Eigenvalues]

= 2[Eigenvalues]

= 2[Eigenvalues]

I, = ( tr[A]? - tr[A?] )/2! =0 (1) (3) (6)
= )\1)\2 = )\1)\2 + )\1)\3 + )\2)\3 = )\1)\2 + )\1)\3 + )\1)\4 + )\2)\3 + )\2)\4 + )\3)\4
= A% A%/ 2 = (ad - bc) = (ae - bd)+(ai - cg)+(ei - fg) = (af - be) + (ak - ci) + (ap - dm)
= Deto[A] +(fk - gi) + (fp - hn) + (kp - lo0)
= X[Unique Eigenvalue Doubles] = II[Eigenvalues]
I = (tr A)® - 3 tr(A%)(tr A) + 2 tr(A®) /3! =0 =0 (1) (4)
= )\1)\2)\3 = )\1)\2)\3 + )\1)\2)\4 + )\1)\3)\4 + )\2)\3)\4
= A% Af A,/ 6 = a(ei-th)-b(di-fg)+c(dh-eg) = ..
= Det3D[A]
= X[Unique Eigenvalue Triples] = TI[Eigenvalues]
I, = ((tr A)* - 6 tr(A%)(tr A)? + 3(tr(A%))? + 8 tr(A®) tr A - 6 tr(A%))/4! | =0 =0 =0 (1)

= Aq[u ABp Avv A65] [ 24

= X[Unique Eigenvalue Quadruples]

= )\1 )\2)\3)\4

=a( f( kp-lo)) + ...

= Det4D[A]
= II[Eigenvalues]




4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants
e for Faraday EM Tensor b

Faraday EM %
that contains the Electric and Magnetic Fields, defined by the Exterior “Wedge” Product (*). 9=0"=(9/c,-V) o _ 2 'IB'ensBorq o
The 3-electric components (e = €') are in the temporal-spatial sections F¥=0'A"-0A"=0 " A

The 3-magnetic components (b = b¥) are in the only-spatial section. ] —
[ Ftt th Fty FtZ]
q q [Fxt Fxx ny FxZ]

(2.0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent
a) T = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) Trace : [F* F* FY F7
Tensor Invariant [th F> F F7|

SR —- QM

The Faraday EM Tensor F*® = 0°AP - &PA° = 9 A A is an anti-symmetric tensor 4-Gradient

b) T% TP = Asymm Bi-Product — Inner Product

) T% TP TY; = Asymm Tri-Product — ?Name? F o P _
d) T%TP:TY T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors =2{(b*b)-(e-e/c? [ O d’a’-9'a’ Pa*-%a’ °a’-9°a’)

[a1ao_aoa1 0 a1a2_aZa1 awas_a3a1 ]
[aZaO_aOaZ 8231'8132 0 62a3_a3az]
[0’a’-d°a® d%a’-d'a® d*a’-0a® 0 ]
[ 0 (da+Vo)c (@a+Ve)c (8a*+V)ic]
[(-Vig-dalc) 0 -Va+Va' -Va+Via']
[(

a): Faraday Trace[F"] = F," = (F- F11 F2-F*)=(0-0-0-0) = Inner Product
b): Faraday Inner Product Fy,F* = o [F*]2 - 25[F°F + 2%, [F”]2 = (0) - 2(e-e/c?)+ 2(b-b) = 2{(b-b)-(e-e/c?)} Tensor Invariant
c): Faraday AsymmTri[F*] = Tr[F*]* - 3(Tr[F*])(F%F®) + FeFP FYy + F&FPFYs = 0-3(0)+F %FP FYa+(-F%%)(-F®,)(-FY%) = 0

d): Faraday Det[anti-symmetric F*'] = Pfaffian[F*']? = [(-e*/c)(-b*) - (-e¥/c)(bY) + (-e%/c)(-b?)]? = [(e*b¥/c) + (e¥b¥/c) + (e?b?/c)]? = {(e-b)/c}?

Importantly, the Faraday EM Tensor has only (2) linearly-independent invariants: VVo-da'lc) -Va'+Va’ 0 Va+Vaa']

b) 2{(bb)-(99/C2)} \/Zn_Ataz _\/zax XnaZ _\/ZqY Y aZ
) {(b-e)/c}? m Vo da‘/c) V?a +Va= Vza'+V'a 0 ]
a) & c¢) give 0=0, and do not provide additional constraints [0

. -e*/c -e’lc -€7/c]
Asymm Tri-Product [+e’c 0 -b? +b’]

The 4-Gradient and 4-EMVectorPotential have (4) independent components each, for total of (8). Tensor Invariant
Subtract the (2) invariants which provide constraints to get a total of (6) independent components [+e’lc +b* 0 -b*]
= (6) independent components of a 4x4 anti-symmetric tensor Det[F"] [te®lc -b’ +bX 0]
= (3) 3-electric e + (3) 3-magnetic b = (6) independent EM field components ={(e-b)/c 2
J

Note: It is possible to have non-zero e and b, yet still have zeroes in the Tensor Invariants. ||H-|- } - P Determinant [[+eO/C Slgk%ll
If e is orthogonal to b, then Det[F**] = {(b-e)/c}* = 0. Tensor Invariant K
If (b-b)=(e-e/c?), then InnerProd[F**] = 2{(b-b)-(e-e/c?)} = 0. 4-(EM)VectorPotential | (o = o]

, -elc

These conditions lead to the properties of EM waves = photons = null 4-vectors, A=AV= (p/C a
which have fields |b| = |e|/c and b orthogonal to e, travelling at velocity c. 2

[+e'lc, -V * a]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

Fundamental EM Invariants: Trace[T"] = N T = T%, = T
P = (1/2)F“VFIJV = (—1/2)*FHV*FPV = {(b'b)-(e'e/C2)} \VAVAS Vunuvvv = [(L:;O)Z _ V'V:T = (v0°)2
Q= (1/4)FUV*FHV = (1/8)EGBV6FGBFV§ = {(eb)/C} = Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants
saees fOr 4=AngularMomentum Tensor S

e 4-AngularMomentum ».

The 4-AngularMomentum Tensor M*® = X°P? - XPP* = X"P is an anti-symmetric tensor Tensor ' )
The 3-mass-moment components (n = n') are in the temporal-spatial sections. X=X"=(ct,x M® = X9PPE - XPP* = X A P
The 3-angular-momentum components (I = I¥) are in the only-spatial section. —

. [ Mtt Mtx Mty MtZ]
(2,0)-Tensor = 4-Tensor Tu: Has (4+) Tensor Invariants thou h not all independent m [MX VP MY VP9
a) T:a =BTrace = Sum.of EigenValues for (1,1)-Tensors (mixed) — [MY P MY MY
b) T T"; = Asymm Bi-Product — Inner Product Tensor Invariant [M? VP M M7

c) T%T%eTY; = Asymm Tri-Product — ?Name?
d) T%T%TY, T%; = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors

[ 0 X°p'-x'p® x%p2x%p° X°pi-xp°]

a): 4-AngMom Trace[M™] = M,* = (M®-M"-M2-M*)= (0 -0 -0 -0) = 0 [X'p%-x°p’ 0 x'px*p' x'p’x’p']
b): 4-AngMom Inner Product M, M** = . [MP] - 25[M°F + 25, [M° = (0) - 2(c’n-n)+ 2(Il) = 2{(Il)-(c’n-n)} Inner Product Xp%xp? x’p'x'p? 0 x*p’-x’p?
c): 4-AngMom AsymmTri[M*] = Tr[M"* - 3(Tr[M*])(MsM®5) + MsMP®, MY, + M°,M®Mg = 0 Tensor Invariant Cp®-xp® x°p'x'p® x’p’-xp® 0

d): 4-AngMom Det[anti-symmetric M*'] = Pfaffian[M"]* = [(-cn®)(+I¥) - (-cn¥)(-IY) + (-cn?)(+I%)]? = [-(cn*I¥) - (cn¥P) - (cn??)]? = {c(n-1)}? =
[ O ctpxElc ctp’-yE/c ctp*zE/c]

Importantly, the 4-AngularMomentum Tensor has only (2) linearly-independent invariants: [XE/c-ctp” 0 Xp'-yp*  xp?-zp*]
b 2{(I1)-(c*>n-n)}: see Wikipedia Laplace—Runge—-Lenz vector, sec. Casimir Invariants . .
d; {é((”:)}(@ )} & 2 g - [yE/c-ctp’ yp*-xp’ 0 yp*-zp’]

[zE/c-ctp* zp*-xp* zp’-yp* 0 ]

a) & c¢) give 0=0, and do not provide additional constraints

Asymm Tri-Product
The 4-Position and 4-Momentum have (4) independent components each, for total of (8). Tensor Invariant [ 0 c(tp*xm) c(tp’-ym) c(tp*-zm)]
Subtract the (2) invariants which provide constraints to get a total of (6) independent components [c(xm-tp¥) 0 Xp’-yp* xp*-zp*]
= (6) independent components of a 4x4 anti-symmetric tensor [c(ym-tpY) yp*-xp’ 0 yp*-zp']
= (3) 3-mass-moment n + (3) 3-angular-momentum | = (6) independent 4-AngularMomentum components [c(zm-tp?) zp*-xp® zp’-yp* 0 ]

3-massmoment n = xm - tp = m(x - tu) = m(r - tu) = m(r - t(w x r)) : Tangential velocity ur = (w x r) Determinant

- X - y - VA
Tensor Invariant [0 cn* -cn” -cn’]

(-k/r)n = -mk(F - t(w x F)) = mkt(w x F) - mkf = t * d/dt(p) x L - mk# : d/dt(p) x L = mk(w x F) [+cn* O+ -F]
n is related to the LRL = Laplace-Runge-Lenz 3-vector: A = p x L — mkf [tcn” -0 +]
which is another classical conserved vector. The invariance is shown here to be relativistic in origin. [+cn® +P - 0]
Wikipedia article: Laplace-Runge-Lenz vector shows these as Casimir Invariants. =

See Also: Relativistic Angular Momentum. [0 ,-cn']
[ +cn, € 1]
SR 4-Scalar Trace[T"] =n, " =T =T =
(0,0)-Tensor S V-V = VP, VY = [(VO)? - vev] = (V0)? [ 0 ,-cn ]
= Lorentz Scalar [+cn”, x A p]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T, SR 4-CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants
Ay for Minkowski Metric Tensor SResmon
/ B = (1) <-1) 1) 1) =

nwN™ =Ny = 0% = 1+1+1+1
(2.0)-Tensor = 4-Tensor T* Has (4+) Tensor Invariants (though not all independent 4-Gradient A . .
a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) 3=3“=(3t/c,-V) J[R] = "R’ = n* ﬁ

b) T%T? = Asymm Bi-Product — Inner Product
c) T% T TY,; = Asymm Tri-Product — ?Name?

The Minkowksi Metric Tensor n™ is the tensor all SR 4-Vectors are measured by.

—

d) T%T%TY,T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors DiaDQ“ ’['11 "]1 ’]'1]
: : 1agll,-1)
. . y GR Trace Tensor Invariant i W . oi
a): Minkowksi Trace[n"] = 4 4D SpaceTime Elggg}[ﬁll;ef[?} J Diag[1,-6"]
b): Minkowksi Inner Product n,n" = 4 1 =

c¢): Minkowksi AsymmTri[n"] = 24 = 4! v In GVR Eigenvalues Tensor +1 60 0 Inner Product
d): Minkowksi Det[n"] = -1 Tr[g“l ;31”191p+1_ gu‘ul =&, Invariants [[ 0-100 ]] Tensor Invariant
a) Tug = TF[A] = 4 Slgnature[npv] = (+’-’_’- [ 0 0 -1 O ]

b) T TP = (Tr[A])? - Tr[A%] =42-4 =12
C) TTPTY, = +(Tr[A])® - 3*(TrA(Tr[A]) + 2*(Tr[A%]) = 4° - 3*4*4 + 2*4 = 64 - 48 + 8 = 24

d) T4 TP T, T%) = +(Tr[A])* -6*(Tr[A])*(Tr[A%]) +8*(Tr[A])(Tr[A%]) +3*(Tr{A%))* -6*(Tr[AY]) = Signature Tensor
4% - 6%42*4 + 8*4*4 + 3*42 - 6%4 = 256 - 384 + 128 + 48 - 24 = 24 Invariant [Nl = 10" : 0 = 8, (Detn*] = -1
SR:Minkowski Metric gDetln"] = +1
pv 4-Position | Particle Physics” Conventio Determinant
R=R*=(ct r @ Tensor Invariant

Det(Exp[A])=Exp(Tr[A]) o

[000-1]

{in Cartesian form}

= {1,3,0} = (1-3)= -2

a B =
N u/\ Ngg =N

Asymm Tri-Product
Detio(A)=((tr A)* - 6 tr(A%)(tr A)? + 3(tr(A%))? + 8 tr(A°) tr A - 6 tr(A*))/24 Tensor Invariant

EigenValues not defined for the standard Minkowski Metric Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector T ¥ _ _
(1,0)-Tensor V¥ = V = (v*,v) PSR 4-Scalar Det[T%,] = TLJAJ; with {AJ = Eigenvalues Trace[T™] = M TESeuE

. <L V-V = Vi, VY = [(V0) - vev] = (Vo)
(0.0)-Tensor S Characteristic Eqns: Det[T - Ad()]=0 Z“Loren[,fz écalar] (Vo)

SR 4-CoVector

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants
s fOr Perfect Fluid Stress-Energy Tensor i

Trace Tensor Invariant
The Perfect Fluid Stress-EnergyTensor T is the tensor of a relativistic fluid. TIT™] = (Peo) =(Po) ~(Po) =(Po) =

N T = T = Peo-3Po

(2.0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent

a) T%% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)

b) T%T? = Asymm Bi-Product — Inner Product

c) T% T TY,; = Asymm Tri-Product — ?Name? "

d) T% TP T, T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors Toerfectiid

EigenValues[T"/] . T (MCRF)

Diag[pe,p,p,p]
Diag[pe,ple)
Diag[pe,pd"]

a): PerfectFluid Trace[T"] = peo-3Po
b): PerfectFluid Inner Product T, T*' = (Peo)?+3(Po)? =Set{Deo,~Po,Po,Po
c): PerfectFluid AsymmTri[T"'] =

d): PerfectFluid Det[T"'] = peo(po)®

Eigenvalues Tensor
Invariants

Inner Product
Tensor Invariant

Signature[T"] = (+,+,+,+ [Pe000]

SR Perfect Fluid 4-Tensor
Tperfectfluidpv = (peo)V”V + ('po)Hw - = {410’0} = (4-O)= 4 [ O p 0 0 ]
. [00pO0]
S Vi —
o [000p] (DetT]= peo(po)’

{in Cartesian form}  \Det[T"]] = -Peo(Po)°
Equation of State
EoS[T"]=w=po/Peg Determinant

0S[T*]=w=po/Peg -
AsymmTr[T"]= Tensor Invariant
Equation of State not yet calc’d

0
Units of Symmetric
Det(ExplAl)=Exp(Tr[A]) [EnergyDensity=Pressure] _ (Tr[T*']=peo-3p .
Tensor Invariant Asymm Tri-Product
Detp(A)=((tr A)* - 6 tr(A2)(tr A)? + 3(tr(A2))? + 8 tr(A%) tr A - 6 tr(A%))/24 Tensor Invariant

a AB =
N p/\ vnaB n

MV

EigenValues not defined for the standard Perfect Fluid Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector V] — v — —
(1,0)-Tensor V¥ = V = (v*,v) PSR 4-Scalar Det[T%,] = TLJAJ; with {AJ = Eigenvalues Trace [T =i T

. < V-V = Vi, VY = [(V0) - vev] = (Vo)
(0.0)-Tensor S Characteristic Eqns: Det[T - Ad()]=0 Z“Lore,f,fz %Calar] (Vo)

SR 4-CoVector

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants for
Continuous Lorentz Transform Tensors

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

Rotation(0)

Identity

Lorentz SR
Identity Lorentz SR
Tensor \*,—n", Boost
=R¥,[0] = B¥,[0] Tensor \¥,—B",

The Lorentz Transform Tensor { A¥ = dx*/ox" = 9 [X"] } is the tensor all SR 4-Vectors must transform by. Boost(0)

Inner Product
(2.0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent) Tensor Invariant Lorentz SR

a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) Rotation
b) T TP = Asymm Bi-Product — Inner Product @ Tensor A\*,—R",
c) T TP TY,; = Asymm Tri-Product — ?Name? =

d) T TP TY, T%; = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors [1 0 d 0]
[0 cos[B] -sin[6] O]
[0 sin[B] cos[O] 0]
[0 0 0 1]

m
v

a): Lorentz Trace[A""] = {0..4..Infinity} Lorentz Boost meets Rotation at Identity of 4 Asymm Tri-Product
b): Lorentz Inner Product A,AY =4 from {n,/\"a/\'s = Nee} and {n.n" = 4} Tensor Invariant
c): Lorentz AsymmTri[A"] =

d): Lorentz Det[A"] = +1 for Proper Transforms, Continuous Transforms Proper

0 [
0 [-By
0 [
1 [

= Minkowski
AsymmTri[A¥,]="7 Delta

Not yet calc...

An even more general version would be
with a & b as arbitrary complex values:

EigenValues[/\")]
=Set{e’,e? e e”

could be 2 boosts, 2 rotations,

or a boost:rotation combo . Sum of .
: EigenValues[AY\]

=TrA =Y,
={e*+e+e"+e ™}
=2(cosh[a]+cosh[b])
={-4..Infinity}
SR:Lorentz Transform
a,[R"] = dR"/ORY = \¥,
N, = (/\'1)\,“ NGNS =0t = 8%

Product o
EigenValues[/\",]

=Det[A\",]
={e*e?e"e™}

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace Tensor Invariant

Tr[Cont. A*\]={0..4..Infinity}

Depends on “rotation”
amount

Determinant Tensor Invariant

Det[Proper A¥,]=+
Proper Transform

always +1

EigenValues[R"\]
=Set{1,e°,e™,1}

Sum of
EigenValues[R"]
=Tr[R",]=R¥,
=1+e%+e™+1
=2+2cos[0]
={0..4}

Product of
EigenValues[R"]
=Det[R")]
=1-¢%e%1
= +1

Proper

Det[T%] = II[A]; with {A} = Eigenvalues
Characteristic Eqns: Det[T% - Adl4)]=0

EigenValues[n"\]
=Set{1,1,1,1}

Sum of
EigenValues[n*.]
=Tr{n"J=n",
=1+1+1+1

Product of
EigenValues[n“\]
=Det[n"\]
=1-1-11
= +1

Proper

EigenValues[B"\]
=Set{e®,e?,1,1}

Sum of
EigenValues[B"\]
=Tr[B",]=B",
=e®+e+1+1

EigenValues[B"\]
=Det[B"]
=e%e®11

= +1

Proper

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Study: SR 4-Tensors
SR Tensor Invariants for
rmeees . DISCrete Lorentz Transform Tensors e

SR:LSrfntzuTravifO:m Inner Product Lorentz SR Lorentz SR Lorentz SR Lorentz SR
d.[R"] = dR"/OR" = N\, Tensor Invariant TPcombo Parity-Inversion Flip-xy-Combo Time-Reversal
Ny = (N AN = by = 8 @ Tensor A¥,—TP¥, Tensor A¥,—P¥, Bl Tensor AV, —Fxy*, Tensor A¥,—T,

Asymm Tri-Product ] ]

Tensor Invariant ] ]
] ]
-1] ]

EigenValues[TP"\] EigenValues[P",] W EigenValues[Fxy"\] EigenValues[T",] EigenValues[n"\]

The Trace of =Set{-1,-1,-1,-1} =Set{1,-1,-1,-1} =Set{1,-1,-1,1} =Set{-1,1,1,1} =Set{1,1,1,1}

various discrete Trace Tensor Invariant

Lorentz transforms _ , _ : _ , : : : ,

varies in steps from Tr[Discrete A\]={-4,-2,0,2,4} Y/ ='¢ vest el e ues(Fxy ElgenVel\J!ugsg”v] Elg_enVeJ!Ufsgn“v]

(4,-2.0.2.4) Sspaibenitenarn )\ S A idhy @ty o

=4

This includes Mirror Determinant Tensor Invariant

Flips, Time g _ , _ | _ ' _ : ~ Product of ™
) Det[A"\]=+1 EigenValues[TP"\] EigenValues[P"\] g EigenValues[T"\] EigenValues[n“\]

Re\{ersaL and Proper Transform = +1 =Det[TP",] =Det[P"\] = ' =Det[T"\] =Det[n"\]

Parity Inverse — mproper Transform = -1 = 1--1--1--1 = 1--1--1--1 q-q- =-1-1-11 =111-1

= +1 =1 =-1 = +1

essentially taking all
combinations of £1
on the diagonal of Proper Improper Proper Improper Proper
the transform.

SR 4-Tensor SR 4-Vector - -
(2,0)-Tensor T~ §(1,0)-Tensor V* =V = (\°,v) ¢ SR 4-Scalar Det[T,] = II[A]; with {\} = Eigenvalues

(0.0)-Tensor S Characteristic Eqns: Det[T° - Ad]=0

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR —- QM

A Tensor Study
of Physical 4-Vectors

SR:Lorentz Transform
a,[R"] = dR"/ORY = N\¥,
A% = (AP DAY =0 =8

The Flip-xy-Combo is the
equivalent of a

| suspect that this may be
related to exchange symmetry
and the Spin-Statistics idea
that a particle-exchange

is the equivalent of

a spin-rotation.

A single Flip would not be an
exchange because it leaves a
mirror-inversion of <right-|-left>.

But the extra Flip along an
orthogonal axis corrects the
mirror-inversion, and would be
an overall exchange because
the particle is in a different
location.

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SRQM Study: SR 4-Tensors

4-Vector SRQM Interpretation
of QM

More SR Tensor Invariants for

Lorentz SR Lorentz SR
0-Rotation-z Identity

' u' p 0
Tensor/_\ V—R"  Tensor A0,

A%

[1 O 0 0] 0
[0 cos[0] -sin[0] O] 0
[0 sin[0] cos[0] O] 0
[0 O 0 1] 1

= Minkowski

EigenValues[n“\]
=Set{1,1,1,1)

EigenValues[R"\]
=Set{1,e",e",1}

EigenValues[R"\]
=Tr[R",]=R¥,
=1+e"’+e""+1 = 1+1+1+1
=2+2cos|0] =2+2cos|[0]
=4 =4

Product of
EigenValues[n“\]

Product of
EigenValues[R"] :
=Det[R"] =Det[n"\]
=1_ei0_e-i0_1 = 1111

= +1 =+1

Proper Proper

SR 4-Scalar

(0,0)-Tensor S
orentz Scala

Discrete Lorentz Transform Tensors

Lorentz SR
Flip-x
Tensor N\¥,—Fx",

Lorentz SR
Flip-y
Tensor A\¥,—Fy*,

0
-1

0
0

igenValues[Fy",
=Set{1,1,-1,1)

EigenValues[Fx"\]
=Set{1,-1,1,1}

igenValues[Fx",
=Tr[Fx"\]=Fx",

EigenValues[Fx"\]
=Det[Fx"\]
=1-111

=1

Improper Improper

Det[T%] = II[A]; with {A} = Eigenvalues
Characteristic Eqns: Det[T% - Adl4)]=0

SciRealm.org
John B. Wilson

Lorentz SR
11-Rotation-z
Tensor A¥,—RY,

Lorentz SR
Flip-xy-Combo

0 0]
[0 cos[tm] -sin[m] 0]
[0 sin[mr] cos[m] 0]
[0 0 1]

EigenValues[Fxy"\]
=Set{1,-1,-1,1}

EigenValues[R"\]
=Set{1,e™,e™ 1}

Sum of
EigenValues[R"\]
=Tr[R¥,J=R",
=1+e'"+e"+1
=2+2cos[1T]
=0

Sum of
EigenValues[Fxy*\]
=Tr[Fxy"\]=Fxy*,
=1-1-1+1
=2+2cos[1T]

Product of
EigenValues[R"\]
=Det[R"\]
=1-eme "1
= +1

Proper

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SR 4-Scalars, 4-Vectors, 4-Tensors
Elegantly join many dual physical
e properties and relations S

SR 4-Scalars, 4-Vectors, and 4-Tensors beautifully and elegantly display the relations between lots of different physical properties and relations.
4-Tensor T*

Their notation makes navigation through the physics very simple.

They also devolve very nicely into the limiting/approximate Newtonian cases of { |v| << c }
by letting{y — 1and y’ = dy/dt — 0 }.

SR tells us that several different physical properties are actually dual aspects of the same thing, @
with the only real difference being one's point of view, or reference frame.

[Ttt Ttx Tty TtZ]
[Txt Txx Txy TXZ]
['l'yt TyX Tyy TyZ]
[th sz sz TZZ]

SR 4-Vector V = V°
Examples of 4-Vectors = (1,0)-Tensors include: =(V,V)=(V}, V5, V", V)
(Time , Space), (Energy , Momentum), (Power , Force), (Frequency , WaveNumber),
(Time Differential , Spatial Gradient),
(ChargeDensity , CurrentDensity), (EM-ScalarPotential , EM-VectorPotential), etc.

[temporal,mixed]
[ mixed ,spatial]

=(temporal * ¢c*',spatial)

One can also examine 4-Tensors, which are type (2,0)-Tensors.

The Faraday EM Tensor similarly combines EM fields:

Electric { e = ' = (¢,e”,e7) } and Magnetic { b = b* = (b*,b",b?) } Faraday EM
®o----p ® ---- > Tenscsz

Fe? = i -e’/c 4-Velocity @ 4-Momentum -
+e'/c U=y(c,u) P=(mc,p)=(E/c,p)

Also, things are even more related than that. @

[0 -e*/c -e’lc -e%/c]
[+e*/c 0 -b* +b]
[+e'lc +b* 0 -b*]
[+e®lc -b¥ +b* 0]

4-WaveVector
The 4-Momentum is just a constant times 4-Velocity. ave vecto

The 4-WaveVector is just a constant times 4-Velocity.

K=(w/c,k)=(w/c,wﬁ/vph
M -- > [ 0 ,-elc]

ase

In addition, the very important conservation/continuity equations seem to just fall out of the notation.
The universe apparently has some simple laws which can be easy to write down by using a little math and a super notation.

[+e'lc, -€l b¥]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector




4-Vector SRQM Interpretation

SRQM Diagram:
SR 4-Vectors and

SR —- QM

et LOrentz Scalars | Physical Constants s
Minkowski Lorentz Soul of SR |
OR]="[RT=n""§ a[R"]=N", A 4-Gradient

Heart of SR a-R=4.1
SpaceTime
Dimensio

Oo—e

4-Displacement
AR=(cAt,Ar)
dR=(cdt.dr

4-Acceleration
A=y(cy’,y'u+ya) 4-Polarization

Metric LK 0=(9/c,-V)

paceTime Dim
M=4= “ pv

E=(¢%€)=(e-B.€)

4-Position - Conservation of 4 C?/r\?plex Hamilton-
R=(ct,r)=<Event> Polarization - 4-TotalWaveVector ane-viaves Jacobi
PV veriont ntomva il is Rest Spatial > Sum of Plane-Waves K, =-9[P] P, =-9[S]
vari oo
R-R=(ct)r-r = (cr)? @ 4-WaveVector @ 4-Total\WaveVector
.. K=(w/c,k)=(w/c,wn/vphase) K,=(w./c,k,)

Wave Velocity {(),=0} < {K-U=0} < {K is null =-0[Dphase]

*,

4-UnitTemporal
T=y(1,8
: Y( Speed e group  phase
Time:Space of Light

- Rest AngFrequency
S 4-Velocity @

'T-S=0_ U=y(c,u)
o =dR/d1' I @ @  »>ean » TR !
. q =mc = =
4-UnitSpatial Rest Energy:Mass ProperTime ® . al Ic;pST) dETn)
S=ygn(A-B,N), SR NITESr Rest Charge P=(mc,p)=(E/c,p) Derivative =-0[Saction]
Conservation of

Density :
@ DenSIty@ » {m.=0} < {P-U=0} < {P is null} 4-TotalMomentum @
A @ Rest Scalar ||H_|_ } - Sum of Momenta
%>

Potential :
Minimal 4-MomentumincField
. [+
EM Charge

, - ' Coupli
4-ChargeFlux 4 EMVe_cto/rPotentlaI EM Charge Pciuz ing
4-NumberFlux 0 A=(¢/c,a)
N=(nc,n)=n(c,u)

4- tDensit
Jgtjfarfzejr;:p?gi)y {9.=0} > {A-U=0} < {A is null} 0 4-EMPotentialMomentum SRSl VEsEtIE 1
. : Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector Trace[TuV] = I.]W-I-uv = Tuu =T

2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v SR 4-Scalar
e (10 VR (0.0)Tensor s VAV = ViV = (V) - vev] = (Vi)
orentz Scala

4-Force

F=y(E/c,f
—ZI(P Idt ) 4-TotalMomentum

P=(E/c,p,)=P+Q=P+gA

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

= Lorentz Scalar



SR —- QM

SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo'\;l\
SRQM 4-Vectors and
et LOrentz Scalars | Physical Constants i

John B. Wilson

~—e SR o'R=4 : Minkowski & Lorentz s |
— SpaceTime J 4-Acceleration 4-Polarization SSFSEN O[R]=0"[R']=n"'§ a4,[R*]=A", B fl 4-Gradient
4-Displacement Birerat A=y(cy’,y'u+ya) E=(c%,€)=(e-B,€) EEIELY Metric ansformg/

AR=(cAt,Ar)
dR=(cdt.d

oJ=(d/c,-

an outcome of paceTime Dim . : ( e V)
Poincaré Invariance, M =4= pv -0 ,=0 ,=

s’.s)=(s'B,s) ¥V A=A . Xy -z

Conservation of Complex Hamilton-
d[.. OT.. Polarization:Spin - 4-TotalWaveVector Plane-Waves Jacobi
. - ot is Rest Spatial Sum of Plane-Waves K, =-9[®]K=io P, =-J[S]
nvariant Interva .

R\ rer o (2 4-\WaveVector 4-TotalWaveVector
R=(ct)*-rr = (ct . "
.. @ K=(w/c,k)=(w/c,wn/vphase) @ K.=(w,/c,k;)

4-U$|tha1moraI Wave Velocity (=0} « (K-U=0} > {K i null} =-0[Dphase] 3

=Y 3 rou *V hase= "

) Speed e Yost Ar

Time:Space [T-T= 1 of Light 4-Velocity Res‘tAngFrequeﬁcy ' Einstein

Orthogonal _ EinsteinNg( h ) 4-Force |EPREMRRIA (h)
@ U=y(c,u) de Broglie —

F=y(E/c,f)

Rest Number

=dR/d P=hK @
S Density PU-U= E=mcz$ | e J/0T .

P,=hK_

=dP/dt 4-TotalMomentum
: . - P_=(E./c,p,)=(H/c,p.)

4-UnitSpatial = Rest Energy:Mass ProperTime . - TT aST T
S=y,n(-8,r), [N COREP ‘p Rest Charge P=(mc,p)=(E/c,p) ELEICI 2 )

- \ Densit K N ) onservation o

1w Paom Y o, D {mo=0} » {P-U=0} o (P s nuil} 4Totavomentum ¢TE)

‘ Sood Probability Rule : Rest Scalar Sum of Momenta
Rest Prob Density 3@----p» Potential ||H'|' } -

Minimal 0 4-MomentumincField
4-EMVectorPotential EM Charge gciuzlmg

4-NumberFlux
N=(nc,n)=n(c,u EM Charge

4-ChargeFlux

P=(E/c,p,)=P+Q=P+gA

. ) A=(p/c,a)
4-ProbCurrDensit 4-CurrentDensit -
4-Probabi|ityFquy @ J:(pc’j)zp(c’u)y {9.=0} < {A-U=0} < {A is null} Q 4-EMPotentialMomentum SESIale]YEsiErTEN
J = ) Q=(U/c,q)=qA
prob ’
SR 4-Tensor SR 4-Vector

g ] ] = W — TH =
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Existing SR Rules Tracs[T ] n”v;rz T To 2
(1,1)-Tensor T* or T, SR 4-CoVector (0,0)-Tensor S — V-V = VWY = [(VO)2 - vev] = (v25)
’ T 'l o " orentz Scala Quantum Principles
0 , 1)-1ensor = (Vo,-V

= Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Study:
SR Gradient 4-Vectors = (1,0)-Tensors
s OR Gradient One-Forms = (0,1)-Tensors s

4-Vector = Type (1,0)-Tensor [ = ] components

4-Position R = R" = (ct,r) [Time (t) : Space (r)]

4-Gradient dr = 9 = 0" = 9/0R,, = (d/c,- V) [Time Differential (;) : Spatial Gradient(V)]

Standard 4-Vector Related Gradient 4-Vector (from index-raised Gradient One-Form)
4-Position R = R" = (ct,r) 4-PositionGradient dr = dr* = 9d/0R, = ( , )=0=0"=4-Gradient
4-Velocity U = U" = y(c,u) 4-VelocityGradient dy = du* = d/ldU, = ( ~V,)

4-Momentum P = P* = (E/c,p) 4-MomentumGradient dp = 9% = 9/dP,, = ( ~V.)

4-WaveVector K = K" = (w/c,k) 4-WaveGradient ok = ok* = dloK, = ( -V.)

In each case, the (Whichever)Gradient 4-Vector is derived from an SR One-Form or 4-CoVector,
which is a type (0,1)-Tensor
ex. One-Form PositionGradient d., = 9d/dR" = ( V5)

The (Whichever)Gradient 4-Vector is the index-raised version of the SR One-Form (Whichever)Gradient
ex. 4-PositionGradient d.* = 9/0R,, = ( ~V5.) =N, = n™aloRY = n™( , ) = n"(One-Form PositionGradient),

This is why the 4-Gradient is commonly seen with a minus sign in the spatial component,
unlike the other regular 4-Vectors, which have all positive components.

4-Tensors can be constructed from the Tensor Outer Product of 4-Vectors




4-Vector SRQM Interpretation

Some Basic 4-Vectors
Minkowski SpaceTime Diagram
Oyt ectors Events & Dimensions o s

~ Classical
future * Event | At time-like interval Mechanics
time displacement
e —— Ar space-like interval FRSISIEIFING @ ‘
/\ CM

AR, =(cAt @ Ar) 3-displacement

Ar = Ar'—(Ax,Ay,Az)

ast
b Note the separate dimensional units: (time + 3D space)
“Stack of Motion Picture Photos” Atis [time], |Ar]|is [length]
Special

At time-like interval (+) 4-Displacement Relativi
VI
AR=(cAt,Ar) elativity

c light-like interval (0) = null 4-Position

R=(ct

(et (cAT? Time-Like  (+)

AR-AR = [(cAtY — ArAr]=0  Light-like:Null (0)
-(Ar,)? Space-like ()

Ar space-like interval (-)

Note the matching dimensional units: (4D SpaceTime)

(cAt) is [length/time]*[time] = [length], |Ar]| is [length], |AR| is [length]

T is the Proper Time = “rest-time”, time as measured by something not moving spatially
The Minkowski Diagram provides a great visual representation of SpaceTime

SR 4-Tensor SR 4-Vector - ] = W TH =
(2,0)-Tensor T N(1,0)-Tensor V* = V = (v*v) P SR 4-Scalar Classical (scalar f 3-vector) Trace[T™] = Nw T = T il
(0,0)-Tensor S Galilean Not Lorentz V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala Invariant Invariant = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR — QM 4-Vector SRQM Interpretation

Some Basic 4-Vectors
Minkowski SpaceTime Diagram, WorldLines,
e LightSpeed to the Future! S

The 4-Position is a particular

At | time-like interval 4-Displacement g
) otk merval 0) = IO OpecttOpcement for,
at-rest inertial motion 4-Position origin (0, ) = 4-Zero.
WorldLine (u=0) WorldLine (O<u<c) R=(ct,r)=<Event>

An Event (*) is a point in SpaceTime ARr.aAR = [(CAt) - Ar-Ar] = 0 for light-like (0)

elsewhere The 4-Position points to an Event. -(Ar,)? for space-like ( )

4-Position is Lorentz Invariant,
O C but not Poincareé Invariant.
N, A standard 4-Displacement is
% future =l space-like interval () both. .
(cAt)* for time-like (+)

~ A WorldLine is a series of connected ’ 4('V3')‘";;g/d i) | U
Events which trace out a path in =TGR e o \C
SpaceTime, such as the track of a a=> s> (U=
moving particle. U-u= v(10/,\l/l)1'7(0/,u)2= Y21(/C\7-1U'U); (c®)
= - u C -_ -
past Y [1-(u/c)] [1-(B)7]
Massive particles move temporally into future
O -C ‘/ at the speed-of-light (c) in their own rest-frame.
LightCone Massless particles (photonic) move nully into the future

at the speed-of-light (c), and have no rest-frame.

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector v — Y _
(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Tracellfies r]pv;l"; =T%= To 2
(0,0)-Tensor S V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector

0,1)-Tensor V, = (vo,-V




SR Invariant Intervals
Minkowski Diagram:Lorentz Transform

of Physical 4-Vectors

SciRealm.org

John B. Wilson
SR:Lorentz Transform SR:Minkowski Metric
8[R"] = ORVIOR" = NV, 9[R] = R" =" = VW + H" —
Since the SpaceTime magnitude of U is a constant (c), Ho= (ATVH - AH AT — H — SH ‘ =y e ik
changes in the components of U are like rotating the 4-Vector Ny = (VW NGNS =y = 8 Dlag_['lc,:-'lt,-_‘l "fﬂ N 'Elﬁ'gl[1|°’r:l(?)] _C Diag[1,-5]
without changing its length. It keeps the same magnitude. {in Cartesian form} “Particle Physics” Go
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements.

{Nu} = 1"} iy’ =8,
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements.
The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

U-U = y(c,u)y(c,u) = y*(c*u-u) = (c?) Rotation (x,y): Purely Spatial

Boost (x,t): Spatial-Temporal

The Light Cone / Minkowski Diagram provides a great visual representation of SpaceTime



SR — QM 4-Vector SRQM Interpretation

SR Invariant Intervals °
Minkowski Diagram

of Physical 4-Vectors John B. Wilson

SR:Minkowski Metric
JR]=0"R" =n"=V"+ H" —

Since the SpaceTime magnitude of U is a constant (c), changes in the components of U are
like rotating the 4-Vector without changing its length. It keeps the same magnitude (c). , . . i
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements. Dlag{i[n1 6;1;;33;"201:} ,B;ﬁigl£1|;r:léfg]s,,=coD'ag.1 0]
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements. (N} = 140" " = é v

The interval between the origin and a given topograph-line is a Lorentz Invariant Constant. = L

(cAt)? (+) {causal = 1D temporally-ordered, spatially relative}
AR-AR = [(cAt)’ - Ar-Ar] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Ar/At|=c)}
-(Ar,)? (-) {temporally relative, topological = 3D spatially-ordered}

Disconnected

WA AR A S P e
ISR A AL

Future

. Past

Space-Like (-) Light-Like:Null (0)
The Minkowski Diagram provides a great visual representation of SpaceTime




4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Acceleration
e SpaceTime Kinematics S

SR —- QM

roperTime Derivative

ProperTime
R-U/U-U=(ct,r)-y(c,u)/c*=y(c?t - r-u)/c’*=(c*,)/c?
=] to =T

4-Gradient U-0=y(c,u)(9,/c,-V)=y(4,+ u-V)=yd/dt
az(at /C,'V)—)(at /C,'ax,'ay,'az) = d/d’[

: ® ®*------ >
Special S— U-3[..] S— U-a[..] S 4-Vectors:
Relativit d/dt[..] Jvelocty d/dt[..] -Acceleration B
vl = Jul = {0 ) o ELSED iz ] ==l Wit A=y(cy.yu+va) BEVERIGE
v = 1N[1-(vic)] A = dU/dt

! Newtonian/CIassicaI Limit |
Classical °
Mechanics |[uaCEl @ 4 -Velocity ., @ 4-Acceleration
[v| =|ul <<c R =(Ct r) —(C u) A =(0 a)
y—1+0[(v/c)?] - cu
vy —0 Since time:space don’t mix in CM, Since temporal velocity (c) always constant in CM Since temporal acceleration (0) always constant in CM,
Typically use time t & 3-position r separately Typically use just 3-velocity u Typically use just 3-acceleration a scot

3-position 3-acceleration RS
r=r'—(x,y,z) 3-vectors:
The relativistic Gamma factor y = 1/\[1-(v/c)?] u = dr/dt
The 1*' order Newtonian Limit gives y ~ 1 + O[(v/c)?] a = du/dt
The 2™ order Newtonian Limit gives y ~ 1 + (v/c)?/2 + O[(v/c)’] For historical reasons, velocity can be represented by either (v) or (u)
SR 4-Tensor SR 4-Vector V] — v — -
(2,0)}-Tensor T*  (1,0)-Tensor V* = V = (v*,v)jP SR 4-Scalar Classical (scalar jA 3-vector) Trace[T*1 =Nl "= T =T "
(0,0)-Tensor S Galilean Not Lorentz V-V = Vi, Vo = [(V)7 - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector

orentz Scala Invariant Invariant



SR —- QM

SRQM: Some Basic 4-Vectors

4-Vector SRQM Interpretation
of QM

4-Position, 4-Velocity, 4-Acceleration, 4-Momentum, 4-Force

A Tensor Study
of Physical 4-Vectors

SpaceTime Dynamics

SciRealm.org
John B. Wilson

roperTime Derivative
U-9=y(c,u)-(0,/c,-V)=y(d,+ u-V)=yd/dt

=d/dT

ProperTime
R-U/U-U=(ct,r)-y(c,u)/c*=y(c?t - r-u)/c’*=(c*,)/c? 4-Gradient
=t =71 a=(at/C’-V)_)(at/C’-ax’-ay’-az)
) ° @®------ >
Special T VT
- -Position -velocity
Relativity R=(ct.r) U=y(c,u)

[v| = |u| ={0 < c}
vy = 1N[1-(vic)]

This group of 4-Vectors are the main ones that are
connected by the ProperTime Derivative.

U-a = d/dt = yd/dt = y(cd/c+uV) = (8, + u-V)

4-Momentum
P=(E/c,p)=(mc,p)

The classical part of it, the convective derivative,
(6, + u-V), is known by many different names:

The convective derivative is a derivative taken with
respect to a moving coordinate system. It is also called
the advective derivative, derivative following the motion,
hydrodynamic derivative, Lagrangian derivative, material
derivative, particle derivative, substantial derivative,
substantive derivative, Stokes derivative, or total
derivative

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

4-Vectors:
4-Acceleration R =
A=y(cy',y'utva) EEVIER] Ik
A = dU/dt
. E 4
u-o e
L-.] 4-Force P=m\U
’Yd/dt[] — (E/C f) o
d/dz[..] s F = dP/dt

Trace[T"] =N T" =T =T
V-V = Vi, VY = [(VO)? - vev] = (V0)?
= Lorentz Scalar



SR —- QM

SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Differential
SpaceTime Calculus

of Physical 4-Vectors

ProperTime

=t=T

Invariant Interval ‘ ®
2

R-R=(ct)>rr = (ct 4-Position
R=(ct,r)

4-Differential
dR=(cdt,dr)

Invariant Interval
dR-dR=(cdt)’>-dr-dr = (cdt

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S

orentz Scala

(1,1)-Tensor T*, or T, SR 4- CoVector

R-U/U-U=(ct,r)-y(c,u)/c*=y(c?t - r-u)/c®=(c*,)/c?

[ 3 -j" B Invariant LightSpeed
. U.U:C2
4-Velocity

U=y(c,u)

roperTime Derivative
U-0=y(c,u)(d,/c,-V)=y(4,+ u-V)=yd/dt

=d/dT

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

4-Gradient

9=(8,/c,-V)—(8,/c,-9,,-0,,-0,)

nvariant d’Alemberitan
A 9-0=(d/cdr)?

Trace[T"] =N T" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
.. 4-Velocity, 4-Momentum, E=mc* . .

of Physical 4-Vectors John B. Wilson

NP-U = y(E - pru) = E. = mog U = y(c,u)
" r o P = (E/c,0) = myU = ymb(c,u) = m(c,u)
Special 4-Velocit 4-Momentum
Rglativity > 9] ~ Temporal part:  E = ymec® = mc® ) 2
=10~ ey T (energy) E = mict+ (r-timee

E=E, +(-1)E
(rest) + (kinetic)

Spatial part:
| Newtonian/Classical Limit | {momentum} p =ym,u =mu

)
) ~ (1+(v/c)2/2)mo(C,u)

Classical

: —VeI00|ty
Mechanics u_,=(1+(vicy’)
V| = Ju| <<c

4-MomentumCM

PCM=(E/C p)=(mc

Classmal
VEES (A Temporal part: E ~ (1+(v/c)*/2)m.C* = MoC? + mMoV?/2
{energy} E., +|p|?/2m,
energy ‘ 3-momentum (rest) + (kinetic)
Since time:space don’t mix in CM, p_)(px,py,pZ)

Typically use energy E & 3-momentum p separately S -
patial part:

The relativistic Gamma factor y = 1/[1-(v/c)] {momentum} p ~ (1)Mol = MoU — Mu
o o o

The 1% order Newtonian Limit gives y ~ 1 + O[(v/c)]

nd : PR N 7 4
The 2™ order Newtonian Limit gives 'y ~ 1 + (v/c)*/2 + O[(v/c)] For historical reasons, velocity can be represented by either (v) or (u)

SR 4-Tensor SR 4-Vector - W — Wo— TH —
(2,0)-Tensor T*  J(1,0)-Tensor V* =V = (v*,v)jlF SR 4-Scalar Classical (scalar jA 3-vector) Trace[T*1 =Nl "= T =T "
(0,0)-Tensor S Galilean Not Lorentz V-V = Vi, Vo = [(V)7 - vev] = (Vo)

(1,1)-Tensor T*, or T, SR 4-CoVector

orentz Scala Invariant Invariant = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
4-Velocity, 4-Acceleration,

e SpaceTime Orthogonality S

A 4-Gradient

A =U =R”is normal

oR=4 9R]=n"—Diag[1,-1,-1,-1] :
SpaceTime Minkowski Metric P o-,/c.-V)—(8,/c,-0,-6,,-0,) to WorldLine
Dimensio roperTime Derivative (A is Spatial)
U-6=y(C,u)'(8t/C,-V)=y(3t+ u-V)=yd/dt @ - - - S >

ProperTime

T
= d/dt A

ProperTime
Derivative Derivative
o ®------ > ® - == >
U-a[..] U-a[..] N~

yd/dtr..]

4-Acceleration
A=y(cy',y'u+ya)

4-Velocity

yd/dtr..]

4-Position
R=(ct,r)

U=y(c,u)

d/dt[..] d/dt[..]
| I 4-Vectors
The Lorentz Scalar Product can be used to show @ R= (Ct’r)

. ' : . . U=dR/dt =R’
SpaceTime orthogonality when the result is zero. SpaceTime Orthogonality
4 gonaty A = dU/dz = U’

U =R’ is tangent
¢ to WorldLine
(U is Temporal)

_ 0 4-Velocity U (a Temporal 4-Vector)
Uu=c is orthogonal to its own

d/d’C[U-U] = d/d‘C[Cz] =0 4-Acceleration A = U’ (a Spatial 4-Vector) -
d/dt[U-U] = d/dT[U]-U + U-d/dT[U] = A-U + U'A=2(U-A)=0 WorldLine
U-A = U-U’ = 0: The 4-Velocity is SpaceTime orthogonal to it's 4-Acceleration. Y

R moves along

4-Velocity is the direction along a WorldLine.

4-Acceleration is the thing which causes a WorldLine to bend/curve. Worldline
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T*] = Il

V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR —- QM

SRQM: Some Basic 4-Vectors ¢
4-Displacement, 4-Velocity,
e Relativity of Simultaneity b

- X=4 A[X¥]=0X"1oX'=N\", B o[X]=n""—Diag[1,-1,-1,-1] A 4-Gradient
SpaceTime Lorentz Transform Minkowski Metric a=(3/c -V)
t )

Rest-Frame Lorentz

ProperTime Boost-Frame

4-Displacement .. ) =T t c
AX=(cAt,Ax) .

Dimensio

4-Acceleration u

ProperTime A=y(cy’,y’u+ya)
Derivative

ProperTime
Derivative

At=0
[ J -AX = y(c,u):(cAt,Ax) = y(c*At - u-Ax Simultaneous in {t’,x’} :
= c?At, = c*At S .

Not Simultaneous in {t,x
If Lorentz Scalar (U-AX = 0 = ¢?At), then the ProperTime displacement (A1) is zero,
and the event separation (AX = X, - X,) is orthogonal to the worldline U.

X, and X, are therefore simultaneous for the observer on this worldline U.

X
Examining the equation we get y(c?At - u-Ax) = 0. The coordinate time difference between the events is (At = u-Ax/c?)
The condition for simultaneity in an alternate frame (moving at 3-velocity u wrt. the worldline U) is At = 0, which implies (u-Ax) = 0.
This can be met by:
(lu] = 0), the alternate observer is not moving wrt. the events, i.e. is on worldline U or on a worldline parallel to U.
(|Ax| = 0), the events are at the same spatial location (co-local).
(u-Ax = 0), the alternate observer's motion is perpendicular (orthogonal) to the spatial separation Ax of the events in that frame.
If none of these conditions is met, then the events will not be simultaneous in the alternate reference frame.
This is the mathematics behind the concept of Relativity of Simultaneity.
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar Trace[T"] =N, T =T" =T

(0,0)-Tensor S

V-V = Vi VY = [(VO)? - vev] = (V)
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM 4-Vector SRQM Interpretation

SR Diagram:
S SR Motion * Lorentz Scalar
e o = Interesting Physical 4-Vector S

o-R=4 d[R]=n""—Diag[1,-1,-1,-1] A 4-Gradient BRAEES e Nalo1 (=R

SpaceTime E— ; ; ; = _
Dimensio Minkowski Metric E 5 (at/C’ V) Most 4-Vectors have
4-Displacement d[.. 9I.. PR p- 4 independent components.

= . (1 temporal, 3 spatial)
AR (ERG ) 4-Acceleration
ProperTime
Derivative @

A=y(cy’,yutya) RIEESEIGIAEEN I\ AYCK]
spatial however, due to its

Pézrr)isgi'\%e invariant magnitude U-U=c?.
o : !
This fact allows one to multiply
it by a Lorentz Scalar to make
Rest Charge Rest Scalar Rest Rest Angular a new 4-Vector with 4
Rest Number Density Density Potential Mass:Energy Frequency |ndeper_1dent cgmponents, as
E=mc? shown in the diagram.
@ @ EM @ Wave Velocity @ .
v, p*\,phase=cz Proof of non-varying (c).
. . >
____> P -l --> _____ W.---
o € P-P=(m.c)’=(E/c @---> -

CIEEe 4-ChargeFlux

4-NumberFlux [
4-CurrentDensit
N=(nc,n)=n(c,u) 0 J=(pc,j)=p(c U)y

4-EMVectorPotential 4-Momentum @ 4-WaveVector
0 K=(

P=m(c,u)=(mc,p)=(E/c,p)

w/c,k)=(w/c,wﬁ/vphase)
{p.=0} < {A-U50} & {Ais null} {m,=0} < {P-U=0} < {P is null} {w.=0} < {K-U=0} & {K is null}

EIectric:Magnetict% (8-0)A-8(3-A)=poJ

/(g0 )=C? Maxwell EM Wave Eqn

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar Trace[T] = M

(0,0)-Tensor S V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR —- QM

SRQM Diagram:

A Tensor Study
of Physical 4-Vectors

o-R=4
SpaceTime
Dimensio

J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric

4-Displacement
AR=(cAt,Ar)

4-Position ProperTime

A=y(cy',y'utya)

4-Vector SRQM Interpretation
of QM

SRQM Motion * Lorentz Scalar

= Interesting Physical 4- \Z{]ector

Interesting note:

SciRealm.org
John B. Wilson

Most 4-Vectors have

(1 temporal, 3 spatial)

E 8=(9/c,-V)
.. @ - - - p- 4 independent components.

4-Acceleration

The 4-Velocity has only the 3
spatial however, due to its

— Derivati = Ti . . .
R=(ct,r) e E;Zﬂ?/;t;\%e invariant magnitude U-U=c?.
o : !
Rest Number Density This fact allows one to multiply
Rest Probabilty Density it by a Lorentz Scalar to make
Rest Charge Rest Scalar Rest Rest Angular anew 4-Vector with 4
Density Potential Mass:Energy Frequency independent components, as

E=mc?

Born Q)probo =
Rule @ EM @
|xlw, xlw |?
>
e GRS

Clitstrore 4-ChargeFlux
4- CurrentDensity

*, =n2
group  phase

4-NumberFlux
N=(nc,n)=n(c,u)
4-ProbCurrDensity

4-EMVectorPotential
A=(¢p/c,a)

4- Momentum
P=m(c,u)=(mc,p)=(E/c,p)

Wave Velocity @
AA ((p/c)2 ”H | } ‘ _____ -

shown in the diagram.

Proof of non-varying (c)

M-

4-WaveVector

Einstein
de Broglie =
P =hK K=

(wJ/c)

(h)

K=(wl/c, k)=(uu/c,our“l/vpha
{wo=0} & {K-U=0} & {K is null}

- ili J=(pc
j Prc:)?abmtyFlw; (pC.J)= {9.=0} < {A-U40} < {Ais null} {m,=0} <> {P-U=0} < {P is null}
iy . Electric: Magnetlct (0-0)A-3(8-A)=piod
1/(€oMo )= Maxwell EM Wave Eqn

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar
(0,0)-Tensor S

SR 4- CoVector

Existing SR Rules
Quantum Principles

(1,1)-Tensor T*, or T,
, orentz Scala

Trace[T"] = N T" =
V-V = Vi, V¥ = [(v°)°
= Lorentz Scalar

=T

- vev] = (V%)



SR — QM 4-Vector SRQM Interpretation

. SRQM Diagram:
ProperTime Derivative

Very Fundamental Results S
CEn  CEEEER Wi

Dimensio

ProperTime Derivative
U-9=y(c,u)(6,/c,-V)=y(d,+ u-V)

Continuity of =yd/dt=d/dT

4-Velocity Flow: 0-U=0 3

Derivative AN Prl:t))perTime
. ivati
4-Ve|OCIty erivative

= U=y(c,u . Acceleration of Event
@ is perpendicular to
R=(ct,r) ) Event WorldLine

-

E 3

4-Displacement
AR=(cAt,Ar)

4-Acceleration
A=y(cy',y’'u+ya)

® ProperTime »
Derivative .
d'R = 4: SpaceTime Dimension is 4 ‘
U-U = ¢% Tensor Invariant of 4-Velocity
4-Momentum 4-Force

d/de(8-R) = didt(4) = 0 ,
(U-9)(&-R) = (U-3)(4) = 0 d/dt[U-U] = d/d7[c?] = 0 P=(E/c,p)=(mc,p) F=y(E/c,f)
(U-9)[U-U] = (U-9)[c*] =0

d/dw(@-R) = d/dt(d)-R + d-d/dt(R) = 0

d/dt(é-R) = d/dt[d]R + :U =0 d/dt[U-U] = d/dt[U]-U + U-d/d7[U] = A-U + U-A =2(U-A) =0
d-U = -d/dt[d]'R U-A = U-U’ = 0: The 4-Velocity is SpaceTime orthogonal to it's 4-Acceleration. K .
o-U = -(U-9)[9]'R 4-Vectors:
a-U = -(U.,8")[3,]R" 4-Velocity is the direction of an Event along a WorldLine. R=<Event>
o-U =-Ud"9,R" 4-Acceleration of an Event is the thing which causes a WorldLine to bend. U = dR/dt
o-U =-U,9,0'R" A = dU/dt
o-uU=-U.on™
o-U =-U,(0 _
2-U = 0: Conservation of the 4-Velocity Flow (4-Velocity Flow-Field) P =m,U
F = dP/dt
SR 4-Tensor SR 4-Vector S " _
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Trace[T™] = T = Th =T

V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector



SRQM Diagram:

AN
%, TP

3 .
AonsorSudy all the Conservation Laws
S J[R]=n"—Diag[1,-1,-1,-1] A

SpaceTllme Minkowski Metric 9=(d/c,-V)

Dimensio
Continuity of
4-Velocity Flow: -U=0

4-Displacement Derivative
AR=(cAt,Ar)

4-Velocity
4-Position U=y(c,u) ydl/dt [.. JFE—
R=(ct,r) Derivative

[

oR=4 orU=0

d/dt(0-R) = d/dt(4) =0 0-(Lorentz Scalar)U = O(Lorentz Scalar)
d-(Lorentz Scalar)U =0

d/dz(0-R) = d/dt(d)-R + o-d/dz(R) =0 o-(Interesting 4-Vector) = 0

d/dt(a-R) = d/dt[d]'R + 2-U = 0

o-U = -d/dt[d]'R Example:

o-U =-(U-9)[o]R d(po)U =0

o-U = -(U.0")[9,]R* 2J=0

o-U =-Ud9,R" (0Jcpc+Vij)=0

2-U = -U,0,0'R": | believe this is legit, partials commute @p + V) =0

gﬂ i '3“655‘ “ = Conservation of Charge
a:u -0 107 = A Continuity Equation

Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector

4-Vector SRQM Interpretation
of QM

Local Continuity of 4-Velocity leads to

SciRealm.org
John B. Wilson

ProperTime Derivative
U-9=y(c,u)(6,/c,-V)=y(d,+ u-V)

=yd/dt=d/dT

4-Acceleration
A=y(cy',y'u+ya)

Conservation L aws:

All of the Physical
Conservation Laws are in the
form of a 4-Divergence, which
is a Lorentz Invariant Scalar
equation.

These are local continuity
equations which basically say
that the temporal change in a
quantity is balanced by the
flow of that quantity into or out
of a local spatial region.

Conservation of Charge:
od=0p+Vij=0

Trace[T"] = nuTW =TH, =T

V-V = Vi VY = (V)7 - vev] = (Vo)

= Lorentz Scalar



SR —- QM

SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo,\;l\
SRQM Motion * Lorentz Scalar
e, Conservation Laws, Continuity Egns s

o-R=4 =n*"'—Diag[1,-1,-1,-1] iNeir-lol-1}d Conservation Laws:

SpaceTime

Minkowski Metric 9=(d/c,-V)

4-Displacement
AR=(cAt,Ar)

Continuity
of 4-Velocity Flow:
2-U=0

All of the Physical
Conservation Laws are in the

———— P> form of a 4-Divergence, which

4-Velocity . ; N is aLorentz Invariant Scalar
_ — I _ ;) equation.
U=y(c,u A=y(cy’,y'u+ya)

ProperTime § These are local continuity

Defjialyg equations which basically say
® Rest Number Density that the t.emporal change in a
Rest Probabilty Density Rest Charge quantity is balanc.ed.by the
Density@ Rest Scalar Rest Rest Angular flow of that quantity into or out
EM Potential Mass:Energy Frequency of a local spatial region.

Born E=mc’
@ Rule “probo J N @ @ Wave Veloc'ty @ Conservation of Charge:
1w < D . = 8 =(8,p+V)=0

group phase
Charge 4-ChargeFlux
4-CurrentDensity

Einstein
db-> NS, @B - --. de Broglie SIS
J=(pcj)=p(c,u) ”H” i o > gy |-
4-EMVectorPotential 4-Momentum ‘m 4-WaveVector
A=(¢/c,a) P=m(c,u)=(mc,p)=(E/c,p) 5 4 K=(wic.k)=(w/c,wiv,_ )

phase
{9.=0} < {A-U40} < {A is null} {m=0} « {P-U50} < {P is null}

4-NumberFqu

N=(nc,n)=n(c,u)
4-ProbCurrDensity; o (CicalRe® &5 - - - -
4-ProbabilityFlux

Jprob:( ’ )

Rest

Mass:Energ
Conservation of Lorenz Gauge
Particle #: :-N=0 Conservation of i Conservation of
Mass: 9-G=0

0} < {K'is null}

Conservation of
4-Momentum: 9-P=0Q

Conservation of
4-\WaveVector: 9-K=0.

These are Individual Particle/Wave/Delta-function Conservation/Continuity Laws

Existing SR Rules
Quantum Principles

SR 4-Tensor SR 4-Vector Trace[TuV] = I.]W-I-uv = Tuu =T
V-V = Vi VY = (V)2 - vev] = (Vo)?
= Lorentz Scalar

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar
(1,1)-Tensor T", or T, SR 4- CoVector (0,0)-Tensor S
orentz Scala




SR — QM 4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors
- d-Velocity, 4-Gradient, Time Dilation ...,

of Physical 4-Vectors John B. Wilson
. B Ti . ) = . = v2(c2-u- H 2
worldline U, worldline U : Derivative =y(C.u) y = 1N[1-(u/c)] = 1N[1-pF
(u=0) (O<u<c)
fully temporal trades some time for space roperTime 4-Velocity Everything moves into future (+t)
dt=(1/y)dt U=(c 66)"”3“ at the speed-of-light (c)
O i i W VR W B Y iy S : o in its own spatial rest-frame
;‘?““===##' S The Minkowski Diagram provides
X S L5 a great visual representation Since the SpaceTime magnitude of U is a constant,

of SpaceTime changes in the components of U are like “rotating”
the 4-Vector without changing its length. However,
as U gains some spatial velocity, it loses some
“relative” temporal velocity. Objects that move in
some reference frame “age” more slowly relative to
those at rest in the same reference frame.

Time Dilation! At = yAt = yAt,
dt =vydt
d/dt = yd/dt

Each observer will see the other as aging more
slowly; similarly to two people moving oppositely
along a train track, seeing the other as appearing
smaller in the distance.

SR 4-Tensor SR 4-Vector Y, Wo— TH —
2.0)-T T L bV = (VO SR 4-Scalar Trace[T"] =N, T =T =T
(2,0)-Tensor (1,0)-Tensor V¥ =V = (v°,v) V-V = Vi, Y = [(Vo)z e (v°°)2

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
, 0,1)-Tensor V, = (Vo,-v orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

of QM
|
|
SRQM: Some Basic 4-Vectors
SR 4-WaveVector K
A Tensor Study ave e c O r SciRealm.org
of Physical 4-Vectors John B. Wilson
4-WaveVector, aka. Wave 4-Vector, solution of d’Alembertian Wave Eqn. Wn(X) = A, e-i(Kq-X): Explicit form pf an SR plane wave
K = (w/c,k) = (w/c,wnlv )= (w/c,wu/c?) = (w/c?)(c,u) = (w/c)(1,B) = (1/cTF,A/x) = -9[® W(X) = Za[ Wn(X) ]: Complete wave is a
: e bhase 02 superposition of multiple plane waves.
There are multiple ways of writing out the components of the 4-WaveVector, A w(X) ] = o[ Aer-i(K-X) ] = -iK [ AeMi(K-X) ] = -iK[ p(X) ]

with each one giving an interesting take on what the 4-WaveVector means.

s Phase d = -iK as the condition for a complex-valued plane wave.

An SR wave W is actually composed of two tensors: K-R
(1) 4-Vector propagation part = K%, (the engine) = (w/c,k)-(ct,r)
(2) Variable amplitude part = A (the load), depends on what is waving... =(wt’ ) k-r),
4-Scalar A: W = A e"(-IK",) - =(t/c:1F> — A-r/k) A
ex. KG Quantum Wave bt — ~“phase,plane 4-WaveVector K 4-Gradient
: 4-Position (w/C K K.
4-Vector A% W¥ = AY eM(-iK'X,) R=(ct.) =(w/c,k) 0=(9/c,-V)
ex. Maxwell Photon Wave ’ PRI =(0J/C,wn/vphase) LA
B A o (i nvariant Interva Ty =(wc,wu/c’) TP d' Alembertian
4-Tensor A*: W = AW eA(-iK*X,) R-R=(ctYr- =y(c,u) _ =
ex. Gravitational Wave Approx. =(c )2'r r =yc(1,B) =(w/c)(c,u) d-0=
=(cr) =(w/c)(1,B) =(8,/0)-V-V
The W tensor-type will match the =(ct, ) =(1/cF,n/x) =(3 Jc)?
A tensor-type, as the propagation =7\2(w2-w 2) =( to c)
part e*(-iK°X,) is overall dimensionless. A =(d/cot,)?
= 7\ w (for photon) =(a/CaT)2
One comparison | find very interesting is: = )\2V2(for photon)

R-R = (ct,)? = (c1)’
K-K = (1/cT,)?
90 = (d/cot,)? = (dlcor)?

| believe the last one is correct: (9-:9)[R] = 0 = (9/cat)’[R] = Ao/c® = 0: The 4-Acceleration seen in the ProperTime Frame = RestFrame = 0
Normally (d/dz)*[R] = A, which could be non-zero. But that is for the total derivative, not the partial derivative.

SR 4-Tensor SR 4-Vector Y, W TH —
2,0)-Tensor T 1,0)-Te WVW=V-= 0’ SR 4-Scalar Trace[T ] B r]uvT =h HT T
e (1.0)-Tensor vv) (0,0)-Tensor S V-V = Vi, VY = [(V)F - vev] = (V)2

orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



. SRQM: Some Basic 4-Vectors  “ """
4-Velocity, 4-WaveVector
s WWAVE Properties, Relativistic Doppler Effect ........

of Physical 4-Vectors John B. Wilson

Relativistic SR Doppler Effect
( ) here is the unit-directional 3-vector of the photon

o> — TR [jf->

4-Velocity @ 4-WaveVector Choose an observer frame for which:
U=y(c,u) UG (VA S (VINGLAANE K = (w/c,k), with k,A pointing toward observer
@ RestAngularFrequency w Uobs = (¢,7) K-Uobs = (W/c,1)(c,0) = W = W, o
Uemit = Y( ) ) K'Uem“ = ( ’ ).Y( ) ) - 'Y((.U N kU) B wemit°
K= (w/c,k) = (wlc, ) = (wo/c*)U
= (wolc®)y(c,u) = (w/c®)(c,u) = (wlc, ) K-Uobs /K-Uemit = W, /0,0 = Wy(w - k-u)]

For photons, K is null - K-K =0 — k = (w/c)i
(wre, )= (Wi, ) W, JW, o= wily(w - (W/c)a-u)] = 1[y(1 - AB)] = 1/[y(1 - |Blcos[B,,])]

obs®

Taking just the spatial components of the 4-WaveVector: — .
wn/\/phase = (w/cz)u wobs/wemit ywobso/(ywemito) wobso/wemito
£ = 2 ~ * * A
Witase = (U/C) Wy = W/ [r(1 - BB = w0, SNI+BIIVI1-BIIAT - A-B)
u* _ 2 with y = 1A[1-B7 = 1/(N[1+[BI1*V[1-IBI])

phase
Voo~ Vonase = € Withu=v For motion of emitter B: (in observer frame of reference)

Away from obs, (A-B) = -B, w . = w_ *N[1-|B]IN(1 + [B]) =
Wave Group velocity (vgroup) is mathematically the same as Particle velocity (u). Toward obs (A-B) = +B, w_._ = w__ *N[1+|B[IN(1 - |B]) =
2 ? ““obs emit

Wave Phase velocity (vphase) is the speed of an individual plane-wave. Transverse, (AB) = 0, w, = wemit/y = Transverse Doppler Shift

The Phase Velocity of a Photon {vphase = c} equals the Particle Velocity of a Photon {u = c}

The Phase Velocity of a Massive Particle {vphase > c} is greater than the Velocity of a Massive Particle {u < c}
SR 4-Tensor SR 4-Vector V] — v — -
(2,0)-Tensor T*  (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar V_VTIa\(;SrETi,]V i r[](“VoT)Z _VT\:]“ 3 g,o 2
= n . -V =i [¢)

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




o SRQM: Some Basic 4-Vectors  “"""%a
4-Velocity, 4-WaveVector
wsrs  WNAVE Properties, Relativistic Aberration ...,

of Physical 4-Vectors John B. Wilson

Relativistic SR Aberration Effect
( ) here is the unit-directional 3-vector of the photon

o> I L

4-Velocity 4-WaveVector w,, = w, /ly(1-AB)] =w, /ly(1-|B|cos[e,,])]
Usyic.u) @ Kz(w/C,k)=(w/C,U)ﬁ/Vphase) obs emit it b

@ RestAngularFrequency w Change reference frames with {obs—emit} & B — -B }

K = (wic.k) = (wlc, ) = (@c?)U Wy = W /(1 + A-B)] = w,, JIy(1 + [Blcos[8,, )]
= (wolC?)y(c,u) = (w/c?)(c,u) = (wlc, )

; w ; (W) (W) =(w, JIv(1 - |Blcos[6,, )" (w,,/[y(1 + |B|cos[6,.])])
Taking jus_t the gpatial components of the 4-WaveVector: 1= (1/[y(1 - |B|cos[6,, DI)*(1/[y(1 + |B|cos[6,_.])])
WO e = (WIE 1= (v(1 - |Blcos(B,]))*(x(1 + IBlcos[8,,))
Wos = (W/C) = (1 - |Blcos[8,,,])*(1 + |Blcos[e, ]}

“Viraso = € all Solve for |B|cos[8, ] and use {(y*1) = B/}

i * ohase — C 7 with u = vgroup -

Wave Group velocity (vgroup) is mathematically the same as Particle velocity (u). cos[8,,] = (cos[8,,] + [BI) /(1 + Blcos[®,,])

Wave Phase velocity (vphase) is the speed of an individual plane-wave.

The Phase Velocity of a Photon {vphase = c} equals the Particle Velocity of a Photon {u = c}
The Phase Velocity of a Massive Particle {vphase > c} is greater than the Velocity of a Massive Particle {u < c}

SR 4-Tensor SR 4-Vector U] — W=TH =T
2,0)-Tensor T 1,0)-Tensor V¥ =V = (\°,v SR 4-Scalar Trace[TH] = M TSN
e (1.0) vv) (0,0)-Tensor S V-V = Vi, VY = [(V)F - vev] = (V)2
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V




SR — QM SRQM: Some BaSic 4-Vectors 4-Vector SRQM Interpre;?tiQo'\l;l\
4-Momentum, 4-WaveVector,
s d=POsition, 4-Velocity, 4-Gradient, Wave-Particle

SciRealm.org
of Physical 4-Vectors

John B. Wilson

P-P = (m,c)*= (EJ/C
4-Momentum

Treating motion like a particle
o | P=(mc,p)=(E/c,p) d ; ®

Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

IP-dR = -Saction’ﬁee Rest Mass:Energy ‘ ______

Emsteln Hamilton-Jacobi SpaceTime
et o T
P action,free i Dimension
4-Position [ Einstein 4-Gradient A
R:(Ct r) de Broglie G ad e & a[R]_r]“ _)Dlag[‘I 1_1 1_1 1_1]

a=(3t/C,-V)—»(at/c,—ax,-ay,-82) Minkowski Metric

d’Alembertian ProperTime
_ 2 \7.\/ =
= (9,/c)*-V'V = (a.Ic -3=d/dT=yd/dt

] Derivative

Wave Velocm@ N chhase,man ’

K = -9[®

group phase phase,plane

phase,plane RestAngFrequenc i
grreq y 4-\WaveVector WaveVector Gradient
AN | K=(w/c,k)=(w/c,wh/v Treating motion like a wave W _____ >
phase . o
] Moving waves have a 4-Velocity
phase plane 4-WaveVector is the negative 4-Gradient of the SR Phase (®)

See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition
for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.
{P = (E/c,p) =-9[S] = (-d/cat[S], )} {K = (w/c,k) = -9[D] = (-d/cat[D], )}
{temporal component} E = -0/dt[S] = -9[S] = | {temporal component} w = -9/dt[®] = -3 [D]
{ component} { component}
**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single free plane-wave.
Generally Action is for the 4-TotalMomentum P+ of a system. Generally WavePhase is for the 4-TotalWaveVector K; of a system.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T*  (1,0)-Tensor V¥ =V = (\,v)? SR 4-Scalar Existing SR Rules Tiacf [T1 = M
(1,1)-Tensor T* or T,¥ SR 4-CoVector (0,0)-Tensor S Quantum Principles V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

Some Cool Minkowski Metric Tensor Tricks
4-Gradient, 4-Position, 4-Velocity
SpaceTime is 4D S

of Physical 4-Vectors

4-Gradient /
a=(8t/c,-V)—>(8t/c,-8X,-8y,-3z)

roperTime Derivative
U'a=Y(C,U)'(3t /C,'V)=Y(at+ u-V)
= d/dt = yd/dt

Trn"]=n,"=4
SpaceTime
Dimension

JR] =n" J'R=4
—Diag[1,-1,-1,-1] SpaceTime
Minkowski Metric Dimensio

JR] = n™
—Diag[1,-1,-1,-1]
Index-Raised
Minkowski Metric

4-\elocity
=y(c,u) R=(ct,r) . n.’ 5V
o b ° —Dizg[1.1.1.1] ~Diagl’1.1,1]
: o =¥ ndex-Mixe N
"lﬁﬁ(r}m) =’ = Diag[1, ]*Diag[1, ] = Diag[1, ] Minkowski Metric Kronecker Delta
thus
Single Index-Lowering the Minkowski Metric (n**) gives the Kronecker Delta N
Index . v

O = (R = 1) = TR =g =07 =054 el
;I;]rﬁge[Mlnkowskl Metric] = Tr[n*] = Nes[N™] = Na” = 0" = 4 Minkowski Metric

The Divergence of 4-Position (8-R) = “Magnitude” of the Minkowski Metric Tr[n®] = the Dimension of SpaceTime (4)

(U-9)[R] = (U*0")[R'] = (U"nepd”)[R"] = (Upd)[R'] = (Up)d"[R"] = (Up)n™ = U¥ = U = (d/d7)[R]
thus
Lorentz Scalar Product (U-9) = Derivative wrt. ProperTime (d/dt) = Relativistic Factor * Derivative wrt. CoordinateTime y(d/dt):

SR 4-Tensor SR 4-Vector Wy — WooTh =T
2,0)-Tensor T 1,0)-Tensor V¥ =V = (\°,v SR 4-Scalar Trace[TH] = M TSN
e (10 VR (0.0)Tensor s VAV = VY = (V) - vev] = (Ve

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors

4-Acceleration 4-Polarization:
=(0 g)=(g*
M Ceenl 4-Gradient

4-Displacement

0 .

AR=(cAt,Ar) g aleals 9=(3/c.-V)
dR=(cdt,dr)
4-Position 4-TotalWaveVector

R=(ct,r 4-WaveVector K,=(w./c,k,)

K=(w/c,k)
4-UnitTemporal 4-Velocity
T=y(1.8) U=y(c.u)
4-TotalMomentum
4-Force
4-Momentum F=v(E'/c.f P.=(E/c,p,;)=(H/c,p,)

4-UnitSpatial P=(mc,p)=(E/c,p)
s=YBn(ﬁ'B n‘)J_ / ass ux

4-MomentumDensit

4-NumberFlux
N=(nc,n)=n(c,u)
4-ProbCurrDensity 4-ChargeFlux

4-ProbabilityFlux

4-ForceDensity
Faen=Y(Eden /C,facn)4-MomentumField

SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T J(1,0)-Tensor V* =V = (*v) PSR 4-Scalar Existing SR Rules Trace[T"] =T =T, =T
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S Quantum Principles V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala = Lorentz Scalar




SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM+EM Diagram: 4-Vectors, 4-Tensors

A Tensor Study
of Physical 4-Vectors

J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric

SR Perfect Fluid
M=((PeotPo)/c?)UMU"-(po)n*

4-Acceleration 4-Polarization:
E=(€0,€):(£.B’£)
s’s)=(s'B,s

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

T=(Pao)V*"+(-po) H”
StressEnergy 4-Tensor,
4-WaveVector

4-Position 4-TotalWWaveVector
R=(ct,r K.=(w/ck,)
K=(w/c,k)

Nuv
4-UnitTemporal 4-Velocity
T=y(1,6) U=y(c.u)
4-M t 4-Force
-lviomentum B ’
P=(mc,p)=(E/c,p) F=y(E'/c,f

4-MassFlux

A=y(cy',y'ut+ya

4-UnitSpatial

S=Ypn(-B, ).

4-MomentumDensit

4-NumberFlux
N=(nc,n)=n(c,u)
4-ProbCurrDensity 4-ChargeFlux

4-ProbabilityFlux

SR 4-Tensor SR 4-Vector o
(2,0)-Tensor T*  M(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Existing SR Rules
(1,1)-Tensor T% or T,¥ SR 4-CoVector ((c)),roe)r;-tr;gic;rlas Quantum Principles

SciRealm.org
John B. Wilson

Einstein GR
G"=R"-g"'R/2

4-Tensor 4-Gradient
9=(3/c.-V)

FoP=grAP-PAC

=[ O , -€l/c]
[+e'lc,-€ib"]
4-Tensor

4-TotalMomentum
P.=(E/c,p;)=(H/c,p,)

4-ForceDensity
Fsen=Y(Eden /C,fuen) 4-MomentumField

P=(E/c,p,)

Trace[T"] =N, T" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors, 4-Tensors
. Lorentz Scalars | Physical Constants |

3.R=4 = O[RI=n""—Diag[1,-1-1,-1]

Minkowski Metric

'a'Tpv=Fden

| GQWV=0F
Fi)r?:;er}\-girge @ SR Conservation of Ei i R SR gocr?se:vgtion
SR Perfect Fluid 8 StressEnergy if Faen=0" instein G of Einstein Tenso

4-Acceleration [ 4-Polarization: M=((Peo*Po)/c?)UPUY-(po)n® S = e
4-Displacement 8 A=y(cy’,v'u+va E=(:§’€)=(:_%£) 1('93:(PF:O))V“VZ'(-po)"(|F“)V)n @ @ IEEDT 4-Gradient
AR=(cAt,Ar) s s 1% StressEnergy 4-Tensor, 0=(d/c,-V

t
dR=(cdt,dr)
4-TotalWaveVector

4-Position
drl. ] d/dt * Wave\f/cctcl)(r) SACHS
T-AR/c=A . Y . @ ProperTime ﬂ =Ly
U-a=d/dt=yd/dt (h) [-S,,ion =M Faraday
. Derivative F =g A -gj/A
- ' _ "ol
4-U_:_1|_tTe1mporaI o 4-Velocity @ [[+e‘ /c,—s‘jkbk]]
—Y( B) U=y(c,u) ‘% 4-Tensor ﬁ
4 Force
o0 = XV 4-Momentum E'lo f

4-TotalMomentum
P
4-UnitSpatial H —| v |2 @ @ P=(mc,p)=(E/c,p)
S=yn(A-B,N), 4-MassFlux

P.=(E/c,p;)=(H/c,p,)
4-MomentumDensit

4-ForceDensity
Fen=Y(Eden'/C,fuen) 8 4-MomentumField
P=(E/c,p,)

4-NumberFlux

N=(nc,n)=n(c,u) 4-EMVectorPotential
4-ProbCurrDensity - A=(p/c,a

4-ProbabilityFlux
(8-0)A-9(8-A)=poJ A= .
@ Maxwell EM Wave Eqn Conservation of EMFleId

= | orenz Gaug

" Conservation of
Conservation of Charge

Particle # : Probabilt;

SR 4-Tensor SR 4-Vector L. Y Wo— TH —

(2.0 Tensor T J(1,0)-Tensor v* =V = (v°) " SR d-Scatar, EX'S“” SR e VAV = VP = L0 ] = (A
1,1)-Tensor T or T," SR 4- CoVector ,0)-Tensor inci AN\ = - VVI= Vo
( ), Y | | s Quantum Principles = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors, 4-Tensors
. Lorentz Scalars | Physical Constants |

oR=4 %@ 9IRI=n"—Diag[1,-1,-1,-1] e N
. Minkowski Metri -0 1""=Fgen o
ﬁ’i‘éil‘.?e — SR Consenvation of [ eRe—y  9.G=0

@ SR Perfect Fluid W StressEnergy if Fde,,O” GIEJTSR’(‘JG"IZ'EISZ of Einstein Tenso

4- Acceleratlon 4-Polarization: o P=((PeotPo)/c?)UMU-(po)n)” .

4- Dlsplacement A u+va E=(:§':)=(:'%§) T"=(Peo) V" +(-po)H" Gra%onst a0 4-Gradient
AR=(cAt,Ar) 1% StressEnergy 4-Tensor, K R gg:gls\’;aves 0=(9/c,-V)
dR=(cdt.dr Th

) {,=0} & {K-U=0} < {K'is null} i e [Tpapsyswrss

= =-9[®],K=i
4-Position S
~ 4- WaveVector b 1.1 K, (w Ic,k,) :
d/dt[..]=yd/dt[. @ UL)/ k) e __‘
TAR/C=AT Rl ) A=U-U'=0' Wave L U-a-d/dt= yd/dt 5 =M Faraday
roperTime Derivative Derivative npv Lorentz - Force‘- Eqn FoB=g2AB_gRA

group phase =[ O , _ech]

l 0]
4-Un|_tTemporaI G 4-Velocity Elnsteln { U-F S [+e/c,-€lb']
T_y(1 B) Speed of U=y(c,u) ) (1 W de Brogiie . 4-Tensor

Light e P =hK

®-- > _ 4-TotaIMomentum
0 = X BBorn 4-Momentum ' =(E./c,p,)=(H/c,p;)
4-UnitSpatial p_|bx|\|, & Rule @ @ P=(mc,p)=(E/c,p) @
S=ygn(fi-B,N), {m,=0} < {P-U=0} < {P is nuII} Conservation
B 4 ForceDensity 4-TotalMomentum
{9.=0} « {A-U=0} < {Ais null} 0-C.0 O. : Fden (Edenlcyfden 4-MomentumField

4- NumberFqu O

N=(nc,n)=n(c,u) P=(E/c.p)

4-EMVectorPotential
A=(p/c,a

4-ProbCurrDensity o 4-ChargeFlux =P+Q=P+gA
ﬁ Pro?abulutyFIw)( = 4- CurrentDenS|ty H{{- » l 4-EMPotentialMomentum Minimal Coupling
prob : A= P+Q
r " Charge 0-0)A-0(0-A)=pJ
in/2mi) (W a[wl-2[w W)+ (/i) (w*w)A <] % (6-9)A-0(0-A)=Po i ;
CompieA Maxwell EM Wave Eqn M Conservation of EM Field

= Lorenz Gauge Maxwell EM Eqgns: Gauss-Ampére : Gauss-Faraday
Conservation of {0-F® =pod } : { u(Y2e°F\5) = 0P }
Charge

Conservation of
Particle # :

SR 4-Tensor SR 4-Vector

Trace[T"] = nuT" =T, =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
orentz Scala

Existing SR Rules
Quantum Principles



SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: 4-Vectors, 4-Tensors
Lorentz Scalars / Physical Constants
with Tensor Invariants thiiRB‘%av"v‘;-:;g

of Physical 4-Vectors
oOR=4 S o[R]=n""—Diag[1,-1.-1.-1 " ~
R-R=(cty-rr Minkowski Metric T T"= Peo-3po -0"T"'=Faen P ' i
AR- AR-(E:A{)Z-Ar Ar % Deth“V]= ~(Peo)(Po)* SR Conservation of Einstein GR SR gocr?:;:vg:ion 9-0=(3,/c)-V-V
dR-dR=(cdt)’- dr LAA= () ) _— 2[71= P--3p.~ SR Perfect Fluid W StressEnergy if Fe..=0" J¥° =INS Sm b S rorsorauon
variant Interv 4- Accelera on 4-Polarization: o M= ((Poo*Po)/C2)UPUY-(po)n* : G =R"-g""R/2

E=(c)=("B.¢) o S i ; > .
4-Displacement A ‘u+ya ) T"=(peo)V"'*+(-po)H 4-Gradient
AR=(cAt,Ar) s’ s)=(sB,s PeotPo)/C Sisse Sy AT Grawtatlonal Const K - Complex 8=(2/c.-V)
Plane- Waves =
4-Position \ ‘R= ¢' (Y AL SRSl g TotaIWaveVector = THF*]=0
oy 4 Wa"eveCtor '3’3 K, (‘” fc.k,) T [P, -RINLF.F=2{(bb)-(e-elc?)
{

dR=(cdt dr) ®
g/dtl..]=ydidt[.

. - ProperTime -" N - ’
T-AR/c=At ProperTime @ Wave Veloc U-o-d/dt= Yd/dt 8
ProperTime Derivative r]p\, : il FP=g7AP-gPA"

Derivative

| Varoup Vphase Lorentz EM Force Eqn =[ 0 ,-elc]
4-UnitTemporal 4- VeI00|ty {U ‘Fe=(1/q)F} * 1
T=y(1,B) =y(c,u) E'”Ste'” ! [+€/c,-gl bk
S " S 13 e Yg e S
@ < o - > #TotalMomentum

4M t Ua[] 4 “‘ +=(E,/c,p;)=(H/c,p;,)
P rop0 = Born Sl Elc,f . .
4-UnitSpatial H p_|by|\|, Rule o [ 0o/C2 P= (mc p)=(E/c,p) o) (5,017
S=yn(A-B,N), EM {m,=0} <> {P-U=0} < {P is nuII} W Conservation
@ U-a[..1 4- Forceen5| y 4-TotalMomentum
0 {(Po=0} d {AU:O} < {A is nuII} D..C.C 0. : d/d'[[ Fden (Edenlcyfden 4-MomentumField
: L JJ=(p.c)’ 4- EMVectorPotentiaI — P=(E/c,p,)
A=(op/ =P+Q=P+gA
@Charge

4- ProbCuerenS|ty 4-ChargeFIlux Ao
- = oi C
4-ProbabilityFlux 4-CurrentDensity H{{- » l u -EMPotenUaIMomentum Minimal Coupling
(8-0)A-3(3-A)=od 0-A=0 -
Maxwell EM Wave EO I Conservation of EM Field
d = Lorenz Gauge Maxwell EM Eqgns: Gauss-Ampére : Gauss-Faraday

: Conservation of { 0FP =pod } 1 { 9o(V26®"°F\5) = 0° }
Conservation of Charge

Particle # :

SR 4-Tensor SR 4-Vector

Trace[T"] = nuT" =T, =T
V-V = VP, VY = [(V0)? - vev] = (VO,)?
= Lorentz Scalar

(2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
orentz Scala

Existing SR Rules
Quantum Principles



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
. Physical Constants Emphasized ...,

of Physical 4-Vectors John B. Wilson

0-R=4 & 5[R]=n""—Diag[1,-1,-1,-1]
SpaceTime Minkowski Metric
Dimension

-0"T"'=F gen d-G"=0"
SR Conservation of SR Conservation
StressEnergy if Fgen=0" of Einstein Tensor

ProperTime

Notice that all the main “Universal” or “Fundamental” @
Physical Constants are here: G,c,h,&,[o.

Some depend on the actual particle type: q,mo,w,
Some depend on regional conditions: T, Peo,Po;Po;Po, W*W
Some depend on interaction:® S

phase’ — action
Some are mathematical: 0,4,,i,Diag[1,-1,-1,-1],d/dt
Conservation Laws are also a type of “zero” constant in

0 this regard.

The majority of the constants are Lorentz Scalars, but
0-A=0 some are 4-Vector or 4-Tensor, and all are valid for all
Conservation of EM Field inertial observers
a-J=0 = | orenz Gauge .

Conservation of Fundamental Physical Constants are SR Lorentz Scalars
SR 4-Vector The fact that these “tie together” a network of 4-Vectors is

1,0)-Tensor V* = V = (\°,v) (gl;)4T-ScalarS Existing SR Rules a?ood_ argument for wh;lldth?]ir valu;ahs areI c;_onstﬁ_nt.
SR 4-CoVector ,0)-Tensor h i anging even one would change the relationship
orentz Scala Quantum Principles properties among all of the 4-Vectors.

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram: Projection Tensors
- 1€MpPoral, Spatial, Null, SpaceTime

of Physical 4-Vectors

SciRealm.org
John B. Wilson

ProperTime

4-UnitTemporal _ _ Projection Tensors act as follows: Time-like
T=y(1,8) e U'a'D(Z s;;;gd/ dt Generic 4-Vector: Interval (+)
4-Velocity A= (°,2) = (20,2’ 7 2) at| @)
=y(c,u) "Vertical” . _
o — 4-Gradient Temblg :"?ht-mfeo
gagoSliel e PRGN Temporal Projection: Projection / (Rﬁ;va ©)
R=(ct,r) t- = nw\/"” — Diag[1,0,0,0] *Null”
. ARI=1" A= (2000 =(-0) < C ojccion
"R= —Diag[1,-1,-1,-1
SpaceTime Minkg\[/vski Metric] Spatial Projection: future :
Dimension X - Diaal0 Space-like
SpaceTime Tensor ;\vﬂ:w(o — |a)g_[ (,O ) ] Ar  |nterval ()
= (0, = (0, (H™
TpTvzvpv r]uv_vuvszv : : : "Horizontal”
. . l! I : \ .
—Diag[1,0,0,0] —Diag[0,-1,-1,-1] ) e;t:;e;l'lmepljrg ecp:tlg\? nowxbere ’(’gup;ceTime” Igrpgg?:![ion
Temporal “Vertical” Spatial “Horizontal” _ o1 av_TeiE My Projection d
Projection Tensor =NA"=A"=(a,9)
\ Ve \ + = nHV
I;/iuag_;([11/3;)/|;p’l7?[\l:/3] The Minkowski Metric Tensor is
— ) ) ’ i
Isotropic Null “Light-Like” the Sum o Te D )

Projection Tensor

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

Projection Tensors, all of which
are dimensionless.

LightCone

Trace[T"] =N, T" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar



4-Vector SRQM Interpretation

SRQM Diagram: Projection Tensors & |
s Perfect-Fluid Stress-Energy Tensor ... ..

SR —- QM

of Physical 4-Vectors John B. Wllson

ProperTime

Projection Tensors act as follows:

4-UnitTemporal Time-like
T=y(1,B) e U-a=d/dréyd/dt A’ = (a%a) = (a°, ) Interval (+)
Derivative s
4—VeI00|ty A : At | (v
U=y(c,u) = Nw/"" — Diag[1,0,0,0] Vertical S
o . IWelenad /A =(5,0,0,0)=(5,0) Temporal Lighislkes
1 2=(3/c,-V) ’ (N")
R=(ct,r) (Tr[n”]=4] L =Nw!' " — Diag[0, ' ] "Null
o AT W07 00 R o
‘R= Diag[1,-1,-1,-1
SpaceTime —)Mink?)\[/vski Metric] A"+ ' A =nh A future :
Dimension S Time T = 54 AY = A¥ = ( ) Space-like
paceTime Tensor v , Ar  interval ()
@ . ()
TuTvzvpv r]uv_vuvzHuv I . n:v "Horizontal”
. . =n" (n*) Spatial
(®) —Diag[1 ’P’O’Q]ref‘ D'aQ[Qﬂ ’T1 "1]2?3‘ The Minkowski Metric Tensor is nowxhere "SpaceTime” Projection
Tem_porgl Vertical Spa’glal _Horlzontal the Sum of Temporal & Spatial Projection
rojection Tenso Projection Tensor N ;
; . Projection Tensors, all of which
Perfect-Fluid rest-energy-density  rest-pressure are dimensionless.
StressEnergy 4-Tensor: e
TH = ((PeotPo)/c2)UPLY - (o)™ Pyl The rest-energy-density (peo)
r[T“ 170c-3Dg Coans-le-rvatlg)n B is the Temporal Projection. -C
can be written in much Perfect-Fluid StressEnergy
simpler form using StressEnergy 4-Tensor The neg rest-pressure (-po)
Projection Tensors: T est—Diag[Peo,Po,Po,Po is the Spatial Projection. )

T'=(poo) V" +(-po)H,

¥

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

T = (Peo) V" - (Po)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4- CoVector

(1,1)-Tensor T*, or T,

PENY = (moU")(noU") = (Mono)(UPUY) = (Pmo)(UFU)
= (Pmo)(C)(T"TY) = (Peo)(T*TY) = (Peo)(

LightCone

T"\vcre — Diag[PeosPo,PosPo]

Trace[T"] = N, T" = T¥, =T
V-V = VP, VY = [(VO)? - vev] = (V0)?

) = Peo = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram: Projection Tensors &
. Otress-Energy Tensors: Special Cases __

of Physical 4-Vectors John B. Wilson

EM 4- Momentum 4-Force 4-ForceDensit
Faraday 4-UnitTemporaI @ P=(E/c,p) % E/c,f N, Faen=Y(Eqen/C fd::

& v(1 —VeI00|ty ------
F B) ProperTlme ................................

=°AP-PA°

- - 4-Position 9= = . : .
[[+e(i>/c:_£?:/k)<:k]] R(etn) % @ U-o0 éﬂe/rg:tivgd/d 4-Gradient O TV=F,,. A few interesting special cases:

4-Tensor O[R[=N"=VH"+H" 6=(at/ C"V) SIANCIERNCICUIS I | (for Perfect Fluid (no viscosity)}
o-R=4 StressEnergy T i = (Peo) VH* - (po) H*
@ - —Diag[1,-1,-1,-1] if Fgon=0" Perectrid I ;

SpaceTime g . . T perectriia = ((PeotPo)/C?)UPUY - (po)n™*
Bimense Minkowski Metric TrT™] = 1(Peo) - 3(Po)

4 Momentum SpaceTime Tensor B

4- VecPotentlaI P=(E/c,p) @ i @ ‘m 1f (Do) = (Peo)3:
A=(oplc, a) VV=THTY H»=nHv-\/+ Lambda-Vacuum then {NullDust = PhotonGas = Radiation}

—Diag[1,0,0,0] —Diag[0,-1,-1,-1] SvtressE.nergy 4-Tensor T enotonGas = (Deo) V¥ = (Deo/3) H* = (Deo) N
Temporal “Vertical” Spatial “Horizontal” THes—Diag[Pe,-pe,-Pe,-Pe] T"prooncas = (Po)(AV -0™) -
() jecti Projection Tensor T"=(peo)n*" Tr{Tphotoncas] = 0: Null (Light-Like) Projection

then {Cold Matter Dust (pressureless) }

T Matierust = PYNY = (pmo)U”U . (p 0) A

Tr[T"materoust] = (Peo): Temporal Projection
Cold Matter-Dus Perfect-Fluid Null-Dust=Photon-Gas

StressEnergy 4-Tensor StressEnergy 4-Tensor g StressEnergy 4-Tensor 1 (Do) = =(Deo):

T¥ e Diag[pe.0,0,0] T s Diag[pe,p,p,p] T Diaglpe,pe/3,00/3,0./3] KAV A
= (Deo) V' +(-eof3)H (Do) N2 o RN
eo eo eo Tr[T"Vaceeneray] = 4(Peo): SpaceTime Projection

If (Do) = (Pe) = 0

then {ZeroVacuum Energy}
T VaccEnergy = 0 7
Tr[T"vaccenergy] = 0: Zero Projection

ElectroMagnetic (s, <
StressEnergy 4-Tensor

Special cases of
a Perfect Fluid

SR 4-Tensor SR 4-Vector Tr[ ] = Trace Function = n,, i
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar N® = V™ - (1/3) H* = Null Projection Tensor Equation of State

(0,0)-Tensor S WD ; Wy = WV = /=
orentz Scala N Diag[1,1/3,1/3,1/3] with Tr[N*] = 0 EoS[T"]=w=po/Pes

Trace[T"] =N T =TH =T
V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM S R Q M D i ag ra m: 4-Vector SRQM bepiton
4-Tensors and 4-Scalars
s generated from 4-Vectors S
All SR 4-Tensors can be generated from SR 4-Vectors:

F* = 97A= QA" - O'AY
M = XAP = X*P" - X'P*

n* = ¢"[R]
VW = THTY
H* = g - v

Tcold_dust“v = PUNV

(peo) = Tcold_pust"” Vv
TLambda_Vacuumuv = (peo)npv

(po) = (k)(1 /3)TLambd37Vacuumpv Huv
with the pressure initially set to the EnergyDensity

and (k) an arbitrary constant which sets pressure level

TPerfectﬁFIuiduv = (peo)V“V'F('po)H W

SR 4-Tensor SR 4-Vector Vi — v — —

(2,0)-Tensor T*  §(1,0)-Tensor V¥ = V = (°,v) (glé)4_l-_3calars Equation of State y VTIa\c/;frET“V]V 5 r[](,JVOT)‘; —VTV”]H i (Tvo )2
1,1)-T T or T, SR 4-CoVect ,0)-Tensor W= = V= Vil Ve ~ VIVISaNG
( ), ) Tonsor Ty . , Ve (v , orentz Scala EoS[T"]=w=po/peg = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Study:
4D Gauss’ Theorem

of Physical 4-Vectors John B. Wilson
4-Gradient

Gauss' Theorem in SR: A d=dr=ax=0"=(9/c,-V)

[0d“X (8,V*) = $:0dS (V*N,) —(8/¢,-8,,-0,,-9))

[0d*X (8-V) = $50dS (V-N) =(8lcot, -0 ox,-0lay,-0la7)

where:

V = V¥is a 4-Vector field defined in Q

(9-V) = (6,V") is the 4-Divergence of V

(V-N) = (V¥N,) si the component of V along the N-direction
Q is a 4D simply-connected region of Minkowski SpaceTime
dQ =S is its 3D boundary with its own 3D Volume element dS and outward pointing normal N. Iod“X(a“V“) )
N = N" is the outward-pointing normal =] d*X(o-V)

d*X = (c dt)(d’x) = (c dt)(dx dy dz) is the 4D differential volume element

4D Stokes’
Theorem

Integration of

4D Div = 4D Surface Flow

Q = 4D Minkowski Region, dQ = it's 3D boundary
d“X = 4D Volume Element, V = V¥ = Arbitrary 4-Vector Field
dS = 3D Surface Element, N = N* = Surface Normal

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem,

is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.
More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface

is equal to the volume integral of the divergence over the region inside the surface.

Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region.

In vector calculus, and more generally in differential geometry,

the generalized Stokes' theorem is a statement about the integration of differential forms on manifolds,

which both simplifies and generalizes several theorems from vector calculus.



SR —- QM

SRQM Diag ram: 4-Vector SRQM Interpre;]?tiQo'\;ll
Minimal Coupling = Potential Interaction
et Conservation of 4-TotalMomentum S

0'R=4 Sy =n"_,Di 1.1
P = (E/c,p): 4-Momentum o—e I SpeeTe JR] m_@D;igHétrjé 1,-1] I
Q = (V/c,q): 4-PotentialMomentum 4-Displacement Dimensio Il ' 4-Gradient
A = (¢/c,a): 4-VectorPotential = —
P, = (£ /c,p>): 4-MomentumincPotentialField ARS(eAGAN) a=(9/c,-V) 4f|
P =(

D)= (H/c,pT): 4-TotalMomentum

—

PR

T

P=P,-qA= (EJc-q(p/c,pf-qa): Minimal Coupling Relation

J[P-dR]
ProperTime I[P U]dt
P.=P + Q=P + gA: Conservation of 4-MomentumIncPotentialField Derivative Hamilton-Jacobi f[—I. de
Pr=dis] Ny
P,=P+Q Rest H = -3(S], pr=V[S] “Wkas”
Ris P+ A ) Mass:Energy
g’ ) EE/)CE)G (+q((p°/0 /)Cl:)u 4-Velocity E=mc? 4-TotalMomentum
f o 2q(Po U=Y(C,u) PT=(ET/C’pT)=(H/C’pT)
P, = ((Eo+q,)/c?)U e > ‘ _____ -
P, = ((E+q@)/c*)(c,u) Conservation of
P = (E+q0)/c b+ Rest Scalar 4-Momentum 4-TotalMomentum
; = ((E+q9)/c,ptqa) Potential@ P=(mc,p)=(E/c,p) P.=Z% [P] @
4-MomentumIncPotentialField has a contribution from {m.=0} & {P-U=0} & {P is null} _
a Mass “charge” (m,) Minimal 4-MomentumlincField
an EM charge (q) interacting with a potential (¢,) ||H| } . SZl;plgg P=(E/c,p,)=P+Q=P+qA
_ . - EM Charge !
Jigige 1141 |: Conservation of 4-TotalMemeriy 4-EMVectorPotential 4-EMPotentialMomentum
4-TotalMomentum is the Sum over all such 4-Momenta A=(¢/c,a) Q=(U/c,q)=qA

{9.=0} <> {A-U=0} < {Ais null}

SR 4-Tensor SR 4-Vector
Trace[T"] =N T =TH =T
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v SR 4-Scalar H W
(2.0) (1,0) VN 0.0)Tensor s VAV = VPV = [(V) - vev] = (V)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR —- QM

SRQM Study:

4-Vector SRQM Interpretation
of QM

SRQM Hamiltonian:Lagrangian Connection

A Tensor Study
of Physical 4-Vectors

H+ L = (pru) = y(Pr:

4-Momentum P = m,U = (E./c*)U ; 4-VectorPotential A = (¢./c*)U

4-TotalMomentum Py = (P + gA ) = (H/c,pr)

P-U=y(E-pu)=E,=mc’; AU=y(¢-au)=q,
Pr-U = (P-U + gA-U) = Eo+ q@o = MC* + Qs

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(vy-1/y)=(yB-B ): Manipulate into this form... still an identity
(v-1/y)P+U)=(yB-B )P+ U): Still covariant with Lorentz Scalar
y(Pr-U) + (PT U)/iy = (vB-B )(P+-U)
Y(Pr-U) + -(Pr-U)ly = (vB-B )(Eo + q9o)

Y(Pr-U) + -(Pr-U)ly = (yu-u )(E i qcpo)/c
v(Pr-U) + (PT U)ly = (y(Eo/c*+ q@o/c?)u-u)
v(Pr-U) + -(Pr-U)/y = ((YEou/c*+ yqoou/c?)-u)
v(Pr-U) + (PT U)/y = ((Eu/c*+ qou/c®)-u)
y(Pr-U) + (PT U)ly = ((p+qa) u)
Y(Pr-U) + -(Pr-U)/y = (pr-u)
{ H }+{ L } = (pr-u): The Hamiltonian/Lagrangian connection
H=y(Pr-U) =vy((P+gA)-U) = The Hamiltonian with minimal coupling
L = -(Pr-U)/y = -(P+qA)-U)/y = The Lagrangian with minimal coupling

SciRealm.org
John B. Wilson

) + -(Pr-U)ly

H L Connection in Density Format
i H+L=(pru) =
{ nH + nL = n(pr-u), with number density n = yn, i
P+ L= 5
i momentum density {gr = npr}

i Hamiltonian density {# = nH}

i Lagrangian Density {£ = nL = (yn,)(Lo/y) = NoLo}
Lagrangian Density is Lorentz Scalar

(gr-u), with

for an EM field (photonic):

= (1/2){e.e-e + b-b/u.}
L = (1/2){e.e-e - b-b/us} = (-1/4u)F  F*"

P J+ L= ¢ee0e = (gru)
lul=c

t |gr| = e.evelc

i Poynting Vector |s| =

lg|c? — ce.ece

L = Loy

4-Vector notation gives a very nice way to find the Hamiltonian/Lagrangian connection:

(H)+(L)=(pru), where H=vy(Pr-U) & L = -(P+-U)/y



4-Vector SRQM Interpretation

SRQM Study:
SR Lagrangian, Lagrangian Density,
S and Relativistic Action (S) S

Lagrangian {L = (pr-u) - H} is *not* Lorentz Scalar Invariant

SR —- QM

Relativistic Action (S) is Lorentz Scalar Invariant

S =]Ldt= : (Lo /V)(Vd_T) (I )((jr) 5 N ) A Rest Lagrangian {L, = yL = -(P,-U)} is Lorentz Scalar Invariant

S = [Ldt = [(£/n)dt = [£/(n)dt = |£(d®x)dt = [(L/c)(dx)(cdt) = [(L/c)(d*x) Lagrangian Density {£ = nL = (yn,)(Lo/y) = n.Lo} is Lorentz Scalar Invariant

Explicitly-Covariant Relativistic Action (S) n = yn, = #/d°x = #/(dx)(dy)(dz) = number density

Particle Form Density Form {= n,*Particle} dt = ydr )

S = [L.dt = -[H.dt S = (1/¢)j(noLo)(d*x) = -(1/c)J(neHo)(d*x) ng_z nC}(cd;)“(dx)(dy)(dz) = no(d’x)

S = -J(P,-U)dt S = (1/c)l(£)(d*x) ,"(”C)(X)
- : H:L Connection in Density Format for Photonic System (no rest-frame
= JP -dR/dt)dt : H DS .
= I(P -dR) S = [(£/c)(d*x) i nH + nL = n(pr-u), with number density n = yn,

P g+ L= (gru), with
{ momentum density {gr = npr}

S = -I(PT.U)dT S= '(1/C)In°(PT'U)(d4X) ! Hamiltonian density {% = nH}
S= f((P + gA)-U)dt' S= -(1/C)fno((P + gA)-U)(d*x) i Lagrangian Density {£ = nL = (yn,)(Lo/y) = noLo}
S = I(P U + gA-U)dt S = -(1/c)J(noP-U + noqA-U)(d“x) : Lagrangian Density is Lorentz Scalar
S=-f(E,+qUAKdt S =-(1/c)|(nE, + nqU-A)d")  for an EM fied (photonio):
: (photonic):
S = -J(E, + q@o)dt S = -(1/c)(pgo + J-A)(d*x) { %= (1/2){e.e-e + b-blj} = noE, = pyo = EM Field Energy Density :
S = -J(E, + V)dt i £ = (1/2){e.ee - b-b/po} = (-1/4,)F,F* = (-1/4y,)*Faraday EM Tensor Inner Product :
S = -J(m.c? + V)dt S = (1/c)j(L)(d*x) i J+ L=¢ee=(gru) :
S = (1/c)[((1/2){e.e-e — b-b/o})(d*x) };l e
. . _ v 4 H T| = €0€*
with V = q, S = (1/c)J((-1/4po)F  F* )(d*x) i Poynting Vector |s| = |g|c® — cece-e

for an EM field = no rest frame i
i €oMo= 1/c® :Electric:Magnetic Constant Eqn

The Relativistic Action Equation is seen in many different formats




4-Vector SRQM Interpretation

SRQM Study:
SR Hamilton-Jacobi Equation
S and Relativistic Action (S) S

Lagrangian {L = (pr-u) - H} is *not* a Lorentz Scalar ?[?STilt?;['S‘J]aSObi Equation

Rest Lagrangian {L, = yL = -(P-U)} is a Lorentz Scalar

SR —- QM

Relativistic Action (S) is Lorentz Scalar g ) :{EEo:qu()Pcﬁg:

S = |Ldt
S= }.(Lo/'}’)('}’df) S =-(Eo + q@o)(t + const)
S= _[(Lo)(d’f) S = (Eo + qq)o)(’[ T const)
Explicitly Covariant 4-Scalars 4-Vectors g['g] ngo I Q<Po)g[(; + const)]
Relativistic Action (S) Relativistic Action Equation Relativistic Hamilton-Jacobi Equation [S1=(Eo + a@o)ald]
S = JLodt = -[Hodr Integral Format Differential Format a[-S] =(E, + q@,)d[R-U/c7]

= -[(P-U)dr o[-S] =((E, + qcpo)/czz)a[R-U]
S -J(P,-dR/dt)dt 4-TotalMomentum 9-S] =(BoJ/c™+ q<P0/2C U
S = /(P.-dR) P, = (E,/c,p,)=(H/c,p,) 0[-S] =(m, + q@o/c )9
S J- P U d =_I[(HI/C’pT)'Y(C’u)]dT PT = 'a[Saction] g['g] =rPn0U "'AQ((PO/C )U

K i [Y(H-p 'U]d‘C H/ = 'a/ Sac ion V Sac ion [- ] - o q

S = (P + Ay U)de ~ f[H.Jdr (/EP)=0/ClSamnl, V1S-c]) SRS
S = -J(P-U + gA-U)dt Verified!
S = -J(E, + q@)dt
S=-(E,+V)dt with V= qg, R-U = ¢t : 1= R-U/c?
Rl f<moc pv)d . : — F— :
SERI(! The Hamilton-Jdacobi Equation is incredibly simple in 4-Vector form

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar

(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S
, . orentz Scala



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Hamilton-Jacobi Equation
sy (P = -g[S]) Differential Format : 4-Vectors

John B. Wilson
e e 0-R=4

d[R]=n"—Diag[1,-1,-1,-1

4- Displacement ‘i’;‘fnTS‘ir;‘e Relativistic Action (S) is Lorentz Scalar Invariant Minkowski Metric 4-PositionGradient
=(cAt,Ar) S = [Ldt = J(Lo/y)(ydr) = [(Lo)(dr) = [Lodr 4-Gradient
dtdr) ey — 5=0=(6/c,-V)
4- Posmon Explicitly-Covariant Relativistic Action (S): dt=(1/c)V[dR-dR] —(8ldct,-31%,-d1dy -3157)
L UR=C*T S = JLodr = -[Hodt
" S = -J(P,-U)dt ke
S = [Py Ll
Invanant Interval S = J'(p -dR)
S =-J(P;-U)dr —
@ SEN| (P + gA)-U)dz Troper fime 2
ProperTime S =-[(P-U + gA-U)dt U.a_D(i{s;;;Z o/t E = -3?[[5?]], pr=VIS]
Derivative FIPHSS S= I(E + q@,)dt Hamilton-Jacobi Equation
S =-J(E, + V)dt with V = qo, Proper Time
Proper Time S = -[(moc” + V)dt dt 4-TotalMomentum

t=(1/c)V[dR-dR] U P.=(E,/c,p,)=(H/c,p,)
Differential Invariant Rest Hamiltonian Conservation
= -Invariant Rest Lagrangian 4-TotalMomentum

4-MomentumlIncField

th ‘D
4-Momentum 0 F= E/c

P=(mc,p)=(E/c,p)

I P=(E/c,p,)=((E+U)/c,p+qa)
: ||H'H"> i | I Minimal Coupling
4-NumberFlux 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector Vi — v — —
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T"] = "luv;rz =T = TO !
SR 4- CoVector (0,0)'Tensor S V'V = V“r]vav = [(V ) = V'V] = (V o)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T,



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Action Equation
s (S = -J(P-dR)) Integral Format : 4-Scalars

of Physical 4-Vectors John B. Wilson

e =aeu— 0R=4 J[R]=n""—Diag[1,-1,-1,-1] ]

4-Displacement ?;ZenTsiirge Minkowski Metric e 4-PositionGradient
AR=(cAt,Ar) : . dt=ydr=ydts 4-Gradient
R Relativisti Lagrangian Density . or=0=(d/c,-V)

; =nL=(yn,)(Lo/y)=No agrangian t

! ' 0 =-(P_-U)/y=L/ o —>(3ldct,-01dx,-01dy,-319z)
@ @ Relajtivistic Action (S)
ProperTime N Q SR S = |Ldt
° Derivative " Relativistic (X S = [(Loly)(yelr)
5 ’

(+) egendre Factor S = JLodt = [-Hodt

calar}/c Number density p.-u
& 0 T = [(-P_-
@ 9 H+L=(p S = [(-P-U)dt
‘ ot Lo=

3 OT'”) S = J(-P,-dR/d)dt
{@’ ---------------- = 1\[1-B-B]: Relativistic Identity e S = [(-P;-dR)
Relativistic zy - 1/y) = (yB-B ): Alternate Form i amllton_lan
Coordinate Time (v- 17y )(PrU) = (yB-B )(Pr-U)) =y(P;-U)=vH, Hamilton-Jacobi
(7+ -1/ )PrU) = (pru) <> Pr = -2(8] S,
H+ L= (pru) Proper Time {temporal} H = -4(S], p+=VI[S]
U-9=d/dt=yd/dt 4-TotalMomentum
.- ------ > Derivative P =(E /C p )=(H/C p )
T T Py My

4-Velocity ProperTime Conservation
U=y(c,u Derivative 4-Force 4-TotalMomentum

Eeme? Invariant Rest Hamiltonian @ F=v(E'/c f
Cl
@ @ 4-Momentum

(+) 4-MomentumincField
o - » “H”_> |l'.l”> P=(E/c,p)=((E+U)/c,p+qa)

11 Minimal Coupling

4_—NumbfrFqu entDensity 4-EMVectorPotential 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) T flee A A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector . . _
(2,0)-Tensor T+ §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar R Relativistic Scalar Trac?[T“V] a n“";rzv =T = TO i
(1,1)-Tensor T* or T, SR 4-CoVector (0,0)-Tensor S (not Lorentz Invariant) V-V = VP VY = [(VO)2 - vev] = (VY)
’ - orentz Scala = Lorentz Scalar

0,1)-Tensor V, = (vo,-V

P=(mc,p)=(E/c,p)




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram: Relativistic Factors
Hamiltonian & Lagrangian
e RElativistic Euler-Lagrange Equation s
_ 3[R]=n“_v—>Diag[1,-1,-1,-1] S —
4-Displacement [l oo AT [ T 4-PositionGradient

AR=(cAt,Ar) ....................................................................................................... dt=yd‘r=ydto A A-Gradient
dx=0=(3/c,-V)
0 —(9ldct,-01x,-31dy,-019z)

R Relativisti Lagrangian Density

=nL=(yno)(Lo/y)=NoLg

Lagrangian
Action S = [Ldt

Relativistic
Euler-Lagrange Eqn
Or= (d/d’C)au
4-VelocityGradient

au=(aut/C,-VU)

—(319yC, 319Uy, -dldyu,,-ldyus,)

—" Hamilton-Jacobi

ProperTime, @ @
DerR/ative Relativistic a

® tem
poral
@ Number density
Cl

o
o
o
o
0
o

vy = 1/[1-B-B]: Relativistic Identity
(y-1/y)=(vyB-B ): Alternate Form
(v- 1y )(PrU) = (yB-B )(PrU))
(v +-1y)(PrU) = (pru)

Coordinate Time

e = (br- Pr=-9[S]
Note Similarity: H+ L=(pru) Proper Time -5

L1 . ; H = -9[S], pr=VI[S]
4-Velocity is ProperTime ; i _ _ du[U]=n"*—Diag[1,-1,-1,-1 I :
Derivative of 4-Position S AR U-0=d/dT=yd/dt " ]M?nkowskig I£/Ietric ] Scalaric 4-TotalMomentum
U= (d/dt)R [m/s] = [1/s]*[m] Qo - Derivative ) P.=(E./c,p.)=(H/c,p.)
. 4-Velocity _ LN ProperTime Consenvation T

elativistic Euler-Lagrange Eqn _ =y(H-p.-u)=H,=-L, Derivati 4-For

dr = (d/dv)dy [1/m] = [1/s]*[s/m] U=y(c,u erivative -Force 4-TotalMomentum

Eeme? Invariant Rest Hamiltonian @ F=v(E'/c f
Cl
4-Momentum

P (e prEp) wi
‘ ---- “H-l } - Ih.l |-} - Minimal Coupling

4_—NumbfrFqu entDensity 4-EMVectorPotential 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) T flee A A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector - - —
(2,0)-Tensor T* (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar SR Relativistic Scalar Tracpe[T“"]v B nw;rl;v =T = To :
(1,1)-Tensor T, or T, SR 4-CoVector (0,0)-Tensor S not Lorentz Invariant V-V = VP, VY = [(V0)? - vev] = (VY)
’ = orentz Scala = Lorentz Scalar

0,1)-Tensor V, = (vo,-V

The differential form just inverses @
the dimensional units

4-MomentumlIncField
P=(E/c,p,)=((E+U)/c,p+qa)




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation
sy | N@ E@sy Derivation (U=(d/dt)R)—(dr=(d/d1)dy)  scremor

of Physical 4-Vectors John B. Wilson

Relativistic Dynamics Eqn (4-Vector)

Note Similarity: U = (d/doR
4-\elocity is ProperTime Y Classical limit, spatial component (3-vector) @ ------ >
Derivative of 4-Position e ; Natural
U= (did)R [mis] = [1/s]"[m] 4-Position "Orl[..] 4-Vector

e R=(ct,r) yd/dt[..] (1,0)-Tensor
Relativistic Euler-Lagrange Eqgn
dr = (d/dn)dy [1/m] = [1/s]*[s/m] du[U]=n*—Diag[1,-1,-1,-1]
The differential form just inverses ?;Zi-gil: . Minkowski Metric Proper Time mkiigsgigly:tzicgfas it's own
the dimensional units, so the A _ Ty ’ ;
placement of the R and U switch. U aREedr{g;f\;yd/dt zllr(;lrlla_r |r(1j\;de{se relatiolg
That is it: so simple! aR[R]hjlank—)Diiglu ’_t1.’_1 1 dt= }},’dT
Much, much easier than how o-4Ll-p INKOWSKI VIEtric A
| was taught in Grad School. ; . e : :

4-VelocityGradient 4-PositionGradient:4-Gradient [ISSEISRRS
d,F=du=0/0U=(du/c,-Vu) ~ 0’=9r=0/0R=0=(9/c,-V) [t

To complete the process and

create the Equations of Motion, [ IdCAAATRANIRUNCTIRUA) —(d/act,-0/0x,-0l0y,-0/0z) 41-\660_’:_0l‘
one just applies the base form Relativistic Euler-Lagrange Eqn (1,0)-Tensor
to a Lagrangian. n° Jr = (d/dt)dy nee
This can be: Raise inde d/oR = (d/dr)d/oU Raise inde
a classical Lagrangian d[L])/oR = (d/d7)d[L]/oU itionGradient One-F
a relativistic Lagrangian VelocityGradient One-Form [ROEE ez Nt se = Rt eeu el | ositionGradient One-Form
a Lorentz scalar Lagrangian 9,a=(u/c,Vu) J[L]/ar = (d/dt)d[L)/du Gradlerlt One-Form One-Form
a quantum Lagrangian a[L]/ax = (d/dt)a[l_]/au 3Ru—(3t/C,V) (0,1 )-Tensor
SR 4-Tensor SR 4-Vector Trace[TpV] =n TvV=TH =T
= v o W=\ = (\° SR 4-Scal /. H
(2,0)-Tensor T' (1,0)-Tensor V* =V = (V°,v) (0,0)-Te::o?r8 VAV = VY = [(VO) - vev] = (Vo)

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

orentz Scala = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation
et Alternate Forms: Particle vs. Density  Sww

: : , _ K-R=-0 4-WaveVector
4-Velocity U is ProperTime Derivative I phase K=(w/c,k)
of 4-Position R. The Euler-Lagrange Eqn : @-- - >
can be generated by taking the 4-Position SV Particle Dynamics
differential form of the same equation. R=(ct,r) yd/dt[..] U = (didrR

y dr'R=4 -1 5,[U]=n"*—Diag[1,-1,-1,-1] K= [-® ]
Relativistic 4-Vector Kinematical Eqn SpaceTime Minkowski Metric R e

Dimensio Proper Time

U-dr=d/dt=yd/dt

Derivative

U = (d/dt)R
UK = (d/dt)R-K =
dy-U=4 dr[R]=n""—Diag[1,-1,-1,-1]

SpaceTime . : A
pace 'l Minkowski Metric

Relativistic Euler-Lagrange Eqgns o-A-»

{uses gradient-type 4-Vectors}

. _ ) 4-VelocityGradient d/dtr.. Relativistic 4-PositionGradient:4-Gradient
A __(dgd/g)a“é{pa”""e format} 8, $=0v=016U=(0u/c. Vo) & gl 1 Sl LIRS 9 f=0:=0/0R=0=(0/c,-V))
a E d4/ dT; a, —(0/9yc,-0/dyuy,-0/dyuy,-0/dyu,) L —(d/oct,-0/0x,-019y,-919z)

pr (U- aT) L = (1/2){ 8,[®]-9,[®] - (moc/h)? ®? }: KG Lagrangian Density

o) = R
ggg :;; _ Eg )6 Raaaa[/é][u K] 901 L = (9g) dsren L: Euler-Lagrange Eqn {density format}

= (9r \Or) ol
0/9(-®) = (6r) 0/9[0r(-P)] -(mqc/h) qi = (%) 3R[2¢]
819(®) = (3r) IB[Gr(D)] (2,20 = - (miclh)* @ |
8[¢] = (BR) 8[3R(¢)]: {density format} (aa) ha (m0C/h) : KG Eqn of Motion

Klein-Gordon Relativistic Quantum Wave Eqgn

SR 4-Tensor SR 4-Vector Vi — v — —
Trace[T"] =N T =T" =T
o v SR 4-Scalar H H
(2,0)-Tensor T* (1,0)-Tensor V¥ =V = (\°,v) V-V = VP VY = [(VO)2 - vev] = (V9)2

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector




SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation
Equation of Motion (EoM) for EM particle  SoRealmorg

of Physical 4-Vectors

e Or'R=4 S&=" Or[R]=n""—Diag[1,-1,-1,-1]
. S Ti . B .
4-Displacement [l Drooe o0° Minkowski Metric

AR—(cAt,Ar)
QUL.O

4-PositionGradient

4-Gradient
9r=0=(3/c,-V))
—(dlact,-0l0x,-dldy,-0l0z)

L, =-(P+-U)

du[Lo] = -Pr = -(P+qA)

(d/dn)[dy[Lo]] = (d/dr)[-P+] = ~(d/d0)[P+gA] = -(F+q(d/d)[A]) = -(F+qU-0[A]) = -(F+qU.d'[A])
9R[Lo] = Gr[-PrU] = -9r[(P+qA)-U] = (0) + -qdr[A-U] = -qdr[U.A"] = -qU.3r[A']

Relativistic

assuming the 4-Gradient dr of the 4-Velocity U is zero. Euler-Lagrange Eqgn
ProperTime Proper Time or = (d/dt)dy
Derivative @ EuIer-Lagv)rang_e Eqn: (d/(vjr)au = 0r U-6R=d_/dr_=yd/dt 4-VelocityGradient
-(F+qU.d"[A]) = -qU.dr[A"] Derivative _
F = qU.,Ar[A'] - qU.8'[A] du=(0u/c,-Vu)
F = qU.(Gr[A'] - 9'[A]) —(019yc,-01dyuy,-0ldyu,,-0ldyu,)
—

F = qUU(@A - FTA))

F* = qU,(F¥) = (dP¥/dt): EoM for EM particle T, adu]l\??r?i?w%ﬁ?&&lﬁ"” Hag”f_"a'[g]‘“b‘
Lorentz Force Equation Spuace'lqme - H = -8(S], pr=V[S]

// Dimensio i ( ) 4-T0ta||\/|0mentum

...... = (p,u — —

p-U = - ! T P_=(E /c,p,)=(H/c,p,)

-VeI00|ty PR o + L. =0 I'm'|' - ConseratilT\ !
c,u

||H_I_}__>InvarlantRestHamiltonian 4-EMPotentialMomentum 4-TotaIMCMEIREY
-

Note Similarity:
4-Velocity is ProperTime
Derivative of 4-Position

U = (d/dt)R [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
Or = (d/dt)dy [1/m] = [1/s]*[s/m]

Q=(U/c,q)=qA @

4- EMVectorPotentaI
0 (+) 4-MomentumincField
Minimal P=(E/c,p,)=((E+U)/c,p+qa)

The differential form just inverses @
the dimensional units

e
: arge UX Coupling _

- aB—=30 AB_aBAC
G o [N © miEn @ 5 o ofE

=(nc,n)=n(c, S P=(mc,p)=(E/c, F=vy(E/c,f IR

E=mc ( p) ( p) d /C [Ze_lfc,—slkbk]
SR 4-Tensor SR 4-Vector Vi — Vo T = dP*/dt) = F* = qU(F"" : SISOl
(2,0)-Tensor T §(1,0)-Tensor V* =V = (\,v) . SR 4-Scalar TracelT 1= Ml SN (Equatito)n of moﬂon( ) 4-Velocity
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S V-V = Vi Ve = [(V)7 - vv] = (Vo) for charged particle U=

orentz Scala = Lorentz Scalar



SR —- QM

4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Euler-Lagrange Equation

A Tensor Study

woswy - Equation of Motion (EoM) for EM particle

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(y-1/y)=(yB-B ): Manipulate into this form... still an identity
Y(Pr-U) + «(Pr-U)/y = (yB-B )(Pr-U)

y(Pr-U) +-(PrU)y = (pru)

{ H }+{ L }=(pru): The Hamiltonian/Lagrangian connection

H =vyH, = y(P+'U) = y((P+gA)-U) = The Hamiltonian with minimal coupling
L = Lo/y = -(P+"U)/y = -(P+gA)-U)/y = The Lagrangian with minimal coupling

H, = (Pr-U) = -L, = (U-P1): Rest Hamiltonian = Total RestEnergy
Lo = -(Pr-U) = -H,

(d/dt)ou[Lo] = OR[Lo]

4-Velocity is ProperTime
Derivative of 4-Position
U = (d/dt)R [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
Or = (d/dt)dy [1/m] = [1/s]*[s/m]

dIéR = (d/dt)d/ou
J[LI/4R = (d/dr)d[L}/ou

Classical limit, spatial component
d[L]/or = (d/dt)d[L)/ou
d[L]/ox = (d/dt)J[L]/ou

Fewm = va{ (u-e)/c, (e) + (uxb)}
e=(-Vo-da)and b = [Vx a]

If a~0, then f = -qVo = -VU, the force is neg grad of a potential

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar
SR 4-CoVector (0,0)-Tensor S
0,1)-Tensor V, = (Vo,-V orentz Scala

(1,1)-Tensor T*, or T,

SciRealm.org
John B. Wilson

Rest
Lagrangian L, 4-Velocity

4-TotalMomentum
P.=(E./c,p;)=(H/c,p,)

U-9=d/dt=yd/dt
Derivative

Relativistic Rest Lagrangian
Euler-Lagrange

Equations of Motion = aR[_PT. U]

(d/dt)du[Lo] = Or[L] :(-()a;!f?;ggklﬂ]

= -qdr[UsA”]
= -qUd"[A"]

(d/dt)du[Le]
= (d/d1)[-P4]
= -(d/d7)[P+qA]
= -(F+q(d/d7)[A])
= -(F+qU-g[A])
-(F+qUgd"[A])

-(Fe+qUgd"[A%]) = -qUed"[A’]
(Fe+qUpd®[A%]) = qUsa*[AP]
Fe = qUed"[A"] - qUd"[A°)]

Fe = qUg(d"[A®] - 2°[A°])
¢ = qUg(F**)
Lorentz Force Equation

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR —- QM

4-Vector SRQM Interpretation

SRQM Diagram:
Relativistic Hamilton’s Equations
Equation of Motion (EoM) for EM particle  SoRealmorg

of Physical 4-Vectors

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(y-1/y)=(yB-B ): Manipulate into this form... still an identity
¥(Pr-U) + -(Pr-U)/y = (yB-B )(Pr-U)

7(Pr-U) + -(Pr-U)/y = (pr-u)

{ H }+{ L }=(pru): The Hamiltonian/Lagrangian connection

H =vyH, = y(P+-U) =1vy((P+qA)-U) = The Hamiltonian with minimal coupling
L = Lo/y = -(Pr-U)/y = -((P+qA)-U)/y = The Lagrangian with minimal coupling

H, = (P+-U) = -L, = (U-P5): Rest Hamiltonian = Total RestEnergy
L, = -(P+-U) =-H,

3p,[Ho] = 3, [U-P1] = “Pr+ U-Gp,[Pr] = 0 + U-dp,[Pr] = U = d/du[X]
Thus: (d/dt)[X] = (3/0P1)[H.]
x[Ho] = ox[U-P+] = *Pr + U-0x[P1] = 0 + U-0x[P1] = d/d1[P1]

Thus: (d/dt)[Px] = (8/8X)[Ho]

Relativistic Hamilton’s Equations (4-Vector):
(d/dT)[X] = (9/oP+)[Ho]
(d/dt)[P1] = (9/6X) [Ho]

(d/dT)[X] = y(d/dt)[X] = (3/8Px)[Ho] = (8/0P7)[(P+-U)] = U
(d/dt)[P1] = y(d/dt)[P+] = (8/8X)[Ho] = (/@X)[(P+-U)] = (8/6X)[y(H-pr-u)]

Taking just the spatial components:
y(d/dt)[x] = (-0/dpr)[H.] = (-0/dp+)[H/y] {hard}
y(d/dt)[p+] = (-9/0x)[H,] = (-9/dx)[H/y] {easy because (d/dx)[y]=0}

y(d/dt)pr] = (-0/0x)[H]
Take the Classical limit {y—1}

Classical Hamilton’s Equations (3-vector):
(d/dt)[x] = (+a/9pr)[H]
(d/dt)[pr] = (-0/ox)[H]

Sign-flip difference is interaction of (-0/dpr) with [1/y]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4-CoVector

4-TotalMomentum Rest

P_=(E /c.p,)=(H/c,p.) il Harz"(tgf_'ﬁg‘ o U=y(c,u)

= (P+gA)-U
= P-U+qA.

4-\elocity

4-Position
X=(ct,x)

(0/0P+)[Ho]

(Elegby = (9/0P+)[P+-U]

- U_Y(C’l:l) = U:y(c u)

= antielleiy = 4-Velocity
= P/mo Relativistic Rest Hamiltonian = P/mo

= (Pr-gA)/m, Hamilton’s

Equations of Motion

(d/d)[X] = (9/0P1)[Ho]

(d/dt)[Pr] = (8/6X)[H]
(d/dt)[P+]
= (d/dt)[P+qA] I = [0 + q(6A/dX)-U]

= [F + q(d/dr)A] M
_=[£f: 3((3 'gﬁ))AA]a] [F* + q(U,8")A% = q(&°[A']U, = %aEﬁgig
= B ok . - g7
P = q@IAIY, - aUAT BB S1A]-(Pr-qA)im,
Fe= q(a“[AB] - EBAO‘)U[3

= (P+-qA)/m,

(9/0X)[Ho]
= (3/6X)[P-U+qA-U]

Fo = q(F“B)UB
Lorentz Force Equation

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR - QM SRQM Study: 4-Vector SRQM Interpreot]?tiQo,\;l\
EM Lorentz Force Eqn—
s Classical Force = - Grad[Potential] = -V[U]  srenos

of Physical 4-Vectors John B. Wilson

4-Displacement

Lorentz EM Force Equation: AR=(cAtAr) 4-Grad A
=(cAt, 9-R=4 y radient
F* = q(F*)U, dR=(cdt,dr) — = OIRIEN"-Diag1,-1,-1-11 B8 3=0/0R,
Fe = q(8°A® - &PA%)U 4-Position Dimensio =(d/c, V)
B R= ct r

ProperTime /

U-0=d/dt= yd/dt

Examine just the spatial components of 4-Force F: propemme Derivative

Fi= q(a'AB _ aBAI)UB Derivative

F'=q(0A° - 30Ai)UO +q(IA - 3in)Uj ®----p EM Faraday
vf = q(-Vlo/c] - (dc)a)(yc) + q(-Via-u] - -u-Via])y ey TSI
f = q(-Vig/d] - (d/c)a)(c) + q(uV[al-Viaul]) _y(c u)‘ PR
f=q(-V]g] - da + u-V[a] - V[a-u]) 4-Tensor

f=q(-Vig] - da+uxb)
@ Lorentz EM Force Eqgn
Take the limit of {| V[@]| >>|da-uxb |} {U-F* =(1/q)F }

~ a(-VIe]) = -VIae] = -V[U] = -Grad[Potential] @
F= (E/c f)

The Classical Force = -Grad[Potential] IH{4- »
when {| V[p] | >>| da-uxb |} or when {a = 0}

4-EMVectorPotential
A=(p/c,a

The majority of non-gravitational, non-nuclear potentials dealt with in CM
are those mediated by the EM potential.

(2-9)A-0(0-A)=11,) 0-A=0

ex. Spring Potential { U = kx%/2 }, then { f = -V[kx?*2] = -kx } Hooke’s Law Maxwell EM Wave Egn Sonservation of EM Fiolg
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T™] = N, T'"=T0 = T

V-V = Vi VY = (V)P - vev] = (V)

(0,0)-Tensor S
= Lorentz Scalar

orentz Scala

(1,1)-Tensor T*, or T, SR 4- CoVector




SR —- QM

A Tensor Study
of Physical 4-Vectors

between Time and Space: dR = (cdt,dr)

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c—1.

Also notice that the set of all these relations
definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.

U-U = y*(c*u-u) = ¢?
(Eo/mo)=(YEo/ym,)=(E/m)

* -
|U Vphase | - |Vgroup phase

A (wP-wo?) = NY(f2f,2) = ¢?

(1/€0Mo) = C?

~(A/mM,)%(@-9) = ¢?

(A& m,)? = c?

2GMR_ = ¢?
8mG/k = 2

(c*' * scalar, 3-vector)
= 4-Vector

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

4-Vector SRQM Interpretation
of QM

SRQM: The Speed-of-Light (c)

¢’ Invariant Relations (ar 1)

The Speed-of-Light (c) is THE connection

SciRealm.org
John B. Wilson

2=(3/c,-V)

Invariant 4-Gradient
Magnitude Schwarzschild g""
(8-9) = ~(moc/h)? = -(1/A)? GR Metric
Speed of all things into the Future M G
= ¢? Mass is concentrated Energy, E = mc? R_s
] . - : GR Black Hole
* = ¢? Particle-Wave “Duality” Correlation
Vorsel = © d 2GM/c? =R,

Wavelength-Frequency Relation: Af = ¢ for photons

Electric (¢,) and Magnetic (J,) EM Field Constants

Complex
Plane-Waves
K=io

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,m,=0)
Factors to Dirac (spin %2)

Classical-limit (Jv|<<c) to Schrédinger

Reduced Compton Wavelength: A = (h/m.c)
GR Black Hole Equation

RS = Schwarzschild Radius
G = GR GravitationalConst, M = BH Mass

4-\WWaveVector
K=(w/c,k)=(w/c,wﬁ/vphase)

=(1/cF, A/k)
Invariant 4-WaveVector
Magnitude K-K = (w./c)?

GR Einstein Curvature Constant: k = 8TG/c?

Every Physical 4-Vector has a (c) factor to maintain
equivalent dimensional units across the whole 4-Vector

SR 4-Vector
1,0)-Tensor V¥ =V = (V°,v)

SR 4-Scalar
(0,0)-Tensor S

SR 4-CoVector

Minkowski

K = 8TG/c?

SR

4-Position

R=(ct,r)

Invariant
4-Velocity
. VECEIEE) U=y(c,u) B EM Faraday
GR Curvature Uu=c¢* @------ 4-Tensor

@ 4-EMVectorPotential
Energy:Mass A=(¢/c,a)
E = mc?

a

Wave Velocity
*, = ~2

group phase_

(0-9)A-9(0-A)=poJ
Maxwell EM Wave Eqgn

4-Momentum
P=(mc,p)=(E/c,p)

(/h)

Einstein . -
de Broglie -
P=hK 4-ChargeFlux

4-CurrentDensity
Electric:Magnetic

/(oo = C?

J=(pc,j)=p(c,u)

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM: The Speed-of-Light (c)

A Tensor Study
of Physical 4-Vectors

The Speed-of-Light (c) is THE connection
between Time and Space: dR = (cdt,dr)

#R7=n"

Minkowski
Metric

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c—1.

Also notice that the set of all these relations
definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.

4-\/ector

U-U = y*(c*u-u) = ¢? Speed of all things into the Future

(Eo/mo)=(YEo/ym,)=(E/m) = ¢ Mass is concentrated Energy, E = mc?

lu*v |=|v

phase

*v | =c? Particle-Wave “Duality” Correlation
group phase

N(w2-0,2) = NA(f.2) = c? Wavelength-Frequency Relation: Af = ¢ for photons

(1/eopis) = 2 Electric (¢,) and Magnetic (Y,) EM Field Constants

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,m,=0)
Factors to Dirac (spin %2)

Classical-limit (Jv|<<c) to Schrédinger

-(WIMe)X(@-d) = ¢
(Rix mo)* = c* Reduced Compton Wavelength: & = (/mc)

GR Black Hole Equation

_ 0 R, = Schwarzschild Radius
ZGM/RS ¢ G = GR GravitationalConst, M = BH Mass
= 2 5 q
8mG/k = ¢ GR Einstein Curvature Constant mass densiy form): K = 8TTG/C?
(c*" * scalar, 3-vector) Every Physical 4-Vector has a (c) factor to maintain

= 4-Vector equivalent dimensional units across the whole 4-Vector

SR 4-Vector
1,0)-Tensor V¥ =V = (V°,v)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Scalar
(0,0)-Tensor S

SR 4-CoVector

(1,1)-Tensor T*, or T,

¢’ Invariant Relations (a 2)

Scalar Product

SciRealm.org
John B. Wilson

Electric:Magnetic
1/(goMo ) = C°

g D
(e-b)?/Det[F*]
—

Energy:Mass
E =mc?

Invariant 4-Velocity
Magnitude U-U = ¢?

o/My = ho/Mo

= (R/A_M,)?

-0¢/V-a
in Lorenz Gauge

"V asel

\')
group phase

= A?w? (for photon
Waves

000060e

ProperTime SRQM

Differential

-S /(modt)

action,free

 smoix L 2GWR,

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar



4-Vector SRQM Interpretation

SRQM 4-Vector Study:
4-ThermalVector
s Relativistic Thermodynamics N

My prime motivation for the form of this 4-Vector is A 4- Grad'ent S a.R-=|-4 au.[Rv]_nuv. 4-Position
that the probability distributions calculated by =(d/c, V) IR pace flime Mmkov.VSkl il R=(ct,r)

statistical mechanics ought to be covariant functions
since they are based on counting arguments. Rest Inverse

*, - TemperatureEnergy

SR —- QM

J*AY-0"AF=F""
EM Faraday
4-Tensor

F(state) ~ e-(E/ksT) = e*~(BE), with this B = 1/ksT, (not v/c)
4-ThermalVector

A i his is the L lar P
covariant way to get this is the Lorentz Scalar Product 4-InverseTempMomentum

of the 4-Momentum P with the 4-ThermalVector ©.
F(state) ~ e*~(P:©) = e*~(Eo/ksT,)

Rest Energy:Mass

4-EMVectorPotential
Rest@ A=(op/c,a)
AngFrequency

This also gets Boltzmann’s constant (ks) out there with the

other Lorentz Scalars like (c) and (h) =(E/c,p)-(c/ksT,0) E= mcz@
=(ElksT-p-8)

see (Relativistic) Maxwell-Jittner distribution
f[P] = No/(2¢(MoC)? Kigs1y2[MoCOo])* (MoCOo/21T) "2 * g (P@)

f[P] = No/(2¢c(mqC)’ Kp[Moc®o])*(MacOo/21r) * &
F[P] = (@No/(4Tic(moc)? Ka[micOs]) * e 4-Momentum

f[P]=cN /(4TrkBT0(moc) Kz[mecO,] )* e®® = = =
FIP] = No/(41rksTomeZo Kpfmec2rksT.] )* &%) P=(mc,p)=(E/C,p)=m.U

(0-9)A-9(0-A)=poJ
Maxwell EM Wave Eqgn

. e
It is possible to find this distribution written in multiple ways because _ L v
many authors don’t show constants, which is quite annoying. (IjEIn;teml_ ‘@)’ 4-WaveVector 4-ChargeFlux
Show the damn constants people! P'e:miog k= K:(w/c,k)z(w/c’wn/vphase 4-CurrentDensity

Electric:Magnetic
1/(€oHo ) = C°

(ks),(c),(n) deserve at least that much respect.

J=(pc,j)=p(c,u)

SR 4-Tensor SR 4-Vector Be careful not to confuse (unfortunate symbol clash): TracelT" = n, T =T =T
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Thermal B =1/ksT Viy i [ ]v 3 r\uvo , . W RN
(0,0)-Tensor S Relatvisitic B = v/c = ViV = (V)" - vv] = (Vo)
orentz Scala These are totally separate uses of (B) = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



SR — QM 4-Vector SRQM Interpretation

SRQM 4-Vector Study:
4-ThermalVector
S Unruh-Hawking Radiation b

The 4-ThermalVector is used in Relativistic Thermodynamics. .
It can be used in a partial derivation of Unruh-Hawking Radiation (up to a numerical constant). 4'Ve|00|ty

U=y(c,u)

C U-U=(c)* J
6./c
1/kgT,
¥--->

4-ThermalVector

Let a “Unruh-DeWitt thermal detector” be in the Momentarily-Comoving-Rest-Frame (MCRF)
of a constant spatial acceleration (a), in which |u|—0, y—1, y'—0.

4-Accelerationycrr = Amcre = Avcre = (O,a)MCRF

Take the Lorentz Scalar Product with the 4-ThermalVector
Ancre-© = (0,a)mere( , ) = (-a-u/ksT) = Lorentz Scalar Invariant

The (u) here is part of the 4-ThermalVector: the 3-velocity of the thermal radiation. (not from Awcrr)
Let the thermal radiation be photonic:EM in nature, so |u| = c, and in a direction opposing

4-InverseTempMomentum

the acceleration of the “thermal detector”, which removes the minus sign. 0=(0,0)=(c/ksT,u/ksT)=(0,/c)U=(1/ksT,)U

AwcrrOradiation = (ac/ksT) = Invariant Lorentz Scalar A 0 /\ ©-0= (c/ksT,
MCRF

Use Dimensional Analysis to find appropriate Lorentz Scalar Invariant with same units: =(0,a)MCRF'(C/kBT,U/kBT P-©

[Invariant Units] = [m/s’]:[m/s] / [kg-m?/s”] = [1/kg-s] ~ ¢?/h = [m/s]? / [kg:m?/s] =(0*c/keT-a-u/ksT) =(E/c,p)-(c/ksT,0)
=(-a-u/ksT) =(E/ksT-p-0)
=|nvariant(dim of [1/kg-s]) =(Eo/kBTo)

~C2/h =Inva r'iant(dimensionless)
®: ------- Just a number

4-Acceleration

AwcreOradiation =(ac/ksT) = Invariant ~ ¢?/h
Temperature T ~ ha/ksc, {from EM radiation, only from the dir. of acceleration}

Further methods give the constant of proportionality (1/21):
See (Imaginary Time, Euclideanization, Wick Rotation, Matsubara Frequency)

See (Thermal QFT, Bogoliubov transformation =AVl= ' U+ Invariant

( ° ‘ REREE LA, Distribution Function
Tumn = ha/21ksc {due to constant Minkowski-hyperbolic acceleration} =dU/dt=d"R/dt N; = 1/[eMEi/ksT) £ 1]
Thawing = NG/2TTKsC {due to gravitational acceleration a=g} . = 1/[e"(PO) £ 1]
Tsenarzscria et = NCY/BTTGMKs {Temp at BH Event Horizon, g=GM/R¢?, Rs=2GM/c?} 4-Accelerationucrr (-) — Bose-Einstein
Tsr = -h(a-u)/21ksc? {correct version from 4-Vector derivation Amcre:Oradiation = 2T1C%/M} AMCRF=AMCRFH=(O,a)MCRF +) — Fermi-Dirac

SR 4-Tensor SR 4-Vector A-A=-(a)’*= -(a W] = W= TH —
(2,0)-Tensor T+ J(1,0)-Tensor V" =V = (\.v) PSR 4-Scalar £ i . . Trace[T"] = nuTw =T, =T
(1,1)-Tensor T¥, or T,” SR 4-CoVector (0,0)-Tensor S Note that the temperature here is relativistically direction-specific, unlike in the V-V = Vi V= [(V)° - vev] = (Vo)

classical use of temperature. = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

of QM

SRQM 4-Vector Study:
4-ThermalVector

| [ ||
A Tensor Study SciRealm.org
Unruh-Hawking Radiation S
®----- >
Temperature T ~ ha/kgsc, {from EM radiation, only from the dir. of acceleration} 4 Velocity
Further methods give the constant of proportionality (1/21): U=y(c,u)

See (Imaginary Time, Euclideanization, Wick Rotation, Matsubara Frequency)
See (Thermal QFT, Bogoliubov transformation)

Tumn = ha/21ksc {due to constant Minkowski-hyperbolic acceleration}

Thawking = NG/2TTKsC {due to gravitational acceleration a=g}

Tschwarzschiiagn = Nc®/8TTGMkg {Temp at BH Event Horizon, g=GM/Rs?, Rs=2GM/c?}

Tsr = -h(a-u)/21ksc? {correct version from 4-Vector derivation Awcre*Oragiation = 2TTC%/N}

6./c
1/ksT,

* >

@

Alternate forms:
AncrrOragiation = 2mc’/h

(1 /kTo)AMCRF' U= 2T|'C2/h

(1/KTo)Amcre'U = 2TTw,C2

AMCRF'U = 21T(,UOCZ
AMCRF'U = 2'|'|'(K'U)C2

AMCRF = 21'|'(K)C2

Awcrr = (21c?)K = (21c?/h)P
(dP/dt)mcrr* Oradiation = 2TTW,

Fucre Oradiation = 2TTW, : {for m, = constant }

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

The 21 factor is interesting

There are cases when the dimensional units must match.
see 4-Momentum related to 4-WaveVector:

P =hK — [J-s/m] = [J-s/rad][rad/m]

h =h/2m — [J-s/rad] = [J-s)/[21T rad]

e And other where the 21 factor doesn’t seem to use [rad] units.

see Circles & Spheres:
y— /

4-Acceleration

C=2mr — [m] = [217][M]
A= T2 — [m?] = [1m][m]?
V= (4/3)rd — [m3] = [(4/3)mT][m]?

A=A'=y(cy y utya)

=dU/dt=d’R/d1?

SR 4-Vector
1,0)-Tensor V¥ =V = (V°,v)
SR 4-CoVector

- - - 2: -
SR 4-Scalar s (&

(0,0)-Tensor S
classical use of temperature.

=(0,a)MCRF-(c/kBT,u/k

4-Accelerationycrr
AMCRF=AMCRFH=(O,a)MCRF

Note that the temperature here is relativistically direction-specific, unlike in the

4-ThermalVector

4-InverseTempMomentum
0=(6,0)=(c/ksT,u/ksT)=(0,/c)U=(1/ksT,)U

0-0= (clkeTo

P-©
=(E/c,p)-(c/ksT,0)
=(E/ksT-p6)
=(Eo/ksTo)
=Inva riant(dimensionless)

Just a number

Ancre©

=(0*C/kBT-a'U/kBT)
=(-a-u/kgT)
=Invariant(dim of [1/kg-s])
~c?/h

Invariant
Distribution Function
Ni = 1/[eMEi/ksT) £ 1]

= 1/[eMPi-@) £ 1]
(-) — Bose-Einstein
+) — Fermi-Dirac

4-Momentum
P=(mc,p)=(E/c,p)=m,U
P-P=(m.c)’=(E./c
Trace[T"] = N T =TH =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar



SR - QM

SRQM 4-Vector Study:

4-Vector SRQM Interpretation
of QM

4-ThermalVector

A Tensor Study
of Physical 4-Vectors

Wick Rotations, Matsubara Freqs

SciRealm.org
John B. Wilson

The QM/QFT«+>SM Correspondence, via the Wick Rotation

The operator which governs how a quantum system evolves in time, the time evolution
operator, and the density operator, a time-independent object which describes the
statistical state of a many-particle system in an equilibrium state (with temperature T)
can be related via arithmetic substitutions:

Quantum Statistical
Mechanics Mechanics
(QM) Wick Rotation Euclidean Time ~ Inv Temp (SM)

eA['l(PT'X)/h] t—-iT freal] /h — B = 1/kBT

=eA['iSaction/h] eA['HoTo/h]
:e/\[_iHotO/h] math well-behaved

&'[-(Pr-O)]
=eM-BoHo]
=eA[-H0/kT0

Imaginary Time < Inv Temp
(it/he1/kT)

where T, called Euclidean Time (Imaginary Time) is cyclic with period B, (0 <1< +3).

In Quantum Mechanics (or Quantum Field Theory), the Hamiltonian H acts as the
generator of the Lie group of time translations while in Statistical Mechanics the role of
the same Hamiltonian H is as the Boltzmann weight in an ensemble.

Time Evolution Operator
u(t) = ano_w [er({Est/N)]|n)(n|=er(iHt/N)

Partition Function (time-independent function of state)
Z=5% [eM(En/ ksT)]=Trace[ eM(iHt/h)]

n=0..

In the Matsubara Formalism, the basic idea (due to Felix Bloch) is that the
expectation values of operators in a canonical ensemble:

_ Trlexp (-BH)A]
<A>= e Loxp (B
may be written as expectation values in ordinary quantum field theory (QFT),
where the configuration is evolved by an
imaginary timet=-it(0<1<f).

One can therefore switch to a spacetime with Euclidean signature, where the
above trace (Tr) leads to the requirement that all bosonic and fermionic fields
be periodic and antiperiodic, respectively,

with respect to the Euclidean time direction with periodicity B =1/ (k,T).

This allows one to perform calculations with the same tools as in ordinary
quantum field theory, such as functional integrals and Feynman diagrams, but
with compact Euclidean time.

Note that the definition of normal ordering has to be altered.

In momentum space, this leads to the replacement of continuous frequencies
by discrete imaginary (Matsubara) frequencies:

Bosonic w, = (n)(21/B)

Fermionic w, = (n+1/2)(211/B)

and, through the de Broglie relation E = aw,

to a discretized EM thermal energy spectrum E_=hw_=n(2mk,T).

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector
(0,1)-Tensor V, = (Vo,-V)

SR 4-Scalar

(0,0)-Tensor S

(1,1)-Tensor T*, or T,
| orentz Scalar,

(0,2)-Tensor T,

Note that the temperature here is relativistically direction-specific, unlike in the
classical use of temperature.

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar




SR - QM 4-Vector SRQM Interpretation

SRQM 4-Vector Study:
4-ThermalVector
Sy Covariant Wick Rotation

The QM/QFT«<SM Correspondence

The operator which governs how a quantum system evolves in time, the time evolution operator, and the density operator, a time-independent object which
describes the statistical state of a many-particle system in an equilibrium state (with temperature T) can be related via arithmetic substitutions:

Quantum Statistical
Mechanics Mechanics

(Q™m) Wick Rotation Euclidean Time ~ Inv Temp (SM)
eA['l(PT'R)/h] t—-iT froal) 7/h — B = 1/kBT eA[_(PT_e)]
=eA[iSaction/h] eA['HQTo/h] =eA[-BOHO]
:e/\[_iHotO/h] math well-behaved =eA[_HO/kTO

Imaginary Time < Inv Temp
(it/he1/kT)

= -[[P,-U]dz = [Ldt

= -[(H/c,p)y(c,u)lde P-0
= Jly(H-p,ulde =(E/c,p)(clksT,0)
=(E/ksT-p-6)

where 1, called Euclidean Time (Imaginary Time) is cyclic with period 3, (0 <1< +3).

In Quantum Mechanics (or Quantum Field Theory), the Hamiltonian H acts as the generator of the Lie group of time translations while in Statistical Mechanics the

4-Position 4-lmaginaryPosition 4-ThermalVector
R=R"=(ct,r)=<Event> eI En Covariant 4-InverseTemperatureMomentum
—(ct,x,y,2) Wick Rotation Rin=Rin"=i(ct,r) Euclidean Time O=®“=(9°,9)=(C/kBT,u/kBT)=(eo/C)U
alt. notation X=X" =(ict,ir)=(cr,ir) N =(1/ksT)(c,u)=(1/keyT)U=(1/ksT,)U

Inv Temp

SR 4-Tensor SR 4-Vector W] = Wo— TH =
(2,0)-Tensor T (1,0)-Tensor V* =V = (V°,v) SR 4-Scalar Tracpe[T ) nuv;rz TS
K n v N (0,0)-Tensor S Note that the temperature here is relativistically direction-specific, unlike in the V-V =V, VY = [(V0)° - vev] = (v
(1,1)-Tensor T* or T, SR 4-CoVector ; , 4
(0,2)-Tensor T, (0,1)-Tensor V,, = (Vo,-v) Lorentz Scalar classical use of temperature. = Lorentz Scalar




4-Vector SRQM Interpretation

SRQM 4-Vector Study:
Deep Symmetries: Schrodinger Relations &
smacees  GycClic Imaginary Time < Inv Temp &b

SR —- QM

4-Gradient

e e 3=9r=0/8R,="=(3/c,-V/) =-J[(H/c,p,)v(c,u)ldt
_KeK=(wick)=(wolc)U Ll —(8/c,-0,,-3,,-) =-Jly(H-p,"u]de
=(9/cat,- ox,~91 ay,~%l 3z)

1
'

Einstein-de Broglie: P = hK — { : }
Complex Plane-Wave: K =i9 — { : }
Schrédinger Relations: P = ihd — { : }
Wick Rotation: R = -iRim — { : }
CyclicTemp: Rim = hO— { : }

}

4-Position 4-lmaginaryPosition Covariant 4-ThermalVector
R=R"=(ct,r)=<Event> EEEJELEL I peee wee 4-Inverse TemperatureMomentum
—(ct,x,y,2) Wick Rotation Rimn=Rin"=i(ct,r) ~ Inv Temp ©=0"=(0°,0)= (c/kBT u/kBT) (6./c)U
alt. notation X=X" ~ =(ict,ir)=(cT,ir) =

Boltzmann Distribution
P-O = (E/c,p)-(c/ksT,0)

= (E/keT-p-8) = (Eo/keT,)

SR 4-Tensor SR 4-Vector Trace[T"] = N T = T4, =T

2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V%,v SR 4-Scalar
(1 1()_T(gnsor T or T.V (1.0 SR 4- CoVector 50 (0,0)-Tensor S Note that the temperature here is relativistically direction-specific, unlike in the V:V = Vi, V" = [(Vo)2 -vv] = (Voo)2
’ ! y orentz Scala classical use of temperature. = Lorentz Scalar



SR —- QM

A Tensor Study
of Physical 4-Vectors

4-Position
R=R"=(ct,r)=<Event>
—(ct,x,y,2)
alt. notation X=X"

nverses
{RY,016R,}
m] - [1/m] = Dimensionless

paceTime Dimension Y
aR=09,R" = 4 e

= fh.

Wick Rotation

R = -iRim 0

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

SR 4-Tensor
SR 4-Scalar

(2,0)-Tensor T+

(0,0)-Tensor S
orentz Scala

SR 4-CoVector

(1,1)-Tensor T*, or T,

= Rin=Ri"=i(ct,r)
=(ict,ir)=(cT,ir)

4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Study:
Deep Symmetries: Schrodinger Relations &

John B. Wilson

4-Velocity

| U=U"=y(c, u)
=dR/dt=cT

ProperTime

Derivative
Energy Factors

E ~ A, ~ MoC? ~ kgT,

4-Momentum
P=P*"=(mc,p)=(mc,mu)=m,U
=(E/c,p)=(E./c*)U

Inverses

Minkowski
Metric A
L Einstein * {P",©"}
4-Gradient 4-\WaveVector de Broglies kg-m/s]-[s/kg-m] = Dimensionless
0=0r=0l0R,=0"=(9/c,-V) K=K¥=(w/c,k)=(w./c?)U P=hK |
—(d/c,-0,-0,,-0) ol W/C,WANVghase i -'
X z plex ol T 1 b :
=(8/cot,-0 .01 2y,-0l 37 S & ] : Boltzmann Distribution
i . K=io h ' P-© = (E/c,p)-(c/ksT,0)
Schrédinger QM Relation ; Inverses L = (E/ksT-p-0) = (Eo/ksTs)
P = iho . {K* Rin"} '
( p) = ih( V) " 1/m] - [m] = Dimensionles: . :
) ' s Covariant ' Covariant Time ~ Inv Temp y
Covariant ! ! ImaginaryTime ~ ! R = ihO 4-ThermalVector
: 4-lmaginaryPosition [l Invile i B (ct,r) = in( )
ginary R, = h© @ 4-Inverse TemperatureMomentum
0=0"=(0°,0)=(c/ksT,u/ksT)=(8./c)U

=(1/keT)(c,u)=(1/kesy T)U=(1/ks T,)U

Trace[T"] = N T =TH =T
V-V = Vi VY = [(V0)? - vev] = (Veo)?

Note that the temperature here is relativistically direction-specific, unlike in the
= Lorentz Scalar

classical use of temperature.



4-Vector SRQM Interpretation

SRQM 4-Vector Study:
4-EntropyFlux
s Relativistic Thermodynamics N

The 4-EntropyVector is used in Relativistic Thermodynamics.

@
Pure Entropy is a Lorentz Scalar in all frames A 4- Grad|ent ’ au[RV] nuv 4-Position
=3/c.-V) | il R=(ctr)
Metric

o-N=0
Conservation N
of Particle # -VeIOCIty FA-GA'=F
- EM Faraday
U=y(c,u)
4-Tensor

Rest Number
[fit->

SR —- QM

0-A=0

4-Pu reEnt_rOpyF|UX Rest Entropy
Sent_pure_sentN = Entropy

=n°SentU

Density @
EM

-

4-HeatEntropyFlux
Sent_heatz(s,s)=SentN+Q/To

© -NumberFlux 4-EMVectorPotential

Sent rea=(8,8)=S  N+EN/To =(nc,n)=n(c,u) A=(¢/c,a)

Sent_heatz(s,s)zno(s t+E0/T°)U Rest Inverse
= Temperature @ S
> 9)A-9(9-A)=Ho
@@ Rest o Y _ po M Maxwell EM Wave Eqn
4-HeatEnergyFlux Energy EM Charge
Q=(p_c,q)=p.(c,u)=E.N Charge Density  g--- 3
=2 -
nE.U=c G 4-ChargeFlux @

4-CurrentDensity
=(pc,j)=p(c,u)=gN Electric: Magnet|c

1/(goMo ) = C°
SR 4-Tensor SR 4-Vector Trace[T"] =n, T"=TH, =T
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar V-V = VprEw ]v - ?(“Vo)z _ v-vij = (V)2

(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T, SR 4- CoVector

= Lorentz Scalar



SR —» QM 4-Vector SRQM Interpretation

SRQM Interpretation: °
** Transition to QM **

of Physical 4-Vectors John B. Wilson

Up to this point, we have basically been exploring th
It is now time to show how RQM and QM fit int

This is SRQM, [ SR — QM ]

SRQM: A treatise by John B. Wilson (SciReal



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Special Relativity — Quantum Mechanics .
e RoadMap of SR—>QM s ST

*START HE%E*: 4-Position=Location of SR <Events>in SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime “Flat” 4D Metric , , 4-Position R* ity= i
SR Lorentz Transforms o A[RYI=NAY, R=(ct r\=<E . 5 b 4-Velocity=Motion
SR Action — 4-Momentum S Lorentz 2LV Sl Dorvatival M o= U (s
SR Phase — 4-WaveVector M'&Z‘i;’,\’:k' R-R=(ct)*-rr It?oipsgft-ilc-:lg: gswaves
. N ,
e e DY
8-8=(9,/c)>-V-V 4-Gradient ¢" ProperTime 4-Velocity U*
= -(MoC/N)? = -(Wo/C)? 0=0/0R, . U-0=d/dt=yd/dt Matter Wave U=y(c,u)=dR/dt
_ 2 =(at /C,’V)='IK Der|Vat|Ve K_R_q) P_R_S group* phase= 4
= (81/0) B " phasefree B ey RestAngular ( )2
: SR Phase SR Action Frequency w, =(c
SR d’Alembertian & -0 @phase o0 1=K -a[]=P
Klein-Gordon Relativistic . Hamilton-Jacobi Phase & Action
4-WaveVector L e
Quantum Wave Relation Complex Pr = -9[S] bl el Einstein
Schrodinger QWE is Plane-Waves @ E = mc? = ymoc?= yE,
Rest Mass mq:Rest Energy E,

{lv]<<c} limit of KG QWE (- )0
[ SR — QM | S @
=

4-\WWaveVector=Substantiation
of SR Wave <Events>

4-\WaveVector K"

4-Momentum=Substantiation

oscillations proportional to K=(w/c,k)=(w/c,wn/Vpnas) 4-Momentum P* of SR Particle <Events>
mass:energy & 3-momentum =(1/cF,A/x)=(wo/c?)U=P/h SR e P=(mc,p)=(E/c,p)=m,U mass:energy & 3-momentum
Dirac:Planck Constant h=h/2m
K-K=(w/c)*-k-k P =K G, P-P=(E/c)-p-p

= (moc/h)? = (wo/c)? = (1/cT,)? % = (m.c)’ = (E./c)?
1/h

SR 4-Tensor SR 4-Vector
=V= : - Trace[T"] = NuT" = T4, = T
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar W H
(11)Tensor T, or T, SR 4-Covector (0.0)-Tensor S xisting SR Rules VAV = Vi = [V - vev] = (Vo
, - orentz Scala ( QM Principles ) = Lorentz Scalar

0,1)-Tensor V, = (vo,-V
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SR — QM 4-Vector SRQM Interpretation

SRQM Basic Idea (par 1) |
SR - Relativistic Wave Egn

of Physical 4-Vectors John B. Wilson

The basic idea is to show that Special Relativity plus a few empirical facts lead to Relativistic Wave
Equations, and thus RQM, without using any assumptions or axioms from Quantum Mechanics.

Start only with the concepts of SR, no concepts from QM
(1) SR provides the ideas of Invariant Intervals and ( ¢ ) as a Physical Constant, as well as:
Poincaré Invariance, Minkowski 4D SpaceTime, ProperTime, and Physical SR 4-Vectors

Note empirical facts which can relate the SR 4-Vectors from the following:
(2a) Elementary matter particles each have RestMass, ( m, ), which can be measured by
experiment: eg. collision, cyclotrons, Compton Scattering, etc.

(2b) There is a constant, ( h ), which can be measured by classical experiment — eg. the
Photoelectric Effect, the inverse Photoelectric Effect, LED's=Injection Electroluminescence, Duane-
Hunt Law in Bremsstralung, the Watt/Kibble-Balance, etc. All known particles obey this constant.

(2c) The use of complex numbers ( i ) and differential operators { ¢: and } in wave-type
equations comes from pure mathematics: not necessary to assume any QM Axioms

These few things are enough to derive the RQM Klein-Gordon equation, the most basic of

the relativistic wave equations. Taking the low-velocity limit { |v|<<c }(a standard SR technique)
leads to the Schrédinger Equation.




SR — QM 4-Vector SRQM Interpretation

SRQM Basic Idea (par 2 |
e  Kleln-Gordon RWE implies QM

of Physical 4-Vectors John B. Wilson

If one has a Relativistic Wave Equation, such as the Klein-Gordon equation, then
one has RQM, and thence QM via the low-velocity limit { |[v|<<c }.

The physical and mathematical properties of QM, usually regarded as axiomatic,
are inherent in the Klein-Gordon RWE itself.

QM Principles emerge not from { QM Axioms + SR — RQM },
but from { SR + Empirical Facts — RQM }.

The result is a paradigm shift from the idea of { SR and QM as separate theories }
to { QM derived from SR } — leading to a new interpretation of QM:
The SRQM or [SR— QM)] Interpretation.

GR — (low-mass limit = {curvature ~ 0} limit) — SR
SR — (+ a few empirical facts) - RQM
RQM — (low-velocity limit { |v|<<c }) — QM

The results of this analysis will be facilitated by the use of SR 4-Vectors



4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Study:

e BASIC 4-Vectors on the pathto QM ...

of Physical 4-Vectors John B. Wilson
SR 4-Vector Dimens. Definition Unites
Units (SI) Component Notation
4-Position [m] R=R"=(")=(r°r)=<Event>  Time, Space
= (ct,r) — (ct,x,y,2) -when & where = location of event
4-Velocity [m/s] U=U"=(u")=@’u)= Temporal velocity, Spatial velocity
= vy(c,u) -nothing faster than c
4-Momentum  [kg m/s] P=P'=(p") = (p%p) = Mass:Energy, Momentum
= (E/c,p) = (mc,p) -used in 4-Momenta Conservation
2 Pinal = Z Pinia
4-WaveVector [{rad})/m] K=K"=(k")= (k%K) = Ang. Frequency, WaveNumber
= (w/c,k) = (w/c,wﬁ/vphase) -used in Relativistic Doppler Shift
wobs=wemit/ [Y(1 - B COS[e])], k=w/C for photons
4-Gradient [1/m] 0=20"= (3" =(0) = Temporal Partial, Spatial Partial

= (d/c,-V) — (ddc,-0x,-0y,-0,) -used in SR Continuity Eqns., ProperTime
— (dlact,-0lox,-dldy,-0/dz) -eg. 0-A = 0 means A is conserved

All of these are standard SR 4-Vectors, which can be found and used in a totally

relativistic context, with no mention or need of QM.
| want to emphasize that these objects are ALL relativistic in origin.




4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Study:
SR Lorentz Invariants

of Physical 4-Vectors John B. Wilson

SR 4-Vector Lorentz Invariant What it means in SR...
4-Position RR = (ct)?- rr = (ct,)* = (ct)? SR Invariant Interval

4-Velocity U-U = y*(c*- u-u) = ¢? <Event> Motion Invariant Magnitude (c)
4-Momentum P-P = (E/c)’ - p'p = (EJ/C)? Einstein Invariant Mass:Energy Relation
4-WaveVector  K-K = (w/c)* - k'k = (w./c)’ Wave/Dispersion Invariance Relation
4-Gradient 0-0 = (a/c)’ - V-V = (dJc) The d'Alembert Invariant Operator

All 4-Vectors have invariant magnitudes, found by taking the scalar product of the 4-Vector with
itself. Quite often a simple expression can be found by examining the case when the spatial part is
zero. This is usually found when the 3-velocity is zero. The temporal part is then specified by its
“rest” value.

For example: P-P = (E/c)*p-p = (E./c)* = (M,C)°
E = Sqrt[ (E,)* + p-p ¢? ], from above relation
E=yE , using {y = 1/Sqrt[1-B?] = Sqrt[1+y*B*]} and {B=v/c}

meaning the relativistic energy E is equal to the relative gamma factor y * the rest energy E_




SR — QM 4-Vector SRQM Interpretation

SR + A few empirical facts: |
SRQM Overview

of Physical 4-Vectors John B. Wilson

SR 4-Vector Empirical Fact What it means in SR...
4-Position R = (ct,r); alt. X = (ct,x) R = <Event>; alt. X Location of 4D Spacetime <Event>
4-Velocity U = y(c,u) U =dR/dt <Events> can move in Spacetime

4-Momentum P = (E/c,p) = (mc,p) P =m,U <Events> can be particles
4-WaveVector K = (w/c,k) K=P/h <Events> can be waves
4-Gradient @ = (d/c,-V) = -iK Alteration of 4D Spacetime <Event>

The Axioms of SR, which is actually a GR limiting-case, lead us to the use of Minkowski SpaceTime
and Physical 4-Vectors, which are elements of Minkowski Space (4D SpaceTime).

Empirical Observation leads us to the transformation relations between the components of these
SR 4-Vectors, and to the chain of relations between the 4-Vectors themselves. These relations all
turn out to be Lorentz Invariant Constants, whose values are measured empirically.

They are manifestly invariant relations, true in all reference frames...

The combination of these SR objects and their relations is enough to derive RQM.



SR —- QM

SRQM Chart:

Special Relativity — Quantum Mechanics

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

WDy SR—QM Interpretation Simplified ....romese

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR,

although technically SR is itself the Minkowski-SpaceTime low-curvature:“flat” limiting-case of GR.

{c,7,m,,h,i} = {c:SpeedOfLight, t:ProperTime, m,:RestMass, h:Dirac/PlanckReducedConstant(h=h/21r), i:lmaginaryNumber\[-1]}:

are all Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants
4-Position R = (ct,r) = (R'R) = (CT)
4-\elocity U =y(c,u) = (U-0)R=("/4)R=dR/dt (U-U) = (c)?
4-Momentum P = (E/c,p) =m,U (P-P) = (m.c)®
4-WaveVector K= (w/c,k) = P/h (K-K) = (moc/h)?
4-Gradient 0= ( ) =-iK (o0

KG Equation: vl<<c
d) = (-imoc/h)? = -(m,c/h)* = QM Relation - RQM — QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |[v| << ¢}, giving the Schrodinger Egn. This fundamental KG Relation also leads to the other

Quantum Wave Equations: RQM (massiess) RQM

{lv|]=c:m,=0} {0<=|v|]<c:m,>0}
spin=0 boson field = 4-Scalar: Free Scalar Wave (Higgs) Klein-Gordon
spin=1/2 fermion field = 4-Spinor: Weyl Dirac (w/ EM charge)
spin=1 boson field = 4-Vector: Maxwell (EM photonic) Proca

QM
{0<=|v|]<<c:m,>0}
Schrédinger (regular QM)

Pauli (w/ EM charge)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
RoadMap of SR (4-Vectors)

of Physical 4-Vectors John B. Wilson
(
4-Position
R=(ct,r)
=<Event> ®----- >
A 4-Velocity
U=y(c,u)

4-Gradient
a=(6t/c,-V)

MA-- > o>
4-WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)
SR 4-Tensor SR 4-Vector T, . W= TH —
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar V.VT;a\c/;?rE'“rv ] . ?(“\;oT)z _ V.va - (T,oo)z

(0,0)-Tensor S
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
s  ROAAMap of SR (Connections)

of Physical 4-Vectors John B. Wilson

i 4-Position
av[Rl‘I ]=/\uv R=(Ct,r)
J"[R]=n" Lorentz =<Event> ®------ >
Minkowski Transfor
A Metric 4-Velocity
: ! U=y(c,u)
4-Gradient U-9=d/dt=yd/dt
0=(9/c,-V) Derivative
phase,free Hfm”tgn_
aconl
-a[q) - -a[Saction,free P Pr=-9[S]
Plane-Waves -d[S =P
Kr = -9[®] action T
M- > o>
4-WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)
SR 4-Tensor SR 4-Vector V] = v = =
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar VIVT;a\c/;%‘prP ] . ?(“VoT)uz _ VT\:f - (T,oo)z

(0,0)-Tensor S
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
-  ROACOMap of SR (Free Particle)

of Physical 4-Vectors John B. Wilson

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime
(

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime 4D Metric ‘ 4-Position

SR Lorentz Transforms 0 [Ru‘]=/\u’ R=(ct,r)

SR Action — 4-Momentum HIRVI=HY ! Y B ’

SR Phase — 4-WaveVector I?/Ii[rﬁ«])v;]ski e =<Event> aidQle - ----- >

SR Proper Time . ProperTime 4-Veloci <Events> have 4-Velocity=Motion
SR & QM Waves Dervatis AV i\ SR SpaceTime as both

U=y(c,u) e R

U-0=d/dt=yd/dt
Derivative

Hamilton- @
S P Jacobi Elnsteln
actlon free Pr=-0[S] Wave Vel00|ty E = mc? = ymoc*= yE,

PIane—Waves
Kr = -9[®] actlon

] - group phase

M- > o>
4-WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)
SR Wave <Events> have SR Particle <Events>have
4-WaveVector=Substantiation 4-Momentum=Substantiation
oscillations proportional to mass:energy & 3-momentum
mass:energy & 3-momentum
SR 4-Tensor SR 4-Vector V] — v — —
Trace[T"] = N T =TH =T
(2,0)-Tensor T 0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar V-V = VprEw ] . ?(“\/0)2 _ V.Vf = (V)

(0,0)-Tensor S
orentz Scala

= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4- CoVector



4-Vector SRQM Interpretation

SRQM Diagram:
RoadMap of SR (Free Particle)
S e e with Magnitudes SR

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

4-Gradient=Alteration of SR <Events>

SR SpaceTime Dimension=4 | { R-R = (ct)%rr
SR SpaceTime 4D Metric A - . 4-Position = (cT)? .
SR Lorentz Transforms A[RY]=AY, R=(ct,r) UU=y (C2 -u-u)
gg’;ﬁ“m - i":,ﬂvome\r}turp ' [R]=n" Lorentz S >= (c)
ase — 4-WaveVector ; D ety S EREEQUilE 9 Bealle ------
SR Proper Time Minkowski ProperTime Ml <Events> have 4-Velocity=Motion
SR & QM Waves A Derivative 4-Velocity frS= SpaceTime as both

| : U=y(c,u) B e RS
4-Gradient U-9=d/dt=yd/dt
0=(d/c,-V) Derivative

00 = (&/c)*-V-V

Hamilton- @
Jacobi Einstein

_ 2 phase,free
= (a‘r/C) 'a[® . -a[SaCtion,free P P; = _a[s] Wave Velocity E=mc2= ,Ym002= 'YEo
Plane-Waves - = v * =c?
d’Alembertian Ky = -0[®] a[SactiOn] PT group ~ phase
Free Particle M- > o >
Wave Equation A-WaveVector Ry ——
K=(w/c,k) P=(mc,p)=(E/c,p)

@ P:-P = (E/C)z-pp

SR Wave <Events> have K-K = (w/c)*-k-k

4-WaveVector=Substantiation SR Particle <Events> have

oscillations proportional to = (Wo/C)>? 4-Momentum=Substantiation = (m.c)* = (E./c)*
mass:energy & 3-momentum mass:energy & 3-momentum

SR 4-Tensor SR 4-Vector Trace[T*] =N, T =T =T
(2,0)-Tensor T~ J(1,0)-Tensor V* = V = (v",v) " SR 4-Scalar VAV = VY = [ - vv] = (Vo)

(0,0)-Tensor S
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SRQM Diagram: |
s  ROAOMap of SR (EM Potential)

of Physical 4-Vectors John B. Wilson

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

4-Gradient=Alteration of SR <Event:s

SR SpaceTime Dimension=4
SR SpaceTime 4D Metric
SR Lorentz Transforms

SR Action — 4-Momentum
SR Phase — 4-WaveVector
SR Proper Time

SR & QM Waves

-0 = (a/c)-V-V
= (8-/C)?

d’Alembertian
Particle

Wave Equation
in EM Potential

SR Wave <Events> have

4-WaveVector=Substantiatigh -(qu./E.)A) (K -(QW./Es)A) SR Particle <Events> have

oscillations proportional to
mass:energy & 3-momentum

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

) R-R = (ct)%rr
4-Position

= (cT)’

A [RY]=A",
Lorentz

R=(ct,r)
=<Event>

J"[R"]=n""
Minkowski ,
ProperTime
Derivative

U-0=d/dt=yd/dt
Derivative

Hamilton-
Jacobi
P, - o]

=P,

Wave Velocity
*, =2
group  phase

o>
4-Momentum

phase,free
O[]

PIane—Wéves
Kr = -a[(D]

-9[S
-[S

action,free

action

MY >

4-WaveVector

K=(w/c,k)

P-P = (E/c)*p-p
= (P,-qA)(P_-qA)
4-Momentum=Substantiation " = (mc)? = (E./c)?
mass:energy & 3-momentum

K-K = (w/c)-k-k

= (wo/C)?

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

@ Einstein

E = mc? = ym,c*= yE,

P=(mc,p)=(E/c,p)

EM Faraday
o"AY-0'Ar=F*"
4-Tensor

U-U = y*(c*u-u)
= (c)’

Ml | <Events>fhave 4-V§alocity=Motion
SR ) SR SpaceTime as both
U=y(c,u) FER R

D I

4-EMVectorPotential
A=(op/c,a)
em @

Charge l_"'_l_}_
el

4-PotentialMomentum
Q=(V/c,q)=q(¢/c,a)
4-TotMom Conservation Minimal Coupling

P_=(P+Q) = (P+gA) P =(P.-qA) = (P,-Q)
4-TotalMomentum

P =(E /c,p )=((E+q@)/c,p+qa)

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Special Relativity — Quantum Mechanics
s . ROadMap of SR—QM (EM Potential) e

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime
) R-R = (ct)%rr

4-Gradient=Alteration of SR <Event%s>

SR SpaceTime Dimension=4 : : | ay
SR SpaceTime 4D Metric LR . . 4-Position =(cu)
SR Lorentz Transforms av[R”']=/\”!v R=(ct.1) (19) U-u-= VZ(C:-u-u) AV-9'AV=FH
SR Action — 4-Momentum : L _ ’ = (c) 4-Tensor
SR Phase — 4-WaveVector 4 , orentz =<Event> [ vd/dt[..] FNEN. >
SR Proper Time Minkowski ProperTime B <Events>'have 4-V§alocity=Motion
SR & QM Waves Derivative 4dvezgcl']t)y in SR SpaceTime &s both
. — =Y(C, particles & waves
SR — RQM Klein-Gordon  pMeIeTe[IYal: U-9=d/dt=yd/dt -R=S ‘
Relativistic Quantum 0=(3/c,-V) Derivati ‘R=0 R=9 @ :
Particle in EM Potential £ erivative R=D i |||-H { >
d’Alembertian Wave Equation i EM y
00 = (8t/c)2-V-_V 4-EMVectorPotential
= (aT+(|q/h)2A)(aT+(lq/h2)A) phase,free Hamilton- @ @ A=((P/C,a)
= -(wo/C)” = -(moc/h) - ' Jacobi STSE
= (3./ 2 ‘(_vl)' -a[cD e -a[Saction,free P Pr=-9[S] Wave Velocity E=mc’= 'Ym002= YE, EM @
= (é-/c) Complex O[S _]=P VotV = ch "
Limit: { [v|<<c Plane-Waves action u T arge I. |' T
(Ind) = [ 90 + (mec?) + (NVr+qa)iems) ] Kr=-2191 WA~ @ --» b
\(,:/?ti‘%;tér:/ti; ('\;‘zvg:;‘i) (/rfg;;) ] 4-WaveVector 4-Momentum 4-PotentialMomentum
=Schrédinger QM Equation (EM potential) K=(w/c,k) Einstein, de Broglie P=(mc,p)=(E/c,p) Q=(V/c,q)=q(9/c,a)
[ SR — QM J** P = K
4-TotMom C ti [+ Minimal Coupli
SR Wave <Events> have KK = (w/c)-k-k (1h) P-P = (E/c)*p-p P - (Pclra) =O?|§i:1v:)lon P= (IFTTI:;Z) =o(uPpT_|r£
4-Wﬁ\veVector=Substalntiation = (KT-(q/h)Az).(KT-(q/hz)A) SR Particle <Events> have | = (P-GA):(P-gA) 4-TotalMomentum
oscillations proportional to = (moc/h)? = (wo/C 4-Momentum=Substantiation = 2 = 2 - _
mass:energy & 3-momentum ( = . mass:energy & 3-momentum (mac) SR PT_(ET/C’pT)_((E+q(p)/C’p+qa)

SR 4-Tensor SR 4-Vector o W] = Wo— TH =
(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (\,v) P’ SR 4-Scalar Existing SR Rules V.VT;a\c/;?rET ! i ?(HJOT)z . V.va = (1\-,0 Y
(1,1)-Tensor T* or T, SR 4-CoVector (0.0)Tensor S Quantum Principles = Lorentz Scalar O

orentz Scala




4-Vector SRQM Interpretation
of QM

SRQM Study:
The Empirical 4-Vector Facts

of Physical 4-Vectors John B. Wilson

SR 4-Vector Empirical Fact Discoverer Physics

Newton+ [t & ] Time & Space Dimensions

4-Position R = <Event> Einstein [ R=(ct,r)] SpaceTime

Newton [ v=dr/dt ] Calculus of motion

4-Velocity U = dR/dr Einstein [ U=y(c,u)=dR/dt ] Gamma & Proper Time

Newton [ p=mv ] Classical Mechanics
Einstein [ P=(E/c,p)=m,U ] SR Mechanics

Planck [h] Thermal Distribution
4-WaveVector K= P/h Einstein [ E=hv=hw ] Photoelectric Effect (h=h/21)
de Broglie [ p=hk ] Matter Waves

4-Gradient d=-iK Schrodinger [ w=id;, k=-iV ] (SR) Wave Mechanics

4-Momentum P =mJ,U

(1) The SR 4-Vectors and their components are related to each other via constants
(2) We have not taken any 4-vector relation as axiomatic, the constants come from experiment.

(3) c, T, m,, h come from physical experiments, (-i) comes from the general mathematics of waves




4-Vector SRQM Interpretation
of QM

SRQM Study:
4-Vector Relations Explained

of Physical 4-Vectors John B. Wilson

SR 4-Vector Empirical What it means in SRQM... Lorentz
Fact Invariant

4-Position R = (ct,r) R = <Event> SpaceTime as Unified Concept ¢ = LightSpeed
4-Velocity U = y(c,u) U = dR/dt Velocity is ProperTime Derivative T =t, = ProperTime
4-Momentum P = (E/c,p) P =m,U Mass:Energy-Momentum Equivalence m, = RestMass

4-WaveVector K = (w/c,k) K= P/h Wave-Particle Duality h = UniversalAction

4-Gradient @ = (d/c,-V) =-iK Unitary Evolution, Operator Formalism i = ComplexSpace

Three old-paradigm QM Axioms:

Particle-Wave Duality [(P)=h(K)], Unitary Evolution [0=(-i)K], Operator Formalism [(9)=-iK] are actually just empirically-found constant
relations between known SR 4-Vectors.

Note that these constants are in fact all Lorentz Scalar Invariants.

Minkowski Space and 4-Vectors also lead to idea of Lorentz Invariance. A Lorentz Invariant is a quantity that always has the same value,
independent of the motion of inertial observers.

Lorentz Invariants can typically be derived using the scalar product relation.

U-U=c? U-9=d/dt, P-U=m.? etc.

A very important Lorentz invariant is the Proper Time 1, which is defined as the time displacement between two points on a worldline that is
at rest wrt. an observer. It is used in the relations between 4-Position R, 4-Velocity U = dR/dt, and 4-Acceleration A = dU/dt.




4-Vector SRQM Interpretation
of QM

SRQM: The SR Path to RQM
Follow the Invariants...

of Physical 4-Vectors John B. Wilson

SR 4-Vector Lorentz Invariant What it means in SRQM...

4-Position R-R = (ct) - rr = (ct)? SR Invariant Interval

4-\elocity U-U = v*(c*- u-u) = ¢* Events move into future at magnitude c
4-Momentum P-P = (m,c) Einstein Mass:Energy Relation

4-WaveVector K-K = (m.c/h)* = (w./c) Matter-Wave Dispersion Relation
4-Gradient 99 = (-imoc/h)* = ~( The Klein-Gordon Equation — RQM!

U =dR/dt

Remember, everything after 4-Velocity was just a constant times the last 4-vector,
and the Invariant Magnitude of the 4-Velocity is itself a constant

P =m,U, K=P/h,d=-iK, soe.g. P-P = m,U:m,U = m,°U-U = (m,c)?

The last equation is the Klein-Gordon RQM Equation, which we have just derived without
invoking any QM axioms, only SR plus a few empirical facts




SR — QM SRQM: Some BaSic 4-Vectors 4-Vector SRQM Interpre;?tiQo'\;l\
4-Momentum, 4-WaveVector,
s d=POsition, 4-Velocity, 4-Gradient, Wave-Particle

SciRealm.org
of Physical 4-Vectors

John B. Wilson

P-P = (m,c)*= (EJ/C
4-Momentum

Treating motion like a particle
o | P=(mc,p)=(E/c,p) d . o

Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

IP-dR = -Saction’ﬁee Rest Mass:Energy ‘ ______

Emsteln Hamilton-Jacobi SpaceTime
# o ... I
() action,free .". Dimension
4-Position i Einstein ) ient gy
R=(ct,r) de Broglie 4-Gradie W JR]=n"—Diag[1,-1,-1,-1]

a=(3t/C,-V)—»(at/c,—ax,-ay,-32) Minkowski Metric

d’Alembertian ProperTime
_ 2 \7.\/ =
= (9,/c)*-V'V = (a.Ic -3=d/dT=yd/dt

] Derivative

Wave Velocm@ \ chhase,pIan ’

K = -9[®

group phase phase,plane

phase,plane RestAngFrequenc i
grreq y 4-\WaveVector WaveVector Gradient
AN | K=(w/c,k)=(w/c,whlv Treating motion like a wave W _____ >
phase . o
] Moving waves have a 4-Velocity
phase plane 4-WaveVector is the negative 4-Gradient of the SR Phase (®)

See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition
for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.
{P = (E/c,p) =-9[S] = (-d/cat[S], )} {K = (w/c,k) = -9[D] = (-d/cat[D], )}
{temporal component} E = -0/dt[S] = -9[S] = | {temporal component} w = -9/dt[®] = -3 [D]
{ component} { component}
**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single free plane-wave.
Generally Action is for the 4-TotalMomentum P+ of a system. Generally WavePhase is for the 4-TotalWaveVector K; of a system.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T*  (1,0)-Tensor V¥ =V = (\,v)? SR 4-Scalar Existing SR Rules Tfacf [T1 = M
(1,1)-Tensor T* or T,¥ SR 4-CoVector (0,0)-Tensor S Quantum Principles V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM: Wave-Particle
Diffraction/Interference Types

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

P-P = (m.c)*= (E./c

4-Momentum
P=(mc,p)=(E/c,p)

The 4-Vector Wave-Particle relation is inherent in all particle types: Einstein-de Broglie P = (E/c,p) = hK = h(w/c,k).

All waves can diffract: Water waves, gravitational waves, photonic waves of all frequencies, etc. P=3IS
In all cases: experiments using single particles build the diffraction/interference pattern over the course many iterations. =-0[ action free]

Photon/light Diffraction: Photonic particles diffracted by matter particles.
Photons of any frequency encounter a translucent “solid” object, grating, or edge.

Einstein
Most often encountered are diffraction gratings and the famous double-slit experiment

de Broglie
P=hK

Matter Diffraction: Matter particles diffracted by matter particles.
Electrons, neutrons, atoms, small molecules, buckyballs (fullerenes), macromolecules, etc.

have been shown to diffract through crystals.

Crystals may be solid single pieces or in powder form. 4-WaveVector

K=(w/c,k)=(w/c,wﬁ/vphase)

]

Kapitsa-Dirac Diffraction: Matter particles diffracted by photonic standing waves. K=-9[®
Electrons, atoms, super-sonic atom beams have been diffracted from resonant standing waves of light.

phase,plane

Photonic-Photonic Diffraction?: Delbruck scattering
Light-by-light scattering/two-photon physics/gamma-gamma physics.
Normally, photons do not interact, but at high enough relative energy, virtual particles can form which allow interaction.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar

(1,1)-Tensor T*, or T, SR 4-CoVector



SR — QM 4-Vector SRQM Interpretation

Hold on, aren't you getting the “h” from
A Tensor Study a QM AXiom? SciRealm.org

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...
4-WaveVector K = (w/c,k) = (ou/c,our“1/vpha ) = (W./c*)U Wave-Particle Duality

se

h is actually an empirically measurable quantity, just like e or c. It can be measured classically from the photoelectric effect, the inverse photoelectric effect,
from LED's (injection electroluminescence), from the Duane-Hunt Law in Bremsstrahlung, Electron Diffraction in crystals, the Watt/Kibble-Balance, etc.

For the LED experiment, one uses several different LED's, each with its own characteristic wavelength.

One then makes a chart of wavelength (A) vs threshold voltage (V) needed to make each individual LED emit.

One finds that: {A = h*c/(eV)}, where e=ElectronCharge and c=LightSpeed. h is found by measuring the slope.

Consider this as a blackbox where no assumption about QM is made. However, we know the SR relations {E = eV}, and {Af = c}.
The data force one to conclude that {E = hf = hw)}.

Applying our 4-Vector knowledge, we recognize this as the temporal components of a 4-Vector relation. (E/c,...) = h(w/c,...)

Due to manifest tensor invariance, this means that 4-Momentum P = (E/c,p) = hK = h(w/c,k) = hi*4-WaveVector K.

The spatial component (due to De Broglie) follows naturally from the temporal component (due to Einstein) via to the nature of 4-Vector (tensor) mathematics.

This is also derivable from pure SR 4-Vector (Tensor) arguments: P = m,U = (E,/c?)U and K = (w./c?)U

Since P and K are both Lorentz Scalar proportional to U, then by the rules of tensor mathematics, P must also be Lorentz Scalar proportional to K
i.e. Tensors obey certain mathematical structures:

Transitivity{if a~b and b~c, then a~c} & Euclideaness: {if a~c and b~c, then a~b} **Not to be confused with the Euclidean Metric**

This invariant proportional constant is empirically measured to be (h) for each known particle type, massive (m,>0) or massless (m,=0):
P = m,U = (Eo/c?)U = (Eo/c?)(wo/c?)K = (Eo/wo)K = (YEo/yw,)K = (E/w)K = (h)K

also from standard SR Lorentz 4-Vector Scalar Products: P-U = E; : K-U = w, : P-K = m,w, : P-P = (m.c)% K-K = (w./c)?
(P-U)/(K-U) = EJ/w, — |P|/|K| = Eo/w,

(P-K)/(K-K) = mowo/(wo/c)> — |P|/|K| = Eo/w,

(P-P)/((K-P) = (moc)?/(mowo) — |P|/|K| = Eo/wy,

(P-R)/(K-R) = (-S (- ) — |PJ/|K| = (h) = Eo/wo

action,free phase,plane




SR — QM 4-Vector SRQM Interpretation
of QM

Hold on, aren't you getting the “K” from
a QM Axiom?

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...
4-WaveVector K = (w/ck) = (w/c,wilv )= (Wo/c®)U  Wave-Particle Duality

K is a standard SR 4-Vector, used in generating the SR formulae:

Relativistic Doppler Effect:

Wobs = Wemit / ['Y(1 - B COS[e])], k = (U/C for photons
Relativistic Aberration Effect:

cos[8,,,] = (cos[B,,] + BI) / (1 + |BlcosB, )

The 4-WaveVector K can be derived in terms of periodic motion, where families of
surfaces move through space as time increases, or alternately, as families of
hypersurfaces in SpaceTime, formed by all events passed by the wave surface. The
4-WaveVector is everywhere in the direction of propagation of the wave surfaces.

K=-0® ]
phase
From this structure, one obtains relativistic/wave optics without ever mentioning QM.




4-Vector SRQM Interpretation

Hold on, aren't you getting the “-i” from
ATensor Study a QM AXiom? SciRealm.org

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...

4-Gradient 2 = (d/c,-V) = -iK Unitary Evolution of States
Operator Formalism

[0 = -iK] gives the sub-equations [d; = -iw] and [V = ik], and is certainly the main equation that
relates QM and SR by allowing Operator Formalism. But, this is a basic equation regarding the
general mathematics of plane-waves; not just quantum-waves, but anything that can be
mathematically described by plane-waves and superpositions of plane-waves...

This includes purely SR waves, an example of which would be EM plane-waves (i.e. photons)...

Y(t,r) = ae’Ni(k-r-wt)]: Standard mathematical plane-wave equation

a[w(t.r)] = afaeNi(k-r-wt)] | = (-iw)[aeri(k-r-wt)] 1= (-iw)y(t,r), or [3; = -iw]
VIw(t.r)] = VlaeMi(k-r-wt)] ] = (ik)[aei(k-r-wt)] ] = (ik)y(tr), or [V = iK]

In the more economical SR notation:
JW(R)] = 9[ae(-iIK-R)] = (-iIK)[ae*(-IK-R)] = (-iIK)y(R), or in 4-Vector shorthand [0 = -iK]

This one is more of a mathematical empirical fact, but regardless, it is not axiomatic.
It can describe purely SR waves, again without any mention of QM.




SR — QM 4-Vector SRQM Interpretation

Hold on, aren't you getting the “9” from
A Tensor Study a QM AXiom? SciRealm.org

of Physical 4-Vectors John B. Wilson

SR 4-Vector SR Empirical Fact What it means...
4-Gradient d = (d/c,-V) =-iIK 4D Gradient Operator

[0 = (d/c,-V)] is the SR 4-Vector Gradient Operator. It occurs in a purely relativistic context
without ever mentioning QM.

0-X = (d/c,-V)(ct,x) = (a/c[ct] - (-V-x)) = (&(t] + V'x) (1)+(3) =4
The 4-Divergence of the 4-Position (o-X = a“r]wXV)gives the dimensionality of SpaceTime.

a[X] = (a/c,-V)I(ct,x)] = (d/clct],-VIx]) = Diag[1,-I] = n*
The 4-Gradient acting on the 4-Position (9[X] = ¢"[X"]) gives the Minkowski Metric Tensor

d-J = (a/c,-V)(pc.j) = (d/clpcl- (-V7))) = (@dp] + Vj) =0

The 4-Divergence of the 4-CurrentDensity is equal to O for a conserved current. It can be
rewritten as (dfp] = - V+j), which means that the time change of ChargeDensity is balanced
by the space change or divergence of CurrentDensity. It is a Continuity Equation, giving
local conservation of ChargeDensity. It is related to Noether's Theorem.




SR — QM 4-Vector SRQM Interpretation

Hold on, doesn’t using “0” in an
Equation of Motion presume a QM Axiom?

SR 4-Vector SR Empirical Fact What it means...
4-(Position)Gradient dr = 9 = (d/c,-V) =-iIK 4D Gradient Operator

Klein-Gordon Relativistic Quantum Wave Equation
9-9[W] = -(m.c/h) [W]= -(w./c) W]

Relativistic Euler-Lagrange Equations
dr[L] = (d/d1)dy[L]: {particle format}
Ol L] = (r) Fagon[L]: {density format}

[0 = (d/c,-V)] is the SR 4-Vector (Position)Gradient Operator.

It occurs in a purely relativistic context without ever mentioning QM.

There is a long history of using the gradient operator on classical physics functions, in this
case the Lagrangian. And, in fact, it is another area where the same mathematics is used in
both classical and quantum contexts.
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A Tensor Study
of Physical 4-Vectors

The QM Schrédinger Relation
P =iho

This is derived from the
combination of:

The Einstein-de Broglie Relation
P =hK

P = (Elc,p) = ihd = ih(d/c,

{spatial}

4-Gradient
Complex Plane-Waves A
K=id 9=(9/c,-V)
)

SRQM Diagram:
RoadMap of SR—>QM
QM Schrodinger Relation

([
- ProperTi
+Posion a1
. d/dtl[..

0-R=4

FR=n"

SpaceTime
Minkowski ' [

Dimensio

U-0=d/dt
Proper Time
Derivative

Wave Velocity

action, free vy * =G/

-9[S

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

e

d"A’-0"AP=F"
EM Faraday

4-Tensor

4-\elocity
=y(c,u)

EM
@D it~
4-EMVectorPotential

A=(op/c,a)

phase group  phase E=|'TTC2

These are the standard QM s  Complex ‘a[Saction]=PT E'r\mﬂargeG. je
Schradinger Relations. -| Elang-WaveS W - » i |' -

= |
It is this Lorentz Scalar Invariant 9= - i 4-Momentum P_=(P+Q) 4-PotentialMomentum
relation (ih) which connects the K=(w/c,K) de Broglie P=(mc,p)=(E/c.p) iRiiaLY Q=(V/c,q)=q(¢/c,a)
4-Momentum to the 4-Gradient, ’ P = hK . . Minimal Coupling
making it into a QM operator. K = P/h P=(P,.-qA)

Note that these 4-Vectors are
already connected in multiple
ways in standard SR.

S

P =iho

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,

(1/h)

——

Schrodinger Relation

SR 4-Vector
(1,0)-Tensor V* =V

= (V%)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Existing SR Rules
Quantum Principles

4-TotalMomentum
P_=(E /c,p,)=((E+qg)/c,p+qa)

Trace[T"] = N T =TH =T

V-V = Vi VY = [(V)? - vev] = (Vo)

= Lorentz Scalar
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of QM

Review of SR 4-Vector Mathematics

A Tensor Study SciRealm.org

of Physical 4-Vectors John B. Wilson
4-Gradient 9 = (d/c,-V) 9-9 = (d/c)* - V-V = -(w./c)?
4-Position X = (ct,x) X-X = ((ct)? - x-x) = (ct,)? = (ct)*: Invariant Interval Measure
4-Velocity U = y(c,u) U-U = y?(c? - u-u) = (c)?

4-Momentum P = (E/c,p) = (Eo./c?)U P-P = (E/c)? - p-p = (EJ/C)?
4-WaveVector K = (w/c,k) = (wo/c>)U KK = (w/c)’ - kk = (w./c)?

o-X = (d/c,-V)(ct,x) = (8/c[ct]-(-Vx)) = 1-(-3) = 4: Dimensionality of SpaceTime

U-0 = y(c,u)(d/c,-V) = y(dr+u-V) = y(d/dt) = d/dr: Derivative wrt. ProperTime is Lorentz Scalar
d[X] = (d/c,-V)(ct,x) = (d/c[ct],-V[x]) = Diag[1,-1] = n*:  The Minkowski Metric

d[K] = (d/c,-V)(w/c,k) = (d/c[wic],-VIK]) = [[0]]

K-X = (w/c,k)(ct,x) = (wt - k-x) = @: Phase of SR Wave

d[K-X] = 9[K]-X+K-9[X] = K = -9[¢]: Neg 4-Gradient of Phase gives 4-WaveVector
(0-9)[K-X] = ((8/c)? - V-V)(wt - kx) = 0

(0-9)[K-X] = 0-(9[K-X]) = 9-K = O: Wave Continuity Equation, No sources or sinks
let f = ae’*b(K-X): Standard mathematical plane-waves if { b = -i }
then d[f] = (-iIK)ae?-i(K-X) = (-iIK)f: (9 = -iK): Unitary Evolution, Operator Formalism

and 9-9[f] = (-)*(K-K)f = -(w./c)f:

(0-9) = (8/c)?* - V-V = -(w./c)*: The Klein-Gordon Equation — RQM

Note that no QM Axioms are assumed: This is all just pure SR 4-vector (tensor) manipulation



SR - QM 4-Vector SRQM Interpretation
of QM

Review of SR 4-Vector Mathematics

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 8:9 = (d/c)* - V-V = -(m.c/h)* = -(w./c)* = -(1/Ac)

Let X = ( %), then 9[X+] = (d/c,-V)( ,0) = Diag[1,-13] = 9[X] = n*Y
so d[X:] = 9[X] and 9[K] = [[0]]

let f = ae™-i(K-Xy), the time translated version
(0-0)If]

0-(a[f])

o-(d[eMi(K-X71)])

0-(e™-i(K-Xr)o[-i(K-Xr1)])

-id-(fo[K-X1])

-ig[flo[K-X+])+¥(2-9)[K-Xq])

(-i)f(O[K-X1])* + O

(-i)?f(B[K]-Xr + K-9[X1])?

(-i)*f(0+K-a[X])*

(-i)*f(K)’

-(K-K)f

-(wo/c)*f



SR - QM 4-Vector SRQM Interpretation

What does the Klein-Gordon Equation
give us?... A lot of RQM!

of Physical 4-Vectors John B. Wilson

Relativistic Quantum Wave Equation: 9-9 = (8/c)? - V-V = -(m.c/h)? = (im,c/h)* = -(w./c)?

The Klein-Gordon Eqgn is itself the Relativistic Quantum Equation for spin=0 particles (Scalars)
Factoring the KG Eqgn leads to the RQM Dirac Equation for spin=1/2 particles (Spinors)
Applying the KG Eqn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Taking the low-velocity-limit of the KG leads to the standard QM non-relativistic Schrodinger Eqgn, for spin=0
Taking the low-velocity-limit of the Dirac leads to the standard QM non-relativistic Pauli Eqn, for spin=1/2

Setting RestMass {m, — 0} leads to the RQM Free Wave, Weyl, and Free Maxwell Eqns

In all of these cases, the equations can be modified to work with various potentials by using more
SR 4-Vectors, and more empirically found relations between them, e.g. the Minimal Coupling Relations:
4-TotalMomentum P _ = P + gA, where P is the particle 4-Momentum, (q) is a charge, and A is a 4-VectorPotential,

typically the 4-EMVectorPotential.

Also note that generating QM from RQM (via a low-energy limit) is much more natural than attempting to “relativize or
generalize” a given NRQM equation. Facts assumed from a non-relativistic equation may or may not be applicable to
a relativistic one, whereas the relativistic facts are still true in the low-velocity limiting-cases. This leads to the idea
that QM is an approximation only of a more general RQM, just as SR is an approximation only of GR.



4-Vector SRQM Interpretation
of QM

Relativistic Quantum Wave Eqgns.

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
Spin-(Statistics) Relativistic Light-like Relativistic Matter-like Non-Relativistic Limit (|v|<<c) Field
Bose-Einstein=n Mass =0 Mass >0 Mass >0 Representation

Fermi-Dirac=n/2

0-(Boson) Free Wave Klein-Gordon Schrodinger Scalar
N-G Bosons Higgs Bosons, maybe Axions Common NRQM Systems (0-Tensor)
Y = YIK.X"]
(@9)\W=0 (98- + (moc/h)? )W = [9,+imc/h][d"-im,c/M]W =0 (iheF+[M?VZ2mo-V)W = 0 = Y]
with minimal coupling with minimal coupling
((ihd; -q@)* -(Moc?)? - *(-iNV -qa) )W = 0 (ihd: — q@ -[(p-ga)?i2m,)¥ =0

?Axions? are KG with EM invariant src term
(8- + (Mao)? )W = -ke-b = -kcSqrt[Det[F"]]

L = (-h*/m,)0"¥*9, W-m,c?P*W

1/2-(Fermion) Weyl Dirac Pauli Spinor
Idealized Matter Neutinos Matter Leptons/Quarks Common NRQM Systems w Spin ¥ = WK,X"
= Y[o]
(o-9)W=0 (iy-9 - mec/h)¥Y =0 (ihd — [(o-p)?)/2m,)¥ = 0
factored to (y-9 +imec/R)P =0 with minimal coupling
Right & Left Spinors (ihd: - g — [(o(p-qa))’l/2m,)¥ = 0
(0-0)Wr=0, (0-0)¥W.=0 with minimal coupling

- (iy-(9+igA) - mc/)¥ = 0
L= quTRO'“ap‘pR , L= i‘PTLo“ap‘PL o o
L = ihc®y*a,¥- m.c2PY

1-(Boson) Maxwell Proca 4-Vector
Photons/Gluons Force Bosons (1-Tensor)
A = A" = A[K XY
(0-90)A =0 free (0-9 + (moc/hy* )A=0 = A'[P]
where 0-A =0

(0-9)A = uoJ w current src
where 8-A =0 (' A-"AM)+(moc/h) A =0

(3-9A = uePV'Y QED
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4-Vector SRQM Interpretation
of QM

Factoring the KG Equation -, Dirac Egn

A Tensor Study
of Physical 4-Vectors

Klein-Gordon Equation: 8@ = (d/c)? - V-V = -(m.c/h)?

Since the 4-vectors are related by constants, we can go back to the 4-Momentum description:

(@dc)*- V-V = -(mec/h)?
(E/c)* pp = (Moc)’
E% c?prp - (M,c?)? =0

Factoring: [E-cap-B(M,c)][E +cap+B(m,c)]=0

E & p are quantum operators,

a & B are matrices which must obey a = -Ba, aa = -aa, a’=p*=1
The left hand term can be set to 0 by itself, giving...
[E-cap-B(m.c?) ] =0, which is one form of the Dirac equation

Remember: P* = (p°p) = (E/c,p) and o* = (a°,a) where a° = I
[E-cap-B(mc’)]=[ca’’-cap-B(mc’)]=[ca’P,-B(mc’)]=0
[ a*Py - B(moC) ] = [ih "0, - B(moc) ] =0

a"d, = - B(im.c/h)

Transforming from Pauli Spinor (2 component) to Dirac Spinor (4 component) form:
Dirac Equation: (y"d,)[w] = -(im.c/h)y

Thus, the Dirac Eqn is guaranteed by construction to be one solution of the KG Eqn

SciRealm.org
John B. Wilson

The KG Equation is at the heart of all the various relativistic wave equations, which differ based on mass and spin values,

but all of them respect E*- c?p-p - (m.c?)? =0




SR — QM 4-Vector SRQM Interpretation

SRQM Study: Lots of Relativistic Quantum
Wave Equations: A lot of RQM!

of Physical 4-Vectors John B. Wilson

Relativistic Quantum Wave Equation: 9-9 = (8/c)? - V-V = -(m.c/h)? = (im,c/h)? = -(wo/c)?
9-9 = -(Myc/h)?

The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles {Higgs} (4-Scalars)
Factoring the KG Eqn (“square root method”) leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors)
Applying the KG Egn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Setting RestMass {m, — 0} leads to the:
RQM Free Wave (4-Scalar massless)
RQM Weyl (4-Spinor massless)

Free Maxwell Eqns (4-Vector massless)

So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields
See Mathematical _formulation_of the Standard Model at Wikipedia:

4-Scalar (massive) Higgs Field ¢ [0-0 = -(m.c/h)?]p Free Field Eqn—Klein-Gordon Egn 2-9[@] = -(M.c/h)’@
4-Vector (massive) Weak Field Z*,W* [8-9 = -(m.c/h)*]Z" Free Field Eqn—Proca Egn 9-9[Z"]= -(m.c/h)’Z"
4-Vector (massless m,=0) Photon Field A" [0-0 = O]A*" Free Field Eqn—EM Wave Eqgn d-d[A¥]= 0"

4-Spinor (massive) Fermion Field w [y-@ = -im.c/h]W¥Y Free Field Eqn—Dirac Eqn y-o[¥]= -(im.c/h)¥

*The Fermion field is a special case, the Dirac Gamma Matrices y*" and 4-Spinor field ¥ work together to preserve Lorentz Invariance.
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4-\Vector SRQM

SRQM Study: Lots of Relativistic Quantum

Wave Equations: A lot of RQM!

Interpretation
of QM

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

Relativistic Quantum Wave Equation: 8- = (8/c)? - V-V = -(m.c/h)? = (im.c/h)? = -(w./c)?

99 = -(mc/h)?

(6-9)AY = 0v: The Free Classical Maxwell EM Equation {no source, no spin effects}

(0-0)AY = p_J": The Classical Maxwell EM Equation {with 4-Current J source, no spin effects}

(0-9)A' = q(y v g): The QED Maxwell EM Spin-1 Equation {with QED source, including spin effects}

So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields

See Mathematical_formulation_of the Standard Model at Wikipedia:

4-Scalar (massive) Higgs Field ¢ [9-9 = -(m.c/h)*]@ Free Field Eqn—Klein-Gordon Eqn  9-9[¢] = -(m.c/h)*®

4-Vector (massive) Weak Field Z*,W*  [9-d = -(m.c/h)?]Z" Free Field Eqn—Proca Eqn 2-9[Z"]= -(m.c/h)?Z"

4-Vector (massless m,=0) Photon Field A" [0-2@ = O]A* Free Field EQqn—EM Wave Eqgn d-d[A"]= 0"

4-Spinor (massive) Fermion Field y [y-@ = -im.c/h]W¥ Free Field Eqn—Dirac Eqn y-o[¥]= -(im.c/h)¥Y

*The Fermion field is a special case, the Dirac Gamma Matrices y* and 4-Spinor field ¥ work together to preserve Lorentz Invariance.

We can also do the same physics using Lagrangian Densities.

Proca Lagrangian Density L = -(1/2)(8,B*,-0,B*,)(6"B"-0"B*)+(m.c/h)’B*,B" : with B = (¢/c,a)[(ct,r)] is a generalized complex 4-(Vector)Potential
KG Lagrangian Density L = -n*(3,p*-0,y)-(moc/M)*w*y : with w = w[(ct,r)]

Dirac Lagrangian Density L = g(y,P" - m.c/h)y : with y = a spinor y[(ct,r)]

QED Lagrangian Density L = y(ihy,D* - m.c)y-(1/4)F . F* : with D" = ¢ + igA* + iqB* and A*=EM field of the e-, B* = external source EM field
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SRQM Study: Lots of Relativistic Quantum
Wave Equations: A lot of RQM!

of Physical 4-Vectors John B. Wilson

In relativistic quantum mechanics and quantum field theory, the Bargmann—Wigner equations describe free particles of arbitrary spin j, an
integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = V2, %, % ...). The solutions to the equations are wavefunctions,
mathematically in the form of multi-component spinor fields.

Bargmann-Wigner equations: (-y*P, + mc)m,r Wat. or.azj = 0

In relativistic quantum mechanics and quantum field theory, the Joos—Weinberg equation is a relativistic wave equations applicable to free
particles of arbitrary spin j, an integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = %, %, 72 ...). The solutions to the equations
are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in
quantum mechanics, however in this context j is more typical in the literature.

Joos—Weinberg equation: [y*"**+*3 Py Py, ... Pyy + (mc)?] W =0

The primary difference appears to be the expansion in either the wavefunctions for (BW) or the Dirac Gamma’s for (JW)

For both of these: A state or quantum field in such a representation would satisfy no field equation except the Klein-Gordon equation.
Yet another form is the Duffin-Kemmer-Petiau Equation vs Dirac Equation

DKP Eqgn {spin 0 or 1}: (ihp°d4 - m,c)¥ = 0, with B° as the DKP matrices
Dirac Eqgn (spin 72}: (ihy°dq - mec)W = 0, with y* as the Dirac Gamma matrices
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of QM

A few more SR 4-Vectors

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

SR 4-Vector Definition Unites
4-Position R = (ct,r); alt. X = (ct,x) Time, Space
4-Velocity U =1v(c,u) Gamma, Velocity

4-Momentum P = (E/c,p) = (mc,p) Energy:Mass, Momentum

4-WaveVector K= (w/c,k) = (w/c,wﬁ/vphase) Frequency, WaveNumber

4-Gradient d = (d/c,-V) Temporal Partial, Space Partial
4-VectorPotential A = (¢/c,a) Scalar Potential, Vector Potential
4-TotalMomentum P, = (E/ctqg/c,ptga) Energy-Momentum inc. EM fields
4-TotalWaveVector K., = (w/ct(a/h)e/ck+(g/n)a) Freq-WaveNum inc. EM fields

4-CurrentDensity J=(cp,j)=qJ Charge Density, Current Density

prob

4-ProbabiltyCurrentDensity J = (cp ) QM Probability (Density, Current Density)

= , j
can have complex values prob prob™“prob
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of QM

More SR 4-Vectors Explained

A Tensor Study
of Physical 4-Vectors

SR 4-Vector
4-Position
4-\elocity
4-Momentum
4-WaveVector
4-Gradient

4-VectorPotential
4-TotalMomentum
4-TotalWaveVector
4-CurrentDensity

4-Probability
CurrentDensity

Empirical Fact
R = (ct,r)

U =dR/dt

P = moU = (Eo/c?)U
K = P/h = (wo/c?)U
d = -iK

A = (p/c,a) = (¢./c*)U

Ptot =P+qA
K_ =K+ (gMhA
J=pU= qurob
oJd=0

prob = (Cpprob’jprob)

od =0

prob

SciRealm.org
John B. Wilson

What it means...
SpaceTime as Single United Concept

Velocity is Proper Time Derivative
Mass-Energy-Momentum Equivalence
Wave-Particle Duality

Unitary Evolution of States
Operator Formalism, Complex Waves

Potential Fields...
Energy-Momentum inc. Potential Fields
Freg-WaveNum inc. Potential Fields

ChargeDensity-CurrentDensity Equivalence
CurrentDensity is conserved

QM Probability from SR
Probability Worldlines are conserved
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Minimal Coupling = Potential Interaction ™
__Klein-Gordon Eqn — Schrodinger Eqn_

Pr=P+Q=P+gA

K=id
P=hK
P =iho

P=(E/cp) =Pr- gA =
d = (d/c,-V)=or+ (ig/h)A = (

89 = (3/c)? - V2 = -(muc/h)? :
P-P = (E/c)? - p*> = (m,C)*:

E? = (m.c?)® + c?p?:
E ~ [ (mo,c?) + p*/2m, ] :

(E+-q9)’ = (MoC?)* + c*(pr-qa)* :
(Er-q@) ~ [ (moc?) + (pr-ga)’/2m, | :

(ihdr-q@)® = (M.c?)* + c*(-ihVr-qa)?:

(iNdr-q@) ~ [ (Mc?) + (-iVr-ga)?/2m, | :

(ihdr) ~ [ g +(Moc?) + (iIhVr+qa)?/2m, ] :

(iRdr) ~ [V + (ihVr+qa)/2m, | :
(ihder) ~ [V - ("Vr)2/2m, | :

(iRd)|W> ~ [V - (WVr)22m, ]|¥> :

Minimal Coupling: Total = Dynamic + Charge_Coupled to 4-(EM)VectorPotential
Complex Plane-Waves

Einstein-de Broglie QM Relations

Schrédinger Relations

) = hK = ihd
) =-iK = (-ilh)P

The Klein-Gordon RQM Wave Equation (relativistic QM)
Einstein Mass:Energy:Momentum Equivalence

Relativistic
Low velocity limit { |v] << ¢ } from (1+x)" ~ [1 + nx + O(x?)] for |x|<<1

Relativistic with Minimal Coupling
Low velocity with Minimal Coupling

The better statement is that the Schrodinger Eqgn is the
limiting low-velocity case of the more general KG Egn,
not that the KG Eqn is the relativistic generalization of
the Schrédinger Egn

Relativistic with Minimal Coupling
Low velocity with Minimal Coupling

Low velocity with Minimal Coupling

V = q@ +(moc?)
Typically the 3-vector_potential a ~ 0 in many situations

The Schrodinger NRQM Wave Equation (non-relativistic QM)
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Once one has a Relativistic Wave Eqn...

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 8-@ = (d/c)* - V-V = (-im.c/h)* = -(m.c/h)?
Once we have derived a RWE, what does it imply?

The KG Eqgn. was derived from the physics of SR plus a few empirical facts. It is a
2" order, linear, wave PDE that pertains to physical objects of reality from SR.

Just being a linear wave PDE implies all the mathematical techniques that have
been discovered to solve such equations generally: Hilbert Space, Superpositions,
<Bra|,|Ket> notation, wavevectors, wavefunctions, etc. These things are from
mathematics in general, not only and specifically from an Axiom of QM.

Therefore, if one has a physical RWE, it implies the mathematics of waves, the
formalism of the mathematics, and thus the mathematical Principles and
Formalism of QM. Again, QM Axioms are not required — they emerge from the
physics and math...
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Once one has a Relativistic Wave Eqn...
Examine Photon Polarization

of Physical 4-Vectors John B. Wilson

From the Wikipedia page on [Photon Polarization]

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic
wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two.
Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the
two.

The description of photon polarization contains many of the physical concepts and much of the mathematical machinery
of more involved quantum descriptions and forms a fundamental basis for an understanding of more complicated
quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability
amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the
description. The quantum polarization state vector for the photon, for instance, is identical with the Jones vector, usually
used to describe the polarization of a classical wave. Unitary operators emerge from the classical requirement of the
conservation of energy of a classical wave propagating through lossless media that alter the polarization state of the
wave. Hermitian operators then follow for infinitesimal transformations of a classical polarization state.

Many of the implications of the mathematical machinery are easily verified experimentally. In fact, many of the
experiments can be performed with two pairs (or one broken pair) of polaroid sunglasses.

The connection with quantum mechanics is made through the identification of a minimum packet size, called a photon,
for energy in the electromagnetic field. The identification is based on the theories of Planck and the interpretation of
those theories by Einstein. The correspondence principle then allows the identification of momentum and angular
momentum (called spin), as well as energy, with the photon.



SR — QM 4-Vector SRQM Interpretation

Principle of Superposition: |
- From the mathematics of waves ... .

of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 8:9 = (d/c)* - V-V = -(m.c/h)* = -(w./c)*

The Extended Superposition Principle for Linear Equations

Suppose that the non-homogeneous equation, where L is linear, is solved by some particular u,
Suppose that the associated homogeneous problem is solved by a sequence of u..

L(up)=C; L(ug)=0, L(uy)=0, L(uz)=0 ...

Then u, plus any linear combination of the u, satisfies the original non-homogeneous equation:
L(u, + 2 a, u,) = C,

where a, is a sequence of (possibly complex) constants and the sum is arbitrary.

Note that there is no mention of partial differentiation. Indeed, it's true for any linear equation,
algebraic or integro-partial differential-whatever.

QM superposition is not axiomatic, it emerges from the mathematics of the Linear PDE



SR — QM 4-Vector SRQM Interpretation

Klein-Gordon obeys |
Principle of Superposition

of Physical 4-Vectors John B. Wilson

Klein-Gordon Equation: 9-2 = (d/c)? - V-V = -(m.c/h)? = -(w./c)?

K:K = (w/c)? - k-k = (w./c)*: The particular solution (w rest mass)
KoK, = (wn/c)? - ka'kn = 0 : The homogenous solution for a (virtual photon?) microstate n
Note that K,*K, = 0 is a null 4-vector (photonic)

Let W, = Ae”-i(K-X), then 8-9[W,] = (-)*(K-K)W, = -(w./c)*¥,
which is the Klein-Gordon Equation, the particular solution...

Let W, = Ane™-i(Kq'X), then 9:9[W,] = (-)*(Kn'Kq)Wh = (0)W,
which is the Klein-Gordon Equation homogeneous solution for a microstate n

We may take W =W, + 2, ¥,

Hence, the Principle of Superposition is not required as an QM Axiom, it follows from SR and our empirical facts which
lead to the Klein-Gordon Equation. The Klein-Gordon equation is a linear wave PDE, which has overall solutions
which can be the complex linear sums of individual solutions — i.e. it obeys the Principle of Superposition.

This is not an axiom — it is a general mathematical property of linear PDE's.

This property continues over as well to the limiting case { |v|<<c } of the Schrodinger Equation.



SR —- QM

A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

QM Hilbert Space:

of QM

From the mathematics of waves ...

Klein-Gordon Equation: 8- = (é/c)* - V-V = -(m.c/h)?

Hilbert Space (HS) representation:

if |[¥Y> € HS, then c|¥> € HS, where ¢ is complex number

if [¥Y+> and |W,> € HS, then |W>+|W,> ¢ HS

if |L|J> = C1|L|J1>+CQ|L|J2>, then <CD|LP> = C1<(D|LP1>+C2<(D|LP2> and <L|J| = C1*<l'|J1|+Cz*<LP2|
<P|P> = <Y |D>

<Y|¥W>>=0

if <Y|W¥> =0, then |¥Y>=0

etc.

Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as infinite-
dimensional function spaces. They are indispensable tools in the theories of partial differential equations, Fourier
analysis, signal processing, heat transfer, ergodic theory, and Quantum Mechanics.

The QM Hilbert Space emerges from the fact that the KG Equation is a linear wave PDE — Hilbert spaces as
solutions to PDE's are a purely mathematical phenomenon — no QM Axiom is required.

Likewise, this introduces the <bra|,|ket> notation, wavevectors, wavefunctions, etc.

Note:

One can use Hilbert Space descriptions of Classical Mechanics using the Koopman-von Neumann formulation.

One can not use Hilbert Space descriptions of Quantum Mechanics by using the Phase Space formulation of QM.

John B. Wilson
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Canonical Commutation Relation: °
Viewed from standard QM

of Physical 4-Vectors John B. Wilson

Standard QM Canonical Commutation Relation: [ ] = ihdk
The Standard QM Canonical Commutation Relation is simply an
axiom in standard QM.

It is just given, with no explanation. You just had to accept it.

| always found that unsatisfactory.

There are at least 4 parts to it:

Where does the commutation ([ , ]) come from?

Where does the imaginary constant (i) come from?

Where does the Dirac:reduced-Planck constant (h) come from?
Where does the Kronecker Delta () come from?

See the next page for SR enlightenment...
The SR Metric is the source of “quantization”.
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%o Canonical QM Commutation Relation
AT S e Derived from SR e

X= =/ Lorentz O X=X 1=n"Y
O—0 S Jorentz N [6",X"]=0"[X"]=n
4-Displacementfy SpaceTime PR S [0,X]=a[X]=n"" |
AX=(cAt,Ax) [aDimension Jransform —Diag[1,-1,-1,-1]=Diag[1,-5']

Minkowski Metric
0

AL CX A 4-Gradient Non-Zero Commutation Relation
4-Position a=(3/c,-V) EEE— via natural SR 4-Gradient
X=(ct,x) L

Let (f) be an arbitrary SR function

X[f] = Xf, o[f] = o[f]

X, function or not, has no effect on (f)
0=0d[ ] is definitely an SR function:operator

X[a[f]] = Xa[f]

J[Xf] = 9[X]f + Xa[f]

d[Xf] - Xo[f] = 9[X]f

a[X[f]] - X[o[f]] = a[X]f

Recognize this as a commutation relation
[, X]f = o[X]f

ProperTime --[K'X

Derivative Complex

Plane-waves
K=io

_ 4-WaveVector i[2,X]=[id,X]=[K,X]=in""
[9, XV] = 9[X] K=(w/c k) = _ .
= o"[X"] Non-Zero Commutation Relation
= (a/c,-V)[(ct,x)] via SR 4-WaveVector
= (alc, Nctx.y.2)] s 8
= Diag{1, } = Diag[1,-5"] U=y(c,u) Eo/w, Einsiclg Eo/wo
= n* = Minkowski Metric ®------ > E=me? gl
[0",X"] =n" Tensor form:true for all observers : ——
[P*,X"] = ihn®" Independently true from empirical constants (i),(h) . 4-Momen|t5u/m [ihd,X]=[hK,X]=[P,X]=ihn
k i1 = ] 001 — — — A =] =]
[P x] = -ihd® [p",x7] = [E/c,ct] = [E,t] = in (r_nc,p) (Efe,p) Non-Zero Commutation Relation
= el ) ia SR 4-Moment
— A sk Position:Momentum _ Time:Energy iy : . Vla = omenum
[ ’ ] = ihe QM Commutation Relation L* ] =-ih QM Commutation Relation {P = hK} and {K = id} are empirical SR relations

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(0,0)-Tensor S
orentz Scala

Trace[T"] = N T =TH =T

Existing SR Rules O e
Quantum Principles - Vrl“;_oren[t(;’ %ca?;:’] (V%)

,1)-Tensor T" or T,¥ -CoVector
1,1)-T THorT, SR 4-CoVect
, 0,1)-Tensor V, = (vo,-V




SR — QM 4-Vector SRQM Interpretation

Canonical Commutation Relation: °
ATensor Study Viewed from SRQM SciRealm.org

of Physical 4-Vectors John B. Wilson

Standard QM Canonical Commutation Relation: [X,p"] = ihd*

As we have seen, this relation is generated from simple SR math.
[0, X]=[0"X"]=0[X] = d"[X"] = (d/c,-V)[(ct,x)] = (d/c, N(ct, )] = Diag{", } =Diag[', ]=n" = Minkowski Metric

[0",X"] = n™
[P*,X"] = ihn" : This is the more general 4D version, with the Standard QM version being just the

One of the great misconceptions on modern physics is that since QM is about “tiny” things, that ALL things should be built up from it.
That paradigm of course works well for many things:

Compounds are built-up from smaller molecules.

Molecules are built-up from smaller elements.

Elements are built-up from smaller atoms.

Atoms are built-up from smaller protons, neutrons, and electrons.

Protons and neutrons are built-up from smaller quarks.

And all experiments to-date show that electrons and quarks appear to be point-like, with wave-type properties giving extent.

So, one can mistakenly think that “SpaceTime” must be made up of smaller “quantum” stuff as well.

However, that is not what the math says. The “quantization” paradigm doesn’t apply to SpaceTime itself, just to <evenis=.

All of the “quantum”-sized things above, electrons and quarks, are material things, <evenis>, which move around “within” SpaceTime.
Their “quantization” comes about from the properties of the math of SR.

The math does *NOT™* say that SpaceTime itself is “quantized”. It says that SR Minkowski SpaceTime is the source of “quantization”.
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SRQM Study:

4-Position and 4-Gradient

A Tensor Study
of Physical 4-Vectors

Invariant Interval
2

4-Displacement
AR=(cAt,Ar)

SR:
Lorentz
. - Transform
Minkowski A[R"] = ORY/OR" = A\¥,

Metric
J[R] = 9R" = n" NN, = ¥, = 8,
V/\pﬂ/\v = a
—Diag[1,-1,-1,-1] e = 1
= Diag[1,-Io] Det[A] = +1
= Diag[1,-¢' sl
{in Cartegi‘[:\n form}:I Ny = (A 1)VlJ
"Particle Physics” Convention N\ =4

{nu} = 1/{n"}
Tr[n"] =4 Rotations
n.' =90, Boosts
CPT

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar

(1,1)-Tensor T", or T, SR 4-CoVector (0,0)-Tensor S
, 0,1)-Tensor V, = (Vo,-V orentz Scala

SRQM:
Tensor Zero
Exterior Product
J*R = 0"R"-0'R*
- r]pv _ r]vu - Opv

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

nvariant d’Alembertian
Wave Equation
0-9=(0, /c)Z-V-V=(6T [c)?

4-Gradient
a=(at/c,—V)

Non-Zero
Commutation
[0,R] = [¢",R"]
=0"R"-R"0"
= r]“V

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar
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4-Vector SRQM Interpretation
of QM

Heisenberg Uncertainty Principle:
Viewed from SRQM

of Physical 4-Vectors

Heisenberg Uncertainty { 0%.0% } >= (1/2)|<[A,B]>| }
arises from the non-commuting nature of certain operators.

The commutator is [A,B] = AB-BA, where A & B are functional “measurement” operators.
The Operator Formalism arose naturally from our SR — QM path: [ 9 = -iK ].

The Generalized Uncertainty Relation: oPo,” = (AF) * (AG) >= (1/2)|( i[F,G] )|

The uncertainty relation is a very general mathematical property, which applies to both
classical or quantum systems. From Wikipedia: Photon Polarization: "This is a purely
mathematical result. No reference to a physical quantity or principle is required.”

The Cauchy—Schwarz inequality asserts that (for all vectors f and g of an inner product
space, with either real or complex numbers):

ofoy =[(f|f)(glgN>=[(f]g)l

But first, let's back up a bit; Using standard complex number math, we have:
z=a+ib

z*=a-ib

Re(z) =a = (z + z*)/(2)

Im(z) = b = (z - z*)/(2i)

2z =z = a® + b® = [Re(2)F’ + [Im(2)]* = [(z + Z*)/(2)F + [(z - z*)/(2i)F

or

z* = [z + Z*)/2)F + [(z - *)/(2])?

Now, generically, based on the rules of a complex inner product space we can arbitrarily
assign:
z=(flg)z=(glf)

Which allows us to write:

ICF1g)P =[(flg)+ (gl TP +I(flg)-(glf)2)

*Note* This is not a QM axiom - This is just pure math. At this stage we already see the
hints of commutation and anti-commutation.
It is true generally, whether applying to a physical or purely mathematical situation.

John B. Wilson

We can also note that:
[f)=F|¥)and|g)=G|¥)

Thus,
ICFIgP=[((WIF* Gl W)+ (WIG*F|W))(2F +[((WI|F* G| W)- (W |G*F|W))(2)]

For Hermetian Operators...
*=+F, G*=+G

For Anti-Hermetian (Skew-Hermetian) Operators...
F*=-F, G*=-G

Assuming that F and G are either both Hermetian, or both anti-Hermetian...
ICFI )l = [((WIR)FGI W) + (W |(£)GF| WO)M(2) + [((W [E)FG| W ) - (W [(£)GF| W ))/(2i)]?
[CFI @) = [(E)((WIFGI W) + (W |GF| W))(2)F + [(£)(( W [FG| W> - (W |GF| W ))/(2i)

We can write this in commutator and anti-commutator notation...
|CF1 @)l = [(£)(( W {R.GY W)HYR)F + [(2)( W IIF.G]l W)/

Due to the squares, the (z)'s go away, and we can also multiply the commutator by an ( i)
|(F1g)P = [((W KF.GH W)yl + [(( W i[F.G]l W ))2]*
I(f 1) = [(({F.G} ))2F + [(CilF,G] ))/2F?

The Cauchy—Schwarz inequality again...
ofog =[(fIf)(glg)l >= |(f|g)I” = [(({FG}))/2]* + [((ilF,G] ))/2]*

Taking the root:
ofog® >= (1/2)|(i[F.G] )|

Which is what we had for the generalized Uncertainty Relation.
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A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

Heisenberg Uncertainty Principle:

of QM

Simultaneous vs Sequential

Heisenberg Uncertainty { 0%x0% >= (1/2)|<[A,B]>| } arises from the non-commuting nature of certain operators.
[0",X"] = 9[X] = n* = Minkowski Metric
[P¥,X"] = [ihe",X"] = ih[e",X"] = iAN™

Consider the following:

Operator A acts on System |W> at SR Event A: A|Y> —|¥'>
Operator B acts on System |W'> at SR Event B: B|¥'> —|Y">
or BA|W> = B|WY'> = |Y">

If measurement Events A & B are space-like separated, then there are observers who can see {A before B, A
simultaneous with B, A after B}, which of course does not match the quantum description of how Operators act on
Kets

If Events A & B are time-like separated, then all observers will always see A before B. This does match how the
operators act on Kets, and also matches how |W> would be evolving along its worldline, starting out as |¥>,
getting hit with operator A at Event A to become |¥'>, then getting hit with operator B at Event B to become [¥">.

The Uncertainty Relation here does NOT refer to simultaneous (space-like separated) measurements, it refers to
sequential (time-like separated) measurements. This removes the need for ideas about the particles not having
simultaneous properties. There are simply no “simultaneous measurements” of non-zero commuting properties
on an individual system, a single worldline — they are sequential, and the first measurement places the system in
such a state that the outcome of the second measurement will be altered wrt. if the order of the operations had
been reversed.

John B. Wilson
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Pauli Exclusion Principle:
Requires SR
e fOr the detailed explanation RS

The Pauli Exclusion Principle is a result of the empirical fact that nature uses identical (indistinguishable) particles, and this
combined with the Spin-Statistics theorem from SR, leads to an exclusion principle for fermions (anti-symmetric, Fermi-
Dirac statistics) and an aggregation principle for bosons (symmetric, Bose-Einstein statistics). The Spin-Statistics Theorem
is related as well to the CPT Theorem.

For large numbers and/or mixed states these both tend to the Maxwell-Boltzmann statistics. In the {kT>>(g-u)} limit, Bose-
Einstein reduces to Rayleigh-Jeans. The commutation relations here are based on space-like separation particle
exchanges. Exchange operator P, P2 = +1, Since two exchanges bring one back to the original state. P thus has two
eigenvalues ( =1 ) and two eigenvectors { |[Symm> , |[AntiSymm> }

P|Symm> = +|Symm>

P|AntiSymm> = -|AntiSymm>

Spin-Symmetry Particle Type Quantum Statistics Classical { kT>>(g-p) }

spin:(0,1,...,N) Indistinguishable, Bose-Einstein: Rayleigh-Jeans: frome*~ (1 +x +...)
bosons Commutation relation ni=gi/[e&T-1] ni=gi/ [ (&-M)/KT]
symmetric [a,b] = ab-ba = -[b,a] = constant aggregation principle

(ab =ba) if commutes

| Limit as e&WkT >>1 |
Multi-particle Mixed Distinguishable, or high temp, or Maxwell-Boltzmann: Maxwell-Boltzmann:
low density ni=gi/[e&WT +0 ] n =g/ [ eV ]
1 Limit as e&WkT >>1 1
spin:(1/2,3/2,...,N/2) Indistinguishable, Fermi-Dirac:
fermions Anti-commutation relation n=gi/[e&Wk +1]

anti-symmetric {a,b} = ab+ba = +{b,a} = constant exclusion principle
(ab = - ba) if anti-commutes




SR - QM 4-Vector SRQM Interpretation

4-Vectors & Minkowski Space Review
Complex 4-Vectors

of Physical 4-Vectors John B. Wilson

Complex 4-vectors are simply 4-Vectors where the components may be complex-valued

A=A"=(a,a)=(a, ) — (3, )
B=B"=(b,b)=(b, ) — (b, )

Examples of 4-Vectors with complex components are the 4-Polarization and the 4-
ProbabilityCurrentDensity

Minkowski Metric g"' — n"' = n, — Diag[1, ] = Diag[1,-1 ],
which is the {curvature~0 limit = low-mass limit} of the GR metric g"".

Applying the Metric to raise or lower an index also applies a complex-conjugation *

Scalar Product = Lorentz Invariant — Same value for all inertial observers
AB=n A'B'=A'B'=AB*= (@”*b® — a*-b) using the Einstein summation convention

This reverts to the usual rules for real components
However, it does imply that A-B = B-A
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SRQM: CPT Theorem
Phase Connection, Lorentz Invariance

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson
e LR L = 71 oR=4 3[R]=n"—>Diag[1,-1,-1,-1] 4-Gradient
i = A TR Minkowski Metric 2=(d/c,-V)
t )
We take the point of view of an observer operating on a particle at 4-Position X,
which has an initial 4-WaveVector K. The 4-Position X of the particle, _Di
the operation's event, will not change: we are applying the various 4 Dlsplacement
operations only to the particle's 4-Momentum K. AR= (CAt,Ar) .
4-Acceleration
Note that for matter particles K = (w./c)T, = A=v(cy v'ut+va
where T is the Unit-Temporal 4-Vector T = y(1,B), 4-Position Y( 1 Y )
which defines the particle's worldline at each point. - ProperTime )
The gamma factor ( y ) will be unaffected in the following operations, R (Ct,l') Derr)ivative ProperT_lme
since it uses the square of B: y=1/Sqrt(1-B-B). Y o Derivative
For photonic particles, K = (w/c)N,
where N is the “Unit”-Null 4-Vector N = (1,n) and n is a unit-spatial 3-vector. _ : - » en
All operations listed below work similarly on the Null 4-Vector. mporal Limit as § —1 4 NUﬂ|1t Null
=(1,n
Do a Time Reversal Operation: T :
The particle's temporal direction is reversed & complex-conjugated: It is only the combination of all three ops: {C,P,T}, or
Tr=-T"=v(-18)" pairs of singles: {CC},{PP},{TT}
that | the Unit-T | 4-Vector, and thus th
Do a Parity Operation (Space Reflection): P Pr?asza\llr?var?antm R O A @
Only the spatial directions are reversed: ) ) 4- Un|tSpat|a|
Te =y(1,-B) (n B n')
3 1
Do a Charge Conjugation Operation: C ] . . )
Charge Conjugation actually changes all internal quantum #'s: Matter-like Light-like/Photonic
charge, lepton #, etc. T=7(1,8) . - . N =(1,n) . ] :
Feynman showed this is the equivalent of T-T=y(1,8)"v(1,B) = v°(1° - B-B) = 1: It's a temporal 4-vector ~ N-N = (1,n)*:(1,n) = (1 - nn) = (1-1) = 0: It's a null 4-vector
a world-line reversal & complex-conjugation:
Te = y(-1,-B)* Te-Te = y(-1,-B)v(-1,-B)* =272(2(-1)2 - CB)(-B)) = ;(2(12 -BB)=1  Nc'Nc=(-1-n)(-1,-n)* = ((2 1)? - (-n)(-n)) ‘2(12 -nn)=(1-1)=0
Te-Te = y(1,-B)*y(1,-B) = v*(1? - (-B)-(-B)) = v’(1* - B-B) = 1 NeNe = (1,-n)*+(1,-,n) = (1 n)-(-n)) = (1?-n-n) = (1-1) =0
N . ToTo= (1B (1) = F(C (OB = (- BB =1 Nl = (fon)lom) = (15 CnrEn) = (EEmm SN
Pairwise combinations: Tr = v(-1,8)v(-1,B)" = v"((-1)" - (B):(B)) = v*(1° - B-B) = mNr = (-1,n)(-1,n)* = ((-1)° - (n)~(n)) = (1° - n-n) = (1-1) =
Tre = Ter = Tc = y(-1,-B)* They all remain temporal 4-vectors They all remain null 4-vectors
Trc = Ter = Te = y(1,-B)
Tec = Tee = Tr = y(-1,8)*, a CP event is mathematically the same as a T event Teer =T =y(1,B) Ncer = N = (1,n)
Terr=T=y(1,8) Tec=T=v(1,8) Tee =T =v(1,8) T+=T=y(1,8) TeprTepr=T-T =1 Ncpr*Neer= N-N = 0

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ 1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar Trace[T"] =n, T =T =T

(0,0)-Tensor S V-V = Ve VY = [(VO)? - vev] = (Vo)

(1,1)-Tensor T*, or T, SR 4- CoVector
orentz Scala = Lorentz Scalar




SR - QM 4-Vector SRQM Interpretation

SRQM: CPT Theorem
...  (Charge)vs (Parity) vs (Time)

of Physical 4-Vectors John B. Wilson

4-Vector ‘

Lorer]tz _ After (CPT)
Identity Parity-Inversion
Transform 4-\lector Transform
ANv—n'y =1, Bl B=B=(b’,b) NP, R EEARESTEAR by

No mixing Charge

Original

4-\ector
B=B'=(b’b)

) 170
_ (CPT)
Def{F"] -(cTP)
= - =(PCT
=(PTC)
=(TCP)

Identical 4-Vector Parity-Inverted 4-Vector Time-Reversed 4-Vector
A=A"=n" A"=(a”,a’) A=A"=P" A'=(a”,a’) A=A"=T" A'=(a”,a’)
=(a’,a)=A =(a’-a) =(-a’,a)*

Charge-Conjugated 4-Vector BE=re=e))
A=A"=C" A'=(a”,a’)
=(_aO,_a)*

Lorentz
Charge-Conjugation

Lorentz Lorentz
Identity Parity-Inversion
Transform Transform
A\ —n¥, N —P¥,

Transform
e v_’Cp v

Classical SR Time-Reversal neglects spin and charge.
SRQM includes these effects. After (PP) or (TT) or (CC)

Then one gets (CC),(PP),(TT), & (CPT) transforms Original 4-Vector Identity and Space-Parity are Unitary
all leading back to the Identity (1). A=A'=(a’,a) Time-Reversal and Charge-Conjugation are Anti-Unitary.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)

SR 4-Scalar Trace[T"] = "Iuv;r';v = THis g ,
(0,0)-Tensor S V-V = Vi, VY = [(VO)2 - vev] = (V)

1,1)-T T or T, SR 4-CoVect
(1,1)-Tensor T% or T, oVector | orentz Scalar = Lorentz Scalar

(0,2)-Tensor Ty, (0,1)-Tensor V, = (Vo,-V)




A Tensor Study
of Physical 4-Vectors

General Linear,Affine Transform

Lorentz Transform
4-Tensor {mixed type-(1,1)}

Discrete Continuous
Time-reversal
SpatialFlipCombos
t— -t
time parity
anti-unitary — {xjy|z} — -{xlylz} -
unitary Rotation
Parity-Inversion
Identity I, Xy | xiz|y:z
r—-r
spacgt parity no mixing
unita
i unitary Boost
harge-Conjugation
tx |ty |tz
» CPT Symmetry
R—-R%q—--q {Charge}
charge parity {Partiy} Isotropy
anti-unitary

{Time}  |{same all directions}

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
Lie group of all affine isometries of SR:Minkowski TimeSpace (preserve quadratic form n,,)

with Det] ] = +1

Translation Transform

4-Vector
Discrete Continuous
Temporal
4-Zero At
no motion Sl
Ax | Ay | Az

Homogeneity
{same all points}

4-Vector SRQM Interpretation

SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

SciRealm.org
John B. Wilson

-AngularMomentum M* = X" A PY = X*PY - X'P*
enerator of Lorentz Transformations (6)
I-rv_’RI-llv + /\pvv_’Bp'v

4-LinearMomentum P*
= Generator of Translation Transformations (4)
= { AX"—(cAL,0) + AXY—(0,Ax)

Det[A",] = +1 for Proper Lorentz Transforms
Det[A",] = -1 for Improper Lorentz Transforms

Lorentz Matrices can be generated by a matrix M

with Tr[M]=0 which gives:

{A=er*M=¢e”(+0-J - TK) }

{(N'=(Ee*"M)'=e M}

WY SRS VEY SR:Lorentz Transform
A[R"] = OR¥IARY = AV,

M= +0-J - K

/\pv = /\-1 vu - /\pcx/\av = pv = Spv
B[Z] = eN-K) ) i

N\ =
R[O] = eA(+8-J) o\'s = Nas
ROZNER 0 - o RO Y

Rotations J; = -€mi\M™/2, Boosts K = M



SR — QM 4-Vector SRQM Interpretation

Hermitian Generators |
-« NO€ther's Theorem - Continuity ...

The Hermitian Generators that lead to translations and rotations via unitary operators in QM...

These all ultimately come from the Poincaré Invariance — Lorentz Invariance that is at the heart of SR and Minkowski
Space.

Infintesimal Unitary Transformation
U(G) =1+ieG

Finite Unitary Transformation
U.(G) = e?(iaG)

letG =P/h=K
let a=Ax

Uax(P/M)W(X) = er(iAx-P/h)¥(X) = eM(-Ax-d)¥(X) = W(X - Ax)

Time component: lAJéct(P/h)LP(ct) = eMIAtE/h)W(ct) = eM(-At 0)W(ct) = W(ct - cAt) = cWP(t - At)
Space component: Ua(p/h)W(x) = e?(iAx-p/h)¥(x) = eM(Ax-V)¥(x) = W(x + Ax)

By Noether's Theorem, this leads to 8-K = 0
We had already calculated

(0-9)[K-X] = ((a/c)’ - V-V)(wt - k-x) = 0
(0-9)[K-X] = 0-(9[K-X]) =o-K =0

Poincaré Invariance also gives the Casimir invariants of mass and spin, and ultimately leads to the spin-statistics theorem
of RQM.



SR — QM 4-Vector SRQM Interpretation

QM Correspondence Principle:
... Analogous to the GR and SR limits

Basically, the old school QM Correspondence Principle says that QM should give the same results as classical physics in
the realm of large quantum systems, i.e. where macroscopic behavior overwhelms quantum effects. Perhaps a better way
to state it is when the change of system by a single quantum has a negligible effect on the overall state.

There is a way to derive this limit, by using Hamilton-Jacobi Theory:
(ihdg)|W> ~ [V - (hV7)/2m, ]|W> : The Schrodinger NRQM Equation for a point particle (non-relativistic QM)

Examine solutions of form W = W.e/(id)= W,e”(iS/h), where S is the QM Action
W] = (i/h)Wa[S] and o,[W¥] = (i/n)Wo,[S] and VW] = (iM)WYV?[S] - (W/M?)(V[S])*

(ih)(I/M)WALS] = VW - (h?*/2m,)((ilh)¥V?[S] - (Y/M*)(VI[S])?)
(I(H)WLS] = VW - ((ih/2me)¥PV?[S] - (WY/2m,)(V[S])?)
A[S] = -V + (ih/2m,)V?[S] - (1/2m.)(V[S])?

a[S] + [V+(1/2m,)(V[S])? ] = (ih/2m,)V4[S] : Quantum Single Particle Hamilton-Jacobi
a([S] + [V+(1/2m,)(V[S])? ] = 0 : Classical Single Particle Hamilton-Jacobi

Thus, the classical limiting case is:
V] << (V[®])?

AVZ[S] << (V[S]y

AV:p << (p-p)

(PMV-p << (p-p)
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QM Correspondence Principle:
... Analogous to the GR and SR limits __

of Physical 4-Vectors John B. Wilson

a[S] + [V+(1/2m,)(V[S])? ] = (ih/2m,)V?[S] : Quantum Single Particle Hamilton-Jacobi
a[S] + [V+(1/2m.)(V[S])?] = 0 : Classical Single Particle Hamilton-Jacobi

Thus, the quantum—-classical limiting-case is: {all equivalent representations}
hvz[saction] << (V[Saction])2 Vz[CDPhase] << (V[Q)Phase])z

hv-V[Saction:| << (V[Saction])2 v-V|:q>phase:| << (V|:q>phase:|)2

nV-p << (p'p) Vk << (k'k)

(PHV-p << (pp)

with

P = (E/C’p) = -a[Saction] = -(atlc’-v)[saction] = (-atlc’v)[sacﬁon]
K= (wick)=-3[® ]1=-@/c-VND, 1=(-a/cVID ]

It is analogous to GR — SR in limit of low curvature (low mass), or SR — CM in limit of low velocity { |v|<<c }.
It still applies, but is now understood as the same type of limiting-case as these others.

*Note* The commonly seen form of (c—<,h—0) as limits are incorrect!

¢ and h are universal constants — they never change.

If c—<, then photons (light-waves) would have infinite energy { E = pc }. This is not true classically.

If h—0, then photons (light-waves) would have zero energy { E = hw }. This is not true classically.
Always better to write the SR Classical limit as { |v|<<c }, the QM Classical limit as { VZ[GJP 1<<(VI® . 1)?*}

hase phase

Again, it is more natural to find a limiting-case of a more general system than to try to unite two separate theories which may or may not
ultimately be compatible. From logic, there is always the possibility to have a paradox result from combination of arbitrary axioms, whereas
deductions from a single true axiom will always give true results.
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SRQM: 4-Vector Quantum Probability
- CONservation of ProbabilityDensity ...

of Physical 4-Vectors John B. Wilson

Conservation of Probability : Probability Current : Charge Current
Consider the following purely mathematical argument
(based on Green's Vector Identity):

o-(fag]l-0alf]g)="fao-alg] - 0-dlf] g
with (f) and (g) as SR Lorentz Scalar functions

Proof:

o-(falg]-alflg)
“(folgl)-o-(alfl9)

0
(f 8-a[g] + aIf]-a[g]) - (e[f]-a[g] + &-a[f] 9)
fa-a[g] - o-alfl g

We can also multiply this by a Lorentz Invariant Scalar Constant s
s (fo-0[g] - -alf] g) =s a-(falg] - o[f] g ) = a-s(fa[g] - d[f] g )

Ok, so we have the math that we need...

Now, on to the physics... Start with the Klein-Gordon Eqn.
9-9 = (-imec/h)? = -(moc/h)?
9-9 + (m,c/h)* =0

Let it act on SR Lorentz Invariant function g
0-9[g] + (msc/M)’[g] = O [g]

Then pre-multiply by f

[fle-a[g] + [f] (m.c/h)?[g] = [f] O [g]

[fle-a[g] + (moc/M)[fllg] = 0

Now, subtract the two equations

{[f] 8-a[g] + (moc/n)?[fl[g] = O} - { &-alfllg] + (m.c/n)’[f][g] = O}
[f] 8-a[g] + (mec/nY’[f][g] - &-8[f][g ]- (Mec/n)?[f][g] = O

[f] 0-2[g] - 0-2[fl[g] = O

And as we noted from the mathematical Green'’s Vector identity at the start...
[f] 2-0[q] - @-alf][g] = &-(fa[g] - 2[f|g) =0

Therefore,
so-(fag]l-aflg)=0
o-s(falg]-alflg)=0

Thus, there is a conserved current 4-Vector, Jorob = S( f 0[g] - 9[f] g ), for which 9-Jpron = 0,
and which also solves the Klein-Gordon equation.

Do similarly with SR Lorentz Invariant function f
0-9[f] + (mec/N)’[f] = O [f]

Then post-multiply by g

0-9[fl[g] + (moc/M)?[fllg] = O [fllg]

0-alfllg] + (m.c/h)?[flig] = 0

Let's choose as before (@ = -iK) with a plane wave function f = ae’-i(K-X) = y,
and choose g = f* = ae?i(K-X) = y* as its complex conjugate.

At this point, | am going to choose s = (ih/2m,), which is Lorentz Scalar Invariant, in order to make
the probability have dimensionless units and be normalized to unity in the rest case.
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4-Vector Quantum Probability
4-ProbabilityFlux, Klein-Gordon RQM Eqn

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

0-9=(3,Ic)-V-V

4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux

- " . - _ _ . d’Alembertian
Joon = (€0, o) = (IR2mo)(wralw]-alw™Iw) = (P, 00U = (P, ,o)V(C:1) = (¥R p0)(C 1) = (P, )(C) 8-0= -(m.c/h)?
with 4-Divergence of Probability { &-J_ . =0} by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn. K'ef”'GOrdO“
The reason for s = (ih/2m,) becomes more clear by examining our diagram: KR g'_Gar?d'evnt =
Start at the 4-Gradient and follow the arrows toward the 4-ProbabilityFlux M- > [q) | Complex =(6/c-V)
You immediately see where the (ih/m,) factor comes from. hase Plane-waves
The Puas_o is then a function of the y's divided by 2. ‘P‘('l’z’:)‘/’f\liector CP i
=7 K-K=(w,/c)? : . . )
o-(falg] - alf] g ) = f &-0[g] - 2-4[f] g: Green’s Vector Identity K-K=(mac/h) gxargl?iggs t;f;zaorgl[ﬁr;[r;?ﬁr;t the Relativistic Probability Density
2-9 + (m,c/h)’ = 0: KG RQM Eqn e el e prob oY
4-Velocit . - Einstein Assume wave solution in following general form:
Yy Voow. Vonase—C de Broglie = Af Ikl e(-iwt
U=y(c,u) group  p h) P =hK E Y i [f ][ke]( |Ui) ) }t) )
a= p* = A* f [K]* e(+iw
Rest Number, @ E=mc? @ - P> then
Lz = o : { ay] = (-iw)Af [K] e(-iwt) = (-iw)y }
Prope = X W A-Momentum { B0w"] = (H)A* £ [K* e(+ioot) = (+iw)y*}
:l X|\V |2 @ = P_(mC= ) (E/C,p) then
S =i TR By = (WM 41 0] )
4-NumberFlux .t - Porob ~ (in/2moC?)((-iw)y*y - (+iw)y*y)
= = - i 2 i il
4-ProbabilityFlux / © 4-C_3urre_nt_Density Porgp = (NW/MC)(Wy)
3= )=, ) J=(pc,j)=p(c,u) P = (MYW/MC?) (W)
=(h2mualv}a1v]y) : L JJ=(00) 2 Py = (NWW) = (1P, o)
s Jm:ﬂ-::(:rz;c) . N Finally, multiply_ by charge (q) to get standarg SR EM _
6"N=0 : 3Jpror=0 pLot Conservation of 4-CurrentDensity = 4-ChargeFlux = J = (cp,j) = qurob = q(cppmb,jpmb)
Conservation of

Particle # : Probabilt

SR 4-Tensor SR 4-Vector V] — v — —
(2,0)-Tensor T+ J(1,0)-Tensor V¥ = V = (\*.v) (g§)4T-ScalarS Existing SR Rules V_VTfa\c/;frETp 1= ?(“VOT)Z "V_T‘:T - (TVO e
= v v y ,0)-Tensor * - =V VY = - = (v,
(el T S oNrcter orentz Scala Quantum Principles = Lorentz Scalar
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4-Vector Quantum Probability
4-ProbabilityFlux, Klein-Gordon RQM Egn
A e oo with Minimal Coupling S

4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux aj;ﬁ;:;iﬁ:
J =0 i )= (h2mo)(wralyl-alw ) = (o, U = (B, o(c:1) = (1R, o)(e:1) = (B, )(C,1) o= {machy
ein-Goraon

with 4-Divergence of Probability { -J = 0} by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

Pre® 4-Gradient
If we include minimal coupling: a':(ar?c I—eVn)
= (00 ) = (2me)(wraly]-ay ) + (@/mo)(yry)A W- > ) cor & A
Start at A on the chart 4-WaveVector Plane-waves
Follow past (q) factor to get to Q = K=(wlc, K=io
Minimal Coupling allows passage back to P with no factors m
Follow back past (1/m,) to get to U An alternate way would be to take A to U via the direct route:
W Velocit *
Follow past Born Rule (y*y) @ W OCC' 4 Einstein + l(wt':zil(pTO)(wldqf)Ad -
Now have the additional factor: GRS Varoup Voase ‘ﬂb de Broglie whichiwouldliesciCIEESESEES
+ (q/mo)(W*p)A U=y(c,u) (h ¥ p =pK Py — (N(WW) + (V)(@e/Pro)(W W) = (V)[1 + Po/Pro](W*W)
@ E=mc? with potential due to particle (¢,) typically much less than the
Rest Number, o -
Densit 0 potential due to the whole field (¢r)
¢ pprobo = X*‘V) 4-M0mentum ((po) << ((pTo)
P=(mc,p)=(E/c,p)
=)l Born > TP -P=(m.c)'=(E./c) 2
aw - - robability Rule o = -
4-NumberFiux o - > IH14- SRR omentumField
= L) - 4—EMVectorPotentiaI P=(E/c
PR e Crare i P
4-ProbabilityFlux " Q- -urrentbensity AA=(¢o/c)’ I q ) L Q-Q=(U./c)* ]
J o= Jo)=p () J=(pc,j)=p(c,u
. prob prob I w i
=(iv/2mo )(walyl-alw*y)+ (a/mo)(W*w)A . '
Complex a-J=0
| N-N=(n.c)? Conservation of €
9-N=0 : 9"Jprob=0 R Jyron'Jprav=(P_oC) Charge
Conservation of - L
Particle # : Probabilt

SR 4-Tensor SR 4-Vector Vi — v — —
(2,0)-Tensor T*  M(1,0)-Tensor V* = V = (V°,v) (glé)4T-ScalarS Existing SR Rules V_VTfa\c/frETp ]V: ?(“VOT)Z "V_Tvuf _ (TVO ?
5 i P’ ,0)-Tensor * : = WV = = = (V%
(1 ,1) Tensor T", or T, SR 4- CoVector orentz Scala Quantum Prlnc|p|es = Lorentzic R
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4-Vector Quantum Probability |
ATensor Study NEWtonian Limit SciRealm.org

of Physical 4-Vectors John B. Wilson

4-ProbabilityCurrentDensity Jprob = (cpprob,j ) = (ih/2m,)(w*o[w]-o[w*]w) + (a/mo)(w*w)A

prob

Examine the temporal component:
Py = (N/2MC?)(W* B[WI-8{Y*] W) + (/M)W w)(@/c?)
P — (MW W) + (N(AP/MoC) (W) = (V)1 + qPo/Eo](W W)

prob

Typically, the particle EM potential energy (q@.) is much less than the particle rest energy (E.), else it could generate new particles.
So, take (q@. << E,), which gives the EM factor (q@./Eo) ~ 0

Now, taking the low-velocity limit (y — 1), Py = v[1 + ~0)(w*y), Py (p*y) = (pprobo) for |v|<<c
The Standard Born Probability Interpretation, (y*y) = (ppmb), only applies in the low-potential-energy & low-velocity limit

This is why the {non-positive-definite} probabilities and {|probabilities| > 1} in the RQM Klein-Gordon equation gave physicists fits,
and is the reason why one must regard the probabilities as charge conservation instead.

The original definition from SR is Continuity of Worldlines, a-meb = 0, for which all is good and well in the RQM version.
The definition says there are no external sources or sinks of probability = conservation of probability.

The Born idea that (pprob) — Sum[(p*y)] = 1 is just the Low-Velocity QM limit.
Only the non-EM rest version (ppmbo) = Sum[(y*y)] = 1 is true.
It is not a fundamental axiom, it is an emergent property which is valid only in the NRQM limit

We now multiply by charge (q) to instead get a
4-"Charge”CurrentDensity J = (cp, j)=qd = q(cppmb, jprob), which is the standard SR EM 4-CurrentDensity

probr
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SRQM 4-Vector Study:
The QM Compton Effect
A Compton Scattering it

Electron e initial  Photon y initial Compton Scattering Derivation : Compton Effect FR=n™ | 4-Gradient
4-Momentum e’ 4-WaveVector y P-P = (m.c)’ generally — 0 for photons (m,=0) Minkowski Metric a=(at/C,'V)
Peiz(meic’pei)z(Eei/c’pei) Kpiz(wpilc'kpi) PPh0t1.Pphot2 n h2K1.K2 = (h2w1w2/02)(1- If'i1.ﬁ2) = (h2w1w2/C2)(1'COS[g]) I i
P oPoass = NK-P = (hw/C)(1,A)-(E/c,p) = (hwic)(E/c - fi-p) = (AwE/c?) = (hoam) \ 4-Position | UL
P ot T Prnass = Ponot T P mass:4-MomentumConservation in Photon-Mass Interaction i o R=(ct,r) d/dt[..

4-Momentum y p —p' - '
P_=(m c,p )=(E /c,p )=(h)K | Pphot o Pmass P phot ZP mas's.reazrrange Wavs VeIo_crtg/ 4-Velocity

L = (Pphot +tP___-P phot) =(P'___..)isquare to get scalars Vo Vanase— C U=
4-TotalMomentum e+y P P _+2P P -2P -P' +P P __-2P -P' 4P P )=(P' =y(C,u)

P =(E./ =(H/ phot  phot phot mass phot phot mass mass mass phot phot phot mass
w=(E/C.pr)=(H/c.p;) (0+2P h t'P - 2P h t-Pl hot g (mOC)2 -2P ‘P’ hot +0)= (moc)2
=P _+P_ P .p il l’,“ass P’ S P” g P WEES (O K-K=(wo/c)? m_ - Energy:Mass
v’ phot  mass mass phot B phot phot =(moc/(h))2 E= mC2
©  Electron:Photon (hwm,) - (hw'm,) = (hww'/c?)(1 - cos[a]) 4-WaveVector
Interaction * (W-w')/(Ww') = (h/mocz)(1 - cos[a]) K—(w/c k)—(1/C:|I ﬁ/)()
" (1/w' - 1/w) = (A/m.c?)(1 — cos[a]) ~ an ’ P-P=(muo)’

4-TotalMomentum e™+y {w,=0} < {K-U=0} < {K is null} =(EJ/c)? ®-->»

Pﬁ=(ET/_cF,’p1);(H/c,PT) : Ak = (X - &) = (h/m.c)(1 — cos[g]) = Ao“ — cos[a])
oot The Compton Effect:Compton Scattering Endi Eou)O A-Momentum
de Broglie (h) P=(mc,p)=(E/c,p)

4-Momentum y with
=] = = P =hK =0} - {P-U=0} < i
P,=(m,C.P,)=(E,/c.p)=(MK, A=A /21 = (h/m.c) = Reduced Compton Wavelength {m.=0} < {PU0] SEEIE

A = (h/m.c) = Compton Wavelength (not a rest-wavelength, but the wavelength of a photon
@@ﬁ » c ( ) P M gth ( = 9 4 e 9 P Conservation 0f®

with the energy equivalent to a massive particle of rest-mass m,) 4-TotalMomentum
5 _4'M°me”_t”én e 42’\/2‘(’3\/?00:(03\( Calculates the wavelength shift of a photon scattering from an electron (ignoring spin) 4-TotalMomentum
—(m.c.p )=(E jcp,) pf \ "t 7 o Proves that light does not have a “wave-only” description, photon 4-Momentum required P.=(E./c,p.)=(H/c,p.)
Electron e final Photon y final E/w = yEolywo = Eo/wo = h K oton = (W/C)(1,0) = null {wA = vA = c} for photons L Ty

SR 4-Tensor

SR 4-Vector vy = W= TH =
(2,0)-Tensor T+ Trace[T"] =n, T =T =T

(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Existing SR Rules V-V = VP VY = [(VO) 02
y (0,0)-Tensor S o V=V VY= [(V) - vev] = (Vo)
DL i e Quantum Principles = Lorentz ol

(1,1)-Tensor T*, or T,
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SRQM 4-Vector Study:
The QM Aharonov-Bohm Effect
A Tensor Study QM POtentiaI ACDpot — -(q/h )'[pathA.dX SciRealm.org

of Physical 4-Vectors John B. Wilson
AB Potential
Aharonov-Bohm Effect P A -d X =(¢pdt-a-dx paceTime e 4-Gradient
. . Quantum EM Potential e J-X=4 ——
The EM 4-VectorPotential gives the Aharonov-Bohm Effect. 4-Displacement Dimensio Minkowski Metric =(9/c,-V)
@ = -(@MAX=-K -X AX=(cAt,Ax) ProperTime giPygy
dX= cqt.,dx erivative dide ]
or taking the differential... Wl |
dq)pot =- (a/M)A-dX Varoup Vonase= C 4-Velocity
U=y(c,u)
over a path... /
- Rest Ang est S.cala
ACD|oot = '[pathdcbpot Frequency Potential
A®  =-(g/h)]  A-dX ~ 4-WaveVector e IH{4- »
ACDp = —(q/’ﬁ)fp HL(@/c)(cdt) - a-dx] K=(w/c,k)=(w/c,whilv ) Energy:Mass
o a = mc3 = B
A® = -(q/h)_ (dt- a-dx) @ ——2)
pot path K, X=(wt-k:x) EVGD |-
=KeynX+Kpot X Charge I'.'l_ >
Note that both the Electric and Magnetic effects =K-X+(q/R)A-X Q> hil
come out by using the 4-Vector notation. =(wt-k-x)+(q/h)(pt-a-x 4-Momentum 4-PotentialMomentum
( )+(a/h)(pt-a-x) (1/h)
=Kdyn'x'i'Kpot'X By P=(mC,p)=(E/C,p) Q=(U/C'q)=qA
1 . S = -Pyynamict ~Ppotentia Einstein ini
Electric AB effect: A® (q/h)fpath(cpdt) i phasep* il e [+ ?;Agﬂ;}i?:g
Magnetic AB effect: A®_ =+ (q/h)] _ (a-dx) D P =hK P+Q
- " ‘:('\i\za’ecvlfg’fét‘(c'/:#;f @ 4-MomentumiIncField
Proves that the 4-VectorPotential A is more fundamental than =(w/ck, g 1/h) P=(E/c,p)=P+Q=P+qA
e and b fields, which are just components of the Faraday EM Tensor
SR 4-Tensor SR 4-Vector Trace[T"] = N T = T4, =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar

(2,0)-Tensor T*  M(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Existing SR Rules
(1 ,1 )-Tensor T or Tuv SR 4'COVeC_t0r (0,0)-Ten80r S Quantu m PrlnC|p|eS

0,1)-Tensor V, = (Vo,-V orentz Scala




SR — QM SRQM 4_Vector Study: 4-Vector SRQM Interpre;?tiQo'\;l\
The QM Josephson Junction Effect = SuperCurrent
sy EN 4=-VectorPotential A = -(h/q)a[ACDpot]

of Physical 4-Vectors John B. Wilson
| ——— AB Potential
osephson Effec A-dX= .
Aharono ey dX—((pdt-a o . [ X"]=n" 4-Gradient
The EM 4-VectorPotential gives the Aharonov-Bohm Effect. QuantUmiBHN e el OR=2 B \linkowski Metric | 2=(8/c,-V)
Phase deot = -(g/M)A-X = -Kpot-X 4-Displacement . -
AX=(cAt,Ax) e g TEToY
Rearrange the equation a bit: dX=(cdt,dx d/dt[..]
A-AX = -F();]/q)ACD X=(ct,x Wave Velocity
pot vV _*y o =¢? K -
d/di[A-AX] = d/de[-(N/q)AD_] = d/dT[A]-AX + A-d/ch[AX] = d/dr[A]-AX + A-U o _phase 4U\:/‘;£C:§’
Assume that ( d/dt[A]-AX ~0)  Which explains Josephson Effect criteria : Rest Ang getSt S{P?'a
[A-U] = d/de[-(W/q)AD_ ] AX ~ 0: small gap Frequency Ot
[U-A] =(U-9)[-(R/q)AD ] d/dt[A] ~ O: “critical current” & no voltage 4-WaveVector Rest [IH{4- »
po . - . - _ ~
[A] =(n/a)(@)[AD, ] d/dt/A]-AX ~ orthogonal: 77 Seted JE{eteguity, Energy:Mass 4-VectorPotential I
© E=mc =
A (hig)alad, | . A = (RIQ)K; K = (w/c,k) = (q/h)A = (q/h)(¢/c.a) E c,a)
(¢/c,a) = -(h/q)(d/c,-V)ADP
pot =K gyn X+Kpor X ® - Charge :".' |_} >
Lot part ( t= t)():((q//?l))?i( ) ‘ ’ 4-Momentum 4 PotentiaIMontum
EM ScalarPotential ¢ = -(h/q)(0)[AD ]; w = (g/h S(wi-kex)+(g/h)(pt-a-x 1/h - -
@ = AONEG L w= (o Ko XK i P=(me.p)=(Erc) ll Q=(Urc.a)=oA
' . _ = -Qgynamict ~Ppotential Einstein Minimal
If the charge (q) is a Cooper-electron-pair: { g = -2e } = O pnase ge %Eg“e ° Collplin
_ B . _ | = P+Q
Vo!tage V(t) = o@(t) = (h/2.e)(a/at)[Ad)pot], AngFreq w =-2eV/h e [ T i ———=
This is the superconducting phase evolution equation of the Josephson Effect K=(w/c,k,)=K+(q/h)A 1 P=(E/c,p,)=P+Q=P+qA

(h/2e) is defined to be the Magnetic Flux Quantum @, /h

SR 4-Tensor SR 4-Vector W] = W TH =
(2,0)-Tensor T*  0(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Existing SR Rules Tiacf [r1 N n““oTz T _ To 2
(1,1)-Tensor T% or T,¥ SR 4-CoVector (0,0)-Tensor S Quant Princiol V-V = Vi, V= [(V)7 - vev] = (Vo)
’ y orentz Scala uantum Frinciples = Lorentz Scalar




4-Vector SRQM Interpretation

o SRQM Symmetries: oram
Hamilton-Jacobi vs Relativistic Action
Josephson vs Aharonov-Bohm

A Tensor Stud - - SciRealm.or
of Physical 4-Vectors Differential (4-Vector) vs Integral (4-Scalar) sohm S Wis
Differential Formats : 4-Vectors : HJ Notice the Symmetry: Integral Formats : 4-Scalars : Action

SR Hamilton-Jacobi Equation SR Action Equation

Pr=P+qgA=P+Q = 'é[ASaction] = -0[NADynase]

> AS.cion = 'IpathPT -dX = 'Ipath(P+qA)'dX = '.[path(P+Q)'dX
= 'a[h(Achhase,dyn"' Aq)phase,potential)] =

hAchhase = h(Aq>phase,dyn + Aq)phase,potential

Dynamic Part Dynamic Part

4-M0mentum(free part) ACtion(free part) /0

4-TotMomentum Conservation P= 'a[ASact,dynamiC] ASact,dyn«'ﬂmic = hAchhase,dynamic
P_ = (P+Q) = (P+gA) ‘A' 'a[hAq)phase,dynamic] = -.[path(P)'dX ‘A' 1-Tot||;/|o_m(<—i;n:uor;1Pf;fgxation
Minimal Coupling ( h ) ( h ) T B
= (P.- =(P.- Minimal Couplin
P=(Praf)=(P-Q) 4-WaveVector SR Phaseee pary P=(P.qA) = (P Q)
K = 'a[ASact,dync]/F| Aq)phase,dyn = Asact,dyn/h
Potential Part -a[A(Dphase’dynamic] = 'J.path(K)'dX Potential Part

4-PotentialMomentum Action potential part)
Q = qA = 'a[ASact,potentiaI] < @ ASact,pot = IﬁAq)phase,potential =
'a[hAq)phase,potential] _Ipath(qA).dX = _Ipath(Q).dX

Technically, the standard Josephson Junction uses just
the temporal part { A = (¢/c,a) } & Cooper-pair-electrons

{g=-2e}
: . giving V(t) = @ = (h/2e)d/ot[AD,q].
Josephson Junction Relation There should be a spatial part as well.

A = -(h/q)9[ADpstential Aharonov-Bohm Relation
= '(1/q)a[ASact,pot] @ Aq)potential = '(q/h)jpathA'dX

= ~(1/h)]panQ-dX
Existing SR Rules
Quantum Principles

SR 4-Tensor SR 4-Vector =Asact,p0t/ h

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v)
(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S

orentz Scala



SR — QM 4-Vector SRQM Interpretation

SRQM Symmetries:
Schrodinger Relations
s GYyCliC Imaginary Time < Inv Temp &

4-Gradient

. f}_WaveVﬁctor , 0=0r=0/0R=0/0R"=0"=(d/c,-V/) =-J[(H/c,p,)-v(c,u)ldt
_KeK=(wick)=(wolc)U Ll —(8/c,-0,,-3,,-.) =Jly(H-p,"u]dr
=(9/cat,- ox,~91 ay,~%l 3z)

1
'

Einstein-de Broglie: P = hK — { : }
Complex Plane-Wave: K =i9 — { : }
Schrédinger Relations: P = ihd — { : }
Wick Rotation: R = -iRim — { : }
CyclicTemp: Rim = hO— { : }

}

4-Position 4-lmaginaryPosition Covariant 4-ThermalVector
R=R"=(ct,r)=<Event> EEEJELEL I peee wee 4-Inverse TemperatureMomentum
—(ct,x,y,2) Wick Rotation Rimn=Rin"=i(ct,r) ~ Inv Temp ©=0"=(0°,0)= (c/kBT u/kBT) (6./c)U
alt. notation X=X" ~ =(ict,ir)=(cT,ir) =

Boltzmann Distribution
P-O = (E/c,p)-(c/ksT,0)

= (E/keT-p-8) = (Eo/keT,)

SR 4-Tensor SR 4-Vector Trace[T"] = N T = T4, =T

2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V%,v SR 4-Scalar
(1 1()_T(gnsor T or T.V (1.0 SR 4- CoVector 50 (0,0)-Tensor S Note that the temperature here is relativistically direction-specific, unlike in the V:V = Vi, V" = [(Vo)2 -vv] = (Voo)2
’ ! y orentz Scala classical use of temperature. = Lorentz Scalar



SR — QM 4-Vector SRQM Interpretation

SRQM Symmetries:
Wave-Particle

A Tensor Study

SciRealm.org
of Physical 4-Vectors

John B. Wilson

P-P = (m,c)*= (EJ/C
4-Momentum
/ 1 P=(mC1p)=(E/C!p)

Treating motion like a particle o
Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

Hamilton-Jacobi SpaceTime
.- [_S ] pP= -a[Saction.free] o a. R=4
action,free i Dimension

[P-dR =-S
/

SR e Rest Mass:Energy . ______

Elnsteln
E=yE,=ymoc?>=mc?

(]
4'POS|t|On Einstein 4_Grad|ent o a[R]_ pv A
i ... =N _)Dlag[11_1=_11'1]
R=(ct,r) de Broglie a=(at/c,-V)H(at/c,-ax,-ay,-az) % Minkowski Metric

d’Alembertian 4 ProperTime
_ 2 \7.\ =
= (9,/c)*-V-V = (d./c £ U-9=d/dT=yd/dt

] Derivative

Wave Velocm@ N (Dphase,plan ’

K = -9[®

group phase phase,plane

phase,plane RestAngFrequency 4-WaveVector WaveVector Gradient
AN | K=(w/c,k)=(w/c,whlv Treating motion like a wave W _____ >
phase 0 o
K=-9[® ] Moving waves have a 4-Velocity
phase plane 4-WaveVector is the negative 4-Gradient of the SR Phase (®P)
See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition
for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.
{P = (E/c,p) =-9[S] = (-d/cat[S], )} {K = (w/c,k) = -9[D] = (-d/cat[D], )}
{temporal component} E = -0/dt[S] = -9[S] = | {temporal component} w = -9/dt[®] = -3 [D]
{ component} { component}
**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single free plane-wave.
Generally Action is for the 4-TotalMomentum P+ of a system. Generally WavePhase is for the 4-TotalWaveVector K; of a system.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T*  (1,0)-Tensor V¥ =V = (\,v)? SR 4-Scalar Existing SR Rules Tiacf [T1 = M
(1,1)-Tensor T* or T,¥ SR 4-CoVector (0,0)-Tensor S Quantum Principles V-V = Vi VY= [(V)° - vev] = (Vo)

orentz Scala = Lorentz Scalar




SR — QM 4-Vector SRQM Interpretation

SRQM Symmetries:
Relativistic Euler-Lagrange Equation
sy | N@ E@sy Derivation (U=(d/dt)R)—(dr=(d/d1)dy)  scremor

of Physical 4-Vectors John B. Wilson

Relativistic Dynamics Eqn (4-Vector)

Note Similarity: U = (d/doR
4-\elocity is ProperTime Y Classical limit, spatial component (3-vector) @ ------ >
Derivative of 4-Position e ; Natural
U= (did)R [mis] = [1/s]"[m] 4-Position "Orl[..] 4-Vector

e R=(ct,r) yd/dt[..] (1,0)-Tensor
Relativistic Euler-Lagrange Eqgn
dr = (d/dn)dy [1/m] = [1/s]*[s/m] du[U]=n*—Diag[1,-1,-1,-1]
The differential form just inverses ?;Zi-gil: . Minkowski Metric Proper Time mkiigsgigly:tzicgfas it's own
the dimensional units, so the A _ Ty ’ ;
placement of the R and U switch. U aREedr{g;f\;yd/dt zllr(;lrlla_r |r(1j\;de{se relatiolg
That is it: so simple! aR[R]hjlank—)Diiglu ’_t1.’_1 1 dt= }},’dT
Much, much easier than how o-4Ll-p INKOWSKI VIEtric A
| was taught in Grad School. ; . e : :

4-VelocityGradient 4-PositionGradient:4-Gradient [ISSEISRRS
d,F=du=0/0U=(du/c,-Vu) ~ 0’=9r=0/0R=0=(9/c,-V) [t

To complete the process and

create the Equations of Motion, [ IdCAAATRANIRUNCTIRUA) —(d/act,-0/0x,-0l0y,-0/0z) 41-\660_’:_0l‘
one just applies the base form Relativistic Euler-Lagrange Eqn (1,0)-Tensor
to a Lagrangian. n° Jr = (d/dt)dy nee
This can be: Raise inde d/oR = (d/dr)d/oU Raise inde
a classical Lagrangian d[L])/oR = (d/d7)d[L]/oU itionGradient One-F
a relativistic Lagrangian VelocityGradient One-Form [ROEE ez Nt se = Rt eeu el | ositionGradient One-Form
a Lorentz scalar Lagrangian 9,a=(u/c,Vu) J[L]/ar = (d/dt)d[L)/du Gradlerlt One-Form One-Form
a quantum Lagrangian a[L]/ax = (d/dt)a[l_]/au 3Ru—(3t/C,V) (0,1 )-Tensor
SR 4-Tensor SR 4-Vector Trace[TpV] =n TvV=TH =T
= v o W=\ = (\° SR 4-Scal /. H
(2,0)-Tensor T' (1,0)-Tensor V* =V = (V°,v) (0,0)-Te::o?r8 VAV = VY = [(VO) - vev] = (Vo)

(1,1)-Tensor T*, or T, SR 4-CoVector
, 0,1)-Tensor V, = (vo,-V

orentz Scala = Lorentz Scalar



Lorentz Transform Connection Map — Trace Identification
CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

A Tensor Study SciRealm.org
of Physical 4-Vectors John B. Wilson

All Lorentz Transforms have Tensor Invariants: Determinant = £1 and InnerProc
However, one can use the Tensor Invariant Trace to Identify CPT Symmetry & Ant

Tr[ AM-Rotate ] = { } Tr[AM-Identity] = Tr[AM-Boost] = {

AM-Flip-txyz=AM-ComboPT

AM-Flip-xyz=AM-Paritylnverse 1

AM-Flip-xy=AM-Rotate-xy(11), AM-Flip-xz=AM-Rotate-xz (1), AM-Flip-yz=AM-Rotate-yz() A ntiMatte r

Rotations

- -la)
AntiMatter AntiMatter

AM-Flip-t=AM-TimeReversal, AM-Flip-x, AM-Flip-y, AM-Flip-z

AM-Minkowski-ldentity :
Discrete AntiMatter (AM) Lorentz TransformType

Flips i Identity
Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example: :
SR:Lorentz Transform Trace = Sum (%) of EigenValues : Determinant = Product (IT) of EigenValues AntiMatter Boosts :
3V[RH'] = dR¥/ORY = N\, AL As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV’s).
AR = (A AR A = b = gt Create an Anti-Transform which has all EigenValue Tensor Invariants negated.
v~ ( )v AN AN | VN Y 3[-(EV’s)] = -Z[EV’s]: The Anti-Transform has negative Trace of the Transform.

/\”G/\Vg = Ngg , RN I[-(EV’s)] = (-1)II[EV’s] = II[EV’s]: The Anti-Transform has equal Determinant. v
0 b -
m’ (m’ The Trace Invariant identifies a “Dual” Negative-Side for all Lorentz Transforms.



SR — QM 4-Vector SRQM Interpretation

SRQM 4-Vector Study:
Einstein-de Broglie
S o The (h) Con nection b

M[X1=n" 4-Gradient
B Minkowski Metric =(9/c,-V)
4-Displacement

P = hK: Basic Einstein-de Broglie AX=(cAt,Ax) ProperTime U-a[..]
PtQ=P +Q dX=(cdt,dx Derivative d/dt[..]

dyn po X=(ct,x Wave Velocity |

The h Connection

Q
AL

+Q = + xy =
P+Q h(Kdyn Kl_’°t) Voo Vore Rl 4-Velocity
Sum over n particles: Pr =  (P+Q),Kr = Zn(Kdyn+Kpot) U=y(c,u) Hamilton-
P: = hK; Rest Ang Eetst St.calzla Pﬁc?ab[ls ]
P+ X = hK¢X Frequency ClEl
(P+-X)= h(K+-X) 4-Wave\Vector Rest [IH44- >
'Saction = -hq)phase K=(w/c,k)=(w/c,wh/ Vi Energy:Mass 4- VectorPotentlaI

- hd E = mcj A=(¢p/c,a)
action phase
= Q |r > ’I/h ’

= =K - Charge |- = |

a[Saction] ha[q)phase] =K-X+(qg/(h))A-X d >
P: = hKr =(wt-k-x)+(q/(P))((pt-a-x) 1/h 4-PotentiaIMomentum
{SR Hamilton-Jacobi} = h{QM Complex Plane-Waves} =KaynX+Kpor X gL P=(mc.p)=(E/c,p) Q=(U/c,q)=qA

= '¢dynamic+ 'q)potential Einstein M|n|mal
= '¢f7phase de Broglle ° Coupling
. . ) | P =hK P+Q I
The SR Hamilton-Jacobi Equation, 4 WaveVectorlncField 4-MomentumIncField
and the QM idea of Complex Plane-Waves, =(w/c,k,)=K+(g/(h))A ‘@ P=(E/c,p,)=P+Q=P+gA Complex
are related by a simple constant (h) relation. () P'ﬁ"ﬁ'Vg[a(;fS
B
SR 4-Tensor SR 4-Vector . WM=n, TW=T=T

(20)Tensor T+ (1.0} Tensor v* =V = (v/,v) P SR 4-Scalar Existing SR Rules V_VT;a\c/’frET 1= ?(“VOT)Z o) =

(1,1)-Tensor T* or T,¥ SR 4-CoVector ((c))’roe)r;-tr;gic;rla h}uantum Principles =HL0rentZ Scalar




SR —- QM

4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Study:

A Tensor Study
of Physical 4-Vectors

Dimensionless Physical Objects

There are a number of dimensionless physical objects in SR
that can be constructed from Physical 4-Vectors.
Most are 4-Scalars, but there are few 4-Vector and 4-Tensors.

9-X=4: SpaceTime Dimension
d"[X]=n": The SR Minkowski Metric

T-T= 1: Lorentz Scalar “Magnitude” of the 4-UnitTemporal
T-S= 0: Lorentz Scalar of 4-UnitTemporal with 4-UnitSpatial
S:S= -1: Lorentz Scalar “Magnitude” of the 4-UnitSpatial
K-X=(wt-k-x) = -CDphase ayn- Phase of an SR Wave

used in SRQM wave functions y=a*e"-(K-X)

(P-©) = (Eo/ksT,): 4-Momentum with 4-InvThermalMomentum
used in statistical mechanics particle distributions
F(state) ~ e*-(P-O) = e™-(Eo/ksTo)

a = (1/41e,)(e?/hc) = (uo/41T)(ce?/h): Fine Structure Constant
constructed from Lorentz 4-Scalars, which are themselves
constructed from 4-Vectors via the Lorentz Scalar Product.
ex. h=(P-X)/(K-X); g=(Q-X)/(A-X) —e for electron; c=(T-U)
Mo={(2-9)[A]-X}/(J-X) when (2-A)=0

{y*}: Dirac Gamma Matrix (“4-Vector”) {4 component}
{o*}: Pauli Spin Matrix (“4-Vector”) {2 component}
Components are matrices of numbers, not just numbers

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector

SR 4-Scalar
(0,0)-Tensor S
orentz Scala

(1,1)-Tensor T*, or T,

Dimensionless Physical Objects

SciRealm.org
John B. Wilson

HMX]=nt 4-Gradient @:0) —
. i - e i B (3:0)A-0(8-A)=pod
Minkowski Metric 4 (at/c’ V) Maxwell EM Wave Eqn

U-d[..] EM
4-UnitTemporal d/dt[..] Constants
T=y(1,B) |
=u/ @
@) " 4-\elocity

U=y(c,u)
4-UnitSpatial
S=yp(11-B,1)

4-Displacement
AX=(cAt,Ax)
dX=(cdt,dx
4-Position

ProperTime
Derivative

Rest Charge 0 -

4-ChargeFlux
4-C

Density

Rest Scalar B

Potential@ o
A 4-ThermalVector

"H'H . il 4-InverseTempMomentum

4-WaveVector Rest Ang ' ©=(6.8)=(c/ksT,ulksT)

K=(uo/c,k)=(w/c,uon/vp Frequency

4-VectorPotential

Rest @ A=(p/c,a) ' Rest Inverse
Eneray:Mass % . TemperatureEnergy
gél: me? EM Ollrl ' B=1/keT in this case, not vic
@ @ ---» Charge ‘h.l |} - %> Unfortunate notational clash
1/h
(v) 4-PotentialMomentum

4-Momentum

Einstein P=(mc,p)=(E/c,p) Q=(U/c,q)=qA

de Broglie Minimal

P =hK ° Coupling
P+Q

4-MomentumlIncField

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar

Existing SR Rules
Quantum Principles




SR — QM 4-Vector SRQM Interpretation

SRQM: QM Axioms Unnecessary
s QN Principles emerge fromSR . .

of Physical 4-Vectors John B. Wilson

QM is derivable from SR plus a few empirical facts — the “QM Axioms” aren't necessary
These properties are either empirically measured or are emergent from SR properties...

3 “QM Axioms” are really just empirical constant relations between purely SR 4-Vectors:
Particle-Wave Duality [(P) = h(K)]
Unitary Evolution [0 = (-)K]
Operator Formalism [(9) = -iK]

2 “QM Axioms” are just the result of the Klein-Gordon Equation being a linear wave PDE:
Hilbert Space Representation (<bra|,|ket>, wavefunctions, etc.) & The Principle of Superposition

3 “QM Axioms” are a property of the Minkowski Metric and the empirical fact of Operator Formalism
The Canonical Commutation Relation
The Heisenberg Uncertainty Principle (time-like-separated measurement exchange)
The Pauli Exclusion Principle (space-like-separated particle exchange)

1 “QM Axiom” only holds in the NRQM case
The Born QM Probability Interpretation — Not applicable to RQM, use Conservation of Worldlines instead

1 “QM Axiom” is really just another level of limiting cases, just like SR — CM in limit of low velocity
The QM Correspondence Principle ( QM — CM in limit of {V?[¢] << (V[$])?} )

SRQM: A treatise of SR—QM by John B. Wilson
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SR —- QM

A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

SRQM Interpretation:

of QM

Relational QM & EPR

The SRQM interpretation fits fairly well with Carlo Rovelli's Relational QM interpretation:

Relational QM treats the state of a quantum system as being observer-dependent, that is, the QM State is the relation
between the observer and the system. This is inspired by the key idea behind Special Relativity, that the details of an
observation depend on the reference frame of the observer.

All systems are quantum systems: no artificial Copenhagen dichotomy between classical/macroscopic/conscious objects
and quantum objects.

The QM States reflect the observers' information about a quantum system.
Wave function “collapse” is informational — not physical. A particle always knows it's complete properties. An observer has
at best only partial information about the particle’s properties.

No Spooky Action at a Distance. When a measurement is done locally on an entangled system, it is only the partial
information about the distant entangled state that “changes/becomes-available-instantaneously”. There is no superluminal
signal. Measuring/physically-changing the local particle does not physically change the distant particle.

ex. Place two identical-except-for-color marbles into a box, close lid, and shake. Without looking, pick one marble at
random and place it into another box. Send that box very far away. After receiving signal of the far box arrival at a distant
point, open the near box and look at the marble. You now instantaneously know the far marble’s color as well. The
information did not come by signal. You already had the possibilities (partial knowledge). Looking at the near marble color
simply reduced the partial knowledge of both marble’s color to complete knowledge of both marbles’ color. No signal was
required, superluminal or otherwise.

ex. The quantum version of the same experiment uses the spin of entangled particles. When measured on the same axis,
one will always be spin-up, the other will be spin-down. It is conceptually analogous. Entanglement is only about
correlations of system that interacted in the past and are determined by conservation laws.

John B. Wilson



SR —- QM

A Tensor Study

of Physical 4-Vectors

4-Vector SRQM Interpretation

SRQM Interpretation:
Interpretation of EPR-Bell Experiment

of QM

SciRealm.org

Einstein and Bohr can both be “right” about EPR:
Per Einstein: The QM State measured is not a “complete” description, just one observer's point-of-view.
Per Bohr: The QM State measured is a “complete” description, it's all that a single observer can get.

The point is that many observers can all see the “same” system, but see different facets of it. But a single
measurement is the maximal information that a single observer can get without re-interacting with the system,
which of course changes the system in general. Remember, the Heisenberg Uncertainty comes from non-zero
commutation properties which *require separate measurement arrangements*. The properties of a particle are
always there. Properties define particles. We as observers simply have only partial information about them.

Relativistic QM, being derived from SR, should be local — The low-velocity limit to QM may give unexpected
anomalous results if taken out of context, or out of the applicable validity range, such as with velocity addition
V12 = Vi+V,, Where the correct formula should be the relativistic velocity composition viz = (V4+V2)/[1+vV2/c?]

These ideas lead to the conclusion that the wavefunction is just one observer’s state of information about a
physical system, not the state of the physical system itself. The “collapse” of the wavefunction is simply the
change in an observer’s information about a system brought about by a measurement or, in the case of EPR, an
inference about the physical state.

EPR doesn’t break Heisenberg because measurements are made on different particles. The happy fact is that
those particles interacted and became correlated in the causal past. The EPR-Bell experiments prove that it is
possible to maintain those correlations over long distances. It does not prove superluminal signaling

John B. Wilson

SRQM: A treatise of SR—QM by John B. Wilson



mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

SRQM Interpretation:
e Range-of-Validity Facts & Fallacies .....

of Physical 4-Vectors John B. Wllson

We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

Examples

*The limit of h—0 { }:
his a Lorentz Scalar Invariant and Fundamental Physical Constant. It never becomes 0. {Fact}

*The classical commutator being zero [p*,x] = 0 { }:
[P¥,X"] = ihn® ; [p* ] = -ihdY ; [p°x°] = [Elc,ct] = [E 1] = ih; Again, it never becomes 0 {Fact}

*Using Maxwell-Boltzmann (distinguishable) statistics for counting probabilities of (indistinguishable) quantum states { }:
Must use Fermi-Dirac statistics for Fermions:Spin=(n+1/2); Bose-Einstein statistics for Bosons:Spin=(n) {Fact}

*Using sums of classical probabilities on quantum states { }:
Must use sums of quantum probability-amplitudes {Fact}

*Ignoring phase cross-terms and interference effects in calculations { %
Quantum systems and entanglement require phase cross-terms {Fact}

*Assuming that one can simultaneously “measure” non-commuting properties at a single spacetime event { I

Particle properties always exist. However, non-commuting ones require separate measurement arrangements to get information about the properties.
The required measurement arrangements on a single particle/worldline are at best sequential events, where the temporal order plays a role; {Fact}
However, EPR allows one to “infer (not measure)” the other property of a particle by the separate measurement of an entangled partner. {Fact}

This does not break Heisenberg Uncertainty, which is about the order of operations (measurement events) on a single worldline. {Fact}

In the entangled case, both/all of the entangled partners share common past-causal entanglement events, typically due to a conservation law. {Fact}
Information is not transmitted at FTL. The particles simply carried their normal respective “correlated” properties (no hidden variables) with them. {Fact}

*Assuming that QM is a generalization of CM, or that classical probabilities apply to QM { }:
CM is a limiting-case of QM for when changes in a system by a few quanta have a negligible effect on the whole/overall system. {Fact}



SR — QM 4-Vector SRQM Interpretation

SRQM Interpretation: |
Quantum Information

of Physical 4-Vectors John B. Wilson

We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}

No-Communication Theorem/No-Signaling:

A no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making
a measurement of a subsystem of the total state, to communicate information to another observer. The theorem shows that quantum correlations do not lead to what
could be referred to as "spooky communication at a distance". SRQM: There is no FTL signaling/communication.

No-Teleportation Theorem:

The no-teleportation theorem stems from the Heisenberg uncertainty principle and the EPR paradox: although a qubit |¢> can be imagined to be a specific direction on
the Bloch sphere, that direction cannot be measured precisely, for the general case |p>. The no-teleportation theorem is implied by the no-cloning theorem.

SRQM: Ket states are informational, not physical.

No-Cloning Theorem:
In physics, the no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. This no-go theorem of quantum

mechanics proves the impossibility of a simple perfect non-disturbing measurement scheme. The no-cloning theorem is normally stated and proven for pure states;
the no-broadcast theorem generalizes this result to mixed states. SRQM: Measurements are arrangements of particles that interact with a subject particle.

No-Broadcast Theorem:

Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more
recipients. For multiple recipients to each receive the state, there must be, in some sense, a way of duplicating the state. The no-broadcast theorem generalizes the
no-cloning theorem for mixed states. The no-cloning theorem says that it is impossible to create two copies of an unknown state given a single copy of the state.
SRQM: Conservation of worldlines.

No-Deleting Theorem:

In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it
is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem, which states that arbitrary states cannot be copied.

SRQM: Conservation of worldlines.

No-Hiding Theorem:

the no-hiding theorem is the ultimate proof of the conservation of quantum information. The importance of the no-hiding theorem is that it proves the conservation of
wave function in quantum theory.

SRQM: Conservation of worldlines. RQM wavefunctions are Lorentz Scalars (spin=0), Spinors (spin=1/2), 4-Vectors (spin=1), all of which are Lorentz Invariant.
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SRQM Interpretation: |
Quantum Information

of Physical 4-Vectors John B. Wilson

We should not be surprised by the “quantum” probabilities being correct instead of “classical” probabilities in the EPR/Bell-Inequalities experiments.

Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}

Quantum information (qubits) differs strongly from classical information, epitomized by the bit, in many striking and unfamiliar ways. Among these are the following:

A unit of quantum information is the qubit. Unlike classical digital states (which are discrete), a qubit is continuous-valued, describable by a direction on the Bloch
sphere. Despite being continuously valued in this way, a qubit is the smallest possible unit of quantum information, as despite the qubit state being continuously-
valued, it is impossible to measure the value precisely.

A qubit cannot be (wholly) converted into classical bits; that is, it cannot be "read". This is the no-teleportation theorem.

Despite the awkwardly-named no-teleportation theorem, qubits can be moved from one physical particle to another, by means of quantum teleportation. That is, qubits
can be transported, independently of the underlying physical particle. SRQM: Ket states are informational, not physical.

An arbitrary qubit can neither be copied, nor destroyed. This is the content of the no-cloning theorem and the no-deleting theorem. SRQM: Conservation of worldlines.

Although a single qubit can be transported from place to place (e.g. via quantum teleportation), it cannot be delivered to multiple recipients; this is the no-broadcast
theorem, and is essentially implied by the no-cloning theorem. SRQM: Conservation of worldlines.

Qubits can be changed, by applying linear transformations or quantum gates to them, to alter their state. While classical gates correspond to the familiar operations of
Boolean logic, quantum gates are physical unitary operators that in the case of qubits correspond to rotations of the Bloch sphere.

Due to the volatility of quantum systems and the impossibility of copying states, the storing of quantum information is much more difficult than storing classical
information. Nevertheless, with the use of quantum error correction quantum information can still be reliably stored in principle. The existence of quantum error
correcting codes has also led to the possibility of fault tolerant quantum computation.

Classical bits can be encoded into and subsequently retrieved from configurations of qubits, through the use of quantum gates. By itself, a single qubit can convey no
more than one bit of accessible classical information about its preparation. This is Holevo's theorem. However, in superdense coding a sender, by acting on one of two
entangled qubits, can convey two bits of accessible information about their joint state to a receiver.

Quantum information can be moved about, in a quantum channel, analogous to the concept of a classical communications channel. Quantum messages have a finite
size, measured in qubits; quantum channels have a finite channel capacity, measured in qubits per second.
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Minkowski still applies in local GR
QM is a local phenomenon

of Physical 4-Vectors John B. Wilson

The QM Schrodinger Equation is not fundamental. It is just the low-energy limiting-case of the RQM
Klein-Gordon Equation. All of the standard QM Axioms are shown to be empirically measured constants
or emergent properties of SR. It is a bad approach to start with NRQM as an axiomatic starting point and
try to generalize it to RQM, in the same way that one cannot start with CM and derive SR. Since QM
*can* be derived from SR, this partially explains the difficulty of uniting QM with GR:

QM is not a “separate formalism” outside of SR that can be used to “quantize” just anything...

Strictly speaking, the use of the Minkowski space to describe physical systems over finite distances
applies only in the SR limit of systems without significant gravitation. In the case of significant gravitation,
SpaceTime becomes curved and one must abandon SR in favor of the full theory of GR.

Nevertheless, even in such cases, based on the GR Equivalence Principle, Minkowski space is still a
good description in a local region surrounding any point (barring gravitational singularities). More
abstractly, we say that in the presence of gravity, SpaceTime is described by a curved 4-dimensional
manifold for which the tangent space to any point is a 4-dimensional Minkowski Space. Thus, the
structure of Minkowski Space is still essential in the description of GR.

So, even in GR, at the local level things are considered to be Minkowskian:
i.,e. SR — QM “lives inside the surface” of this local SpaceTime, GR curves the surface.

SRQM: A treatise of SR—QM by John B. Wilson
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SRQM Interpretation: Main Result
QM is derivable from SR!

of Physical 4-Vectors John B. Wilson

Hopefully, this interpretation will shed light on why Quantum Gravity has been so elusive. Basically, QM rules of “quantization” don’t apply to GR.
They are a manifestation-of/derivation-from SR. Relativity *is* the “Theory of Measurement” that QM has been looking for.

This would explain why no one has been able to produce a successful theory of Quantum Gravity,
and why there have been no violations of Lorentz Invariance nor of the Equivalence Principle.

If quantum effects “live” in Minkowski SpaceTime with SR,
then GR curvature effects are at a level above the RQM description, and two levels above standard QM.
SR+QM are “in” SpaceTime, GR is the “shape” of SpaceTime...

Thus, this SRQM Treatise explains the following:

. Why GR works so well in it's realm of applicability {large scale systems}.

. Why QM works so well in it's realm of applicability {micro scale systems and certain macroscopic systems}.
i.e. The tangent space to any point in GR curvature is locally Minkowskian, and thus QM is typically found in small local volumes...

. Why RQM explains more stuff than QM without SR {because QM is just an approximation: the low-velocity limiting-case of RQM}.

. Why all attempts to "quantize gravity" have failed {essentially, everyone has been trying to put the cart (QM) before the horse (GR)}.

. Why all attempts to modify GR keep conflicting with experimental data {because GR is apparently fundamental — passed all tests to-date}.
. Why QM works perfectly well with SR as RQM but not with GR {because QM is derivable from SR, hence a manifestation of SR rules}.

. How Minkowski Space, 4-Vectors, and Lorentz Invariants play vital roles in RQM, and give the SROM Interpretation of Quantum Mechanics.

SRQM: A treatise of SR—QM by John B. Wilson
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SR —- QM

SRQM Chart:

Special Relativity — Quantum Mechanics

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

WDy SR—QM Interpretation Simplified ....romese

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR,

although technically SR is itself the Minkowski-SpaceTime low-curvature:“flat” limiting-case of GR.

{c,7,m,,h,i} = {c:SpeedOfLight, t:ProperTime, m,:RestMass, h:Dirac/PlanckReducedConstant(h=h/21r), i:lmaginaryNumber\[-1]}:

are all Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants
4-Position R = (ct,r) = (R'R) = (CT)
4-\elocity U =y(c,u) = (U-0)R=("/4)R=dR/dt (U-U) = (c)?
4-Momentum P = (E/c,p) =m,U (P-P) = (m.c)®
4-WaveVector K= (w/c,k) = P/h (K-K) = (moc/h)?
4-Gradient 0= ( ) =-iK (o0

KG Equation: vl<<c
d) = (-imoc/h)? = -(m,c/h)* = QM Relation - RQM — QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |[v| << ¢}, giving the Schrodinger Egn. This fundamental KG Relation also leads to the other

Quantum Wave Equations: RQM (massiess) RQM

{lv|]=c:m,=0} {0<=|v|]<c:m,>0}
spin=0 boson field = 4-Scalar: Free Scalar Wave (Higgs) Klein-Gordon
spin=1/2 fermion field = 4-Spinor: Weyl Dirac (w/ EM charge)
spin=1 boson field = 4-Vector: Maxwell (EM photonic) Proca

QM
{0<=|v|]<<c:m,>0}
Schrédinger (regular QM)

Pauli (w/ EM charge)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
Special Relativity — Quantum Mechanics .
e RoadMap of SR—>QM s ST

*START HE%E*: 4-Position=Location of SR <Events>in SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime “Flat” 4D Metric , , 4-Position R* ity= i
SR Lorentz Transforms o A[RYI=NAY, R=(ct r\=<E . 5 b 4-Velocity=Motion
SR Action — 4-Momentum S Lorentz 2LV Sl Dorvatival M o= U (s
SR Phase — 4-WaveVector M'&Z‘i;’,\’:k' R-R=(ct)*-rr It?oipsgft-ilc-:lg: gswaves
. N ,
e e DY
8-8=(9,/c)>-V-V 4-Gradient ¢" ProperTime 4-Velocity U*
= -(MoC/N)? = -(Wo/C)? 0=0/0R, . U-0=d/dt=yd/dt Matter Wave U=y(c,u)=dR/dt
_ 2 =(at /C,’V)='IK Der|Vat|Ve K_R_q) P_R_S group* phase= 4
= (81/0) B " phasefree B ey RestAngular ( )2
: SR Phase SR Action Frequency w, =(c
SR d’Alembertian & -0 @phase o0 1=K -a[]=P
Klein-Gordon Relativistic . Hamilton-Jacobi Phase & Action
4-WaveVector L e
Quantum Wave Relation Complex Pr = -9[S] bl el Einstein
Schrodinger QWE is Plane-Waves @ E = mc? = ymoc?= yE,
Rest Mass mq:Rest Energy E,

{lv]<<c} limit of KG QWE (- )0
[ SR — QM | S @
=

4-\WWaveVector=Substantiation
of SR Wave <Events>

4-\WaveVector K"

4-Momentum=Substantiation

oscillations proportional to K=(w/c,k)=(w/c,wn/Vpnas) 4-Momentum P* of SR Particle <Events>
mass:energy & 3-momentum =(1/cF,A/x)=(wo/c?)U=P/h SR e P=(mc,p)=(E/c,p)=m,U mass:energy & 3-momentum
Dirac:Planck Constant h=h/2m
K-K=(w/c)*-k-k P =K G, P-P=(E/c)-p-p

= (moc/h)? = (wo/c)? = (1/cT,)? % = (m.c)’ = (E./c)?
1/h

SR 4-Tensor SR 4-Vector
=V= : - Trace[T"] = NuT" = T4, = T
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar W H
(11)Tensor T, or T, SR 4-Covector (0.0)-Tensor S xisting SR Rules VAV = Vi = [V - vev] = (Vo
, - orentz Scala ( QM Principles ) = Lorentz Scalar

0,1)-Tensor V, = (vo,-V
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SRQM Diagram:
Special Relativity — Quantum Mechanics . .

= John B. Wilson
wees.. RoadMap of SR—QM (EM Potential) ...
of Physical 4-Vectors oa ap O o en Ia http://scirealm.org/SRQM.pdf

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

4-Gradient=Alteration of SR <Eventis>
: o R-R = (ct)%rr

SR SpaceTime Dimension=4

EM Faraday

SR SpaceTime 4D Metric SN ) - 4-Position = (cT)?
gskotr_entz TTR/?formst BV[R”']=/\”!V R=(Ct,r) ( ) U-u-= ,Y(Zc(:();:_u.u) apqv_gvAu:va
ction — 4-Momentum - au[Rv]znuv Lorentz —<Event> = -lensor
SR Phase — 4-WaveVector : h . —SCVENL~ K VO/AUL..] PN - i
SR Proper Time Minkowski ProperTime W |<Events> have 4-Velocity=Motion
SR & QM Waves Dervatis 4ﬁvez?;cl|;t)y in SR SpaceTime as both
. — =Y(C, particles & waves
SR — RQM Klein-Gordon  pMeIeTe[IYal: U-9=d/dt=yd/dt -R=S ‘ -
Relativistic Quantum 0=(3/c,-V) . ‘R=0 R=9 @
Particle in EM Potential t -’ Derivative .R=D i "I'H i >
d’Alembertian Wave Equation i EM y
00 = (8t/c)2-V-_V 4-EMVectorPotential
= (aT+(|q/h);L\)-(aT+(|q/h2)A) Shasefree Hamilton- @ @ A=(op/c,a)
= -(wo/C)” = -(moc/h) - ' Jacobi STSE
= (3./ 2 ‘(_vl)' -a[cD e -a[Saction,free P Pr=-9[S] Wave Velocity E=mc’= 'Ym002= YE, EM @
= (é-/c) Complex O[S _]=P VotV = ch "
Limit: { |v|<<c Plane-Waves action T e PESC arge l. |
o> hel il ke
(ina) ~ [ G0 + (m.c?) + (nVrrqayi(2m,) ] Kr=-a01 M+ i
\(,:/?ti‘%;tér:/ti; ('\;‘zvg:;‘i) (/rfg;;) ] 4-WaveVector 4-Momentum 4-PotentialMomentum
=Schrédinger QM Equation (EM potential) K=(w/c,k) Einstein, de Broglie P=(mc,p)=(E/c,p) Q=(V/c,q)=q(9/c,a)
[ SR — QM J** P = K
4-TotMom C ti L+ ini '
SR Wave <Events> have KK = (w/c)-kk (m ) P-P = (E/c)*p-p P - (PTEI) =O?I§i2/:)lon P =N(IIF?TI$§)C=O(UPPT|-IB%
4-Wﬁ\veVector=Substalntiation = (KT-(q/h)Az).(KT-(q/hz)A) SR Particle <Events> have | = (P-GA):(P-gA) 4-TotalMomentum
oscillations proportional to = (moc/h)? = (wo/C 4-Momentum=Substantiation = 2 = 2 - =
mass:energy & 3-momentum ( y oo mass:energy & 3-momentum (mac)” = (Ed/C) P_=(E./c,p,)=((E+q®)/c,ptqa)

SR 4-Tensor SR 4-Vector o W] = Wo— TH =
(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (\,v) P’ SR 4-Scalar Existing SR Rules V.VT;a\c/;?rET ! i ?(HJOT)z . V.va = (1\-,0 Y
(1.1)-Tensor T, or T, SR 4-CoVector (L) el Quantum Principles = Lorentz Scalar :

orentz Scala
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4-Vector SRQM Interpretation

SRQM Diagram: SRQM 4-Vectors and
. Lorentz Scalars | Physical Constants _ s

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

of QM

of Physical 4-Vectors

- o-R=4 : Minkowski & Lorentz s 1
° . I SpaceTime 4-Acce:|e,rat|on 4-Polarization [EnES J[R]=¢"[R']=n""§ o, [R"]=A", _ A 4-Gradient
4-Displacement i i A=y(cy’,y'utya) E=(€%¢)=(e-B,c) EEUEIY Metric ansformg

AR=(cAtAr) [T
dR=(cdt.d

' J=(d/c,-
an outcome of k- ( t V)
Poincaré Invariance, V1 =4= bV .. UtV
s’.s)=(s'B,s) ¥V adeti® P

Conservation of Complex Hamilton-
dl.. . Polarization:Spin ---.p A-TotalWaveVector Plane-Waves Jacobi
PP veront o N =it h is Rest Spatial Sum of Plane-Waves K. =-9[®.K=id P, =-9[S]
nvariant interva
R-R=(Cty-rr = (Ct) - @ 4-WaveVector @ 4-Total\WaveVector
-2 K=(w/c,k)=(w/c,wn/vphase) K,=(w./c.k,)

4-UnitTemporal
T=fy(1 , 3 group  phase
Time:Space (T-T= 1 gfp EZ%G 4-Velocity ReStAngFrequehcy ) ‘%
Orthogonal U_y(C u) Eln;telnr h dItL. ]
=v(C, e Broglie — v . F=y(E'/c,f P =hK_
% e S @ PIK @ N J;P/dr) 4-TotalMomentum
=mc 5

i i -V P_=(E./c,p,)=(H/c,
4-UnitSpatial Rest Energy:Mass ProperTime >} - = ICapST) (H/e.p,)
S=ygn(A-B,N), Porore = X*\p Rest Charge P=(mc,p)=(E/c,p) Derivative =-0[ Sacton]

Wave Velocity {(),=0} < {K-U=0} < {K is null =-0[Dphase]

Einstein M
4-Force de Broglie (h)

=) Pgorn De"S”y@ - €D (M3=0} > {P-U=0} > {P is nul ﬁ?ﬁﬁ\ﬂﬁfgﬂtﬁ;@
‘ Sood Probability Rule : Rest Scalar ||H | } > Sum of Momenta
NUmDerFl Rest Prob Density . ---pp  Potential Minimal c 4-MomentumincField
) 4-EMVectorPotential Coupling P =(E/c,p.)=P+Q=P+gA
N=(nc,n)=n(c,u SVt 4-ChargeFlux EMCharge  p,q ~(E/c.p) 9

4-ProbCurrDensity a B i)

4-CurrentDensity
4-ProbabilityFlux

J=(oc.i)= {9:=0} < {A-U=0} < {A is null} Q 4-EMPotentialMomentum SESIale]YEsiErTEN
=(pc.j)=p(c,u) _ -

J=( ) Q=(U/c,q)=qA

pro ’

SR 4-Tensor SR 4-Vector

. . Wy = W= TH =
(2,0)-Tensor T+ (1,0)-Tensor V* =V = (v",v)jf SR 4-Scalar Existing SR Rules V-VTIa\(;‘?[TV]V . r[l(U\;OT)z : v-Tv]” - (Tv° .
(1,1)-Tensor T% or T,¥ . 1S$ 4-Co\\l/ector (%2;{;“8?;6‘3 Quantum Principles Nuv 0
, ,1)-Tensor V, = (Vo,-v

= Lorentz Scalar
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Special Relativity -~ Quantum Mechanics
The SRQM Interpretation: Links

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

See also:

nttp://scirealm.org/SRQM.html (it discussion)
nttp://scirealm.org/SRQM-RoadMap.html (main sram website)
nttp://scirealm.org/4Vectors.html (-vector study)
nttp://scirealm.org/SRQM-Tensors.html rensor & 4-vector Calculator)
nttp://scirealm.org/SciCalculator.html (complex-capable RPN Calculator)

or Google “SRQM”

http://SCireaIm.Org/S RQM pdf (this document: most current ver. at SciRealm.org)

SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM 4-Vector SRQM Interpretation

The 4-Vector SRQM Interpretation
i, QM is derivable from SR!

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM or [SR—QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

quantum
relativity

LLANAY T

4

Cal AUV

SRQM = SciRealm QM? A happy coincidence

SRQM: A treatise of SR—QM by John B. Wilson

Ambigrams
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