Solving the $n_{1} \times n_{2} \times n_{3}$ Points Problem for $n_{3}<6$

Marco Ripà
sPIqr Society, World Intelligence Network
Rome, Italy
e-mail: marcokrt1984@yahoo.it

Abstract

In this paper, we show enhanced upper bounds of the nontrivial $n _1 \times n _2 \times n _3$ points problem for every $n_{-} 1 \leq n_{_} 2 \leq n _3<6$. We present new patterns that drastically improve the previously known algorithms for finding minimum-link covering paths, completely solving the fundamental case $n_{-} 1=n_{-} 2=n _3=3$.

Keywords: Graph theory, Topology, Three-dimensional, Creative thinking, Link-length, Connectivity, Outside the box, Upper bound, Point, Game, Covering path.

2010 Mathematics Subject Classification: 91A43, 05C57.

1 Introduction

The $n_{1} \times n_{2} \times n_{3}$ points problem [11] is a three-dimensional extension of the classic nine-dot problem appeared in Samuel Loyd's Cyclopedia of Puzzles [1-8], and it is related to the well known NP-hard traveling salesman problem, minimizing the number of turns in the tour instead of the total distance traveled [1-13].

Given $n_{1} \cdot n_{2} \cdot n_{3}$ points in \mathbb{R}^{3}, our goal is to visit all of them (at least once) with a polygonal path that has the minimum number of line segments connected at their end-points (links or generically lines), the so called Minimum-link Covering Path [2-3-4-7]. In particular, we are interested in the best solutions for the nontrivial $n_{1} \times n_{2} \times n_{3}$ dots problem, where (by definition) $1 \leq n_{1} \leq n_{2} \leq n_{3}$ and $n_{3}<6$.

Let $h_{l}\left(n_{1}, n_{2}, n_{3}\right) \leq h\left(n_{1}, n_{2}, n_{3}\right) \leq h_{u}\left(n_{1}, n_{2}, n_{3}\right)$ be the length of the covering path with the minimum number of links for the $n_{1} \times n_{2} \times n_{3}$ points problem, we define the best known upper bound as $h_{u}\left(n_{1}, n_{2}, n_{3}\right) \geq h\left(n_{1}, n_{2}, n_{3}\right)$ and we denote as $h_{l}\left(n_{1}, n_{2}, n_{3}\right) \leq h\left(n_{1}, n_{2}, n_{3}\right)$ the current proved lower bound [11]. For the simplest cases, the same problem has already been solved [2]. Let $n_{1}=1$ and $n_{2}<n_{3}$, we have that $h\left(n_{1}, n_{2}, n_{3}\right)=h\left(n_{2}\right)=2 \cdot n_{2}-1$, while $h\left(n_{1}=1, n_{2}=n_{3} \geq 3\right)=2 \cdot n_{2}-2[5]$.

Hence, for $n_{1}=2$, it can be easily proved that

$$
h\left(2, n_{2}, n_{3}\right)=2 \cdot h\left(1, n_{2}, n_{3}\right)+1=\left\{\begin{array}{lll}
4 \cdot n_{2}-1 & \text { iff } & n_{2}<n_{3} \tag{1}\\
4 \cdot n_{2}-3 & \text { iff } & n_{2}=n_{3}
\end{array}\right.
$$

2X3X5 SOLUTION (trivial):
 11 lines
 NO INTERSECTION

Figure 1. A trivial pattern that completely solves the $2 \times 3 \times 5$ points puzzle (avoiding self-intersections).

2X5X5 SOLUTION (trivial):

17 lines

Figure 2. Another example of a trivial case: the $2 \times 5 \times 5$ points puzzle.

Therefore, the aim of the present paper is to solve the ten aforementioned nontrivial cases where the current upper bound does not match the proved lower bound.

2 Improving the solution of the $n_{1} \times n_{2} \times n_{3}$ points problem for $n_{3}<6$

In this complex brain challenge we need to stretch our pattern recognition [6-9] in order to find a plastic strategy that improves the known upper bounds [2-12] for the most interesting cases (and the $3 \times 3 \times 3$ puzzle, which is the three-dimensional extension of the immortal nine-dot problem, is by far the most valuable one), avoiding those standardized methods which are based on fixed patterns that lead to suboptimal covering paths, as the approaches presented in [7-10].

Theorem 1

If $3 \leq n_{1} \leq n_{2} \leq n_{3}$, then a lower bound of the general $n_{1} \times n_{2} \times n_{3}$ problem is given by

$$
\begin{equation*}
h_{l}\left(n_{1}, n_{2}, n_{3}\right)=\left\lceil\frac{3 \cdot\left(n_{3} \cdot n_{2} \cdot n_{1}-n_{1}\right)}{2 \cdot n_{3}+n_{2}-3}\right\rceil+1 . \tag{2}
\end{equation*}
$$

Proof Let $n_{1} \times n_{2} \times \ldots \times n_{k}$ be a set of $\prod_{i=1}^{k} n_{i}$ points in \mathbb{R}^{k} such that $n_{1} \leq n_{2} \leq \ldots \leq n_{k}$, it is not possible to intersect more than $\left(n_{k}-1\right)+\left(n_{k-1}-1\right)+\left(n_{k}-1\right)=2 \cdot n_{k}+n_{k-1}-3$ points using three straight lines connected at their endpoints; however, there is one exception (which, for simplicity, we may assume as in the case of the first line drawn). In this circumstance, it is possible to fit n_{k} points with the first line, $n_{k-1}-1$ points using the second line, $n_{k}-1$ points with the next one, and so forth. In general, the third and the last line of the aforementioned group will join (at most) $n_{k}-1$ points each.

In order to complete the covering path, reaching every edge of our hyper-parallelepiped, we need at least one more link for any of the remaining n_{i}, and this implies that $k-2$ lines cannot join a total of more than $n_{k-2}-1+n_{k-3}-1+\ldots+n_{1}-1=\sum_{i=1}^{k-2} n_{i}-k+2$ unvisited points.

Thus, the considered lower bound $h_{l}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ satisfies the relation

$$
\begin{equation*}
\prod_{i=1}^{k} n_{i}-\sum_{i=1}^{k-2} n_{i}+k-2-1 \leq\left(2 \cdot n_{k}+n_{k-1}-3\right) \cdot\left(\frac{h_{l}\left(n_{1}, n_{2}, \ldots, n_{k}\right)}{3}-k+2\right) \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
h_{l}\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\left\lceil 3 \cdot \frac{\prod_{i=1}^{k} n_{i}-\sum_{i=1}^{k-2} n_{i}+k-3}{2 \cdot n_{k}+n_{k-1}-3}\right\rceil+k-2 . \tag{4}
\end{equation*}
$$

Substituting $k=3$ into equation (4), we get the statement of Theorem 1.

The current best results are listed in Table 1, and a direct proof follows for each nontrivial upper bound shown below.

n_{1}	\mathbf{n}_{2}	\mathbf{n}_{3}	Best Lower Bound (h_{l})	Best Upper Bound (h_{u})	Discovered by	$\begin{gathered} \text { Gap } \\ \left(\boldsymbol{h}_{u}-\boldsymbol{h}_{l}\right) \end{gathered}$
2	2	3	7	7	trivial	0
2	3	3	9	$\underline{9}$	trivial	0
3	3	3	13	13	Marco Ripà (proved on Jun. 19, 2020 [v6])	0
2	2	4	7	7	trivial	0
2	3	4	11	11	trivial	0
2	4	4	13	13	trivial	0
3	3	4	14	15	Marco Ripà (proved on Jun. 27, 2019 [v1])	1
3	4	4	16	19	Marco Ripà (ibid.)	3
4	4	4	21	23	$\begin{gathered} \text { Marco Ripà } \\ \text { (NNTDM [12]) } \end{gathered}$	2
2	2	5	7	7	trivial	0
2	3	5	11	11	trivial	0
2	4	5	15	15	trivial	0

2	5	5	17	17	trivial	0
3	3	5	14	16	$\begin{gathered} \begin{array}{c} \text { Marco Ripà } \\ \text { (proved on } \end{array} \\ \text { Jun. } 27,2019[\mathrm{v} 1] \text {) } \end{gathered}$	2
3	4	5	17	20	Marco Ripà (ibid.)	3
3	5	5	19	24	Marco Ripà (ibid.)	5
4	4	5	22	26	Marco Ripà (ibid.)	4
4	5	5	25	31	Marco Ripà (ibid.)	6
5	5	5	31	36	Marco Ripà (proved on Jul. 9, 2019 [v4])	5

Table 1: Current solutions for the $n_{1} \times n_{2} \times n_{3}$ points problem, where $n_{1} \leq n_{2} \leq n_{3} \leq 5$.
Figures 3 to 12 show the patterns used to solve the $n_{1} \times n_{2} \times n_{3}$ puzzle (case by case). In particular, combining equation (2) with the original results shown in figures 3-4, we obtain a formal proof for the major $3 \times 3 \times 3$ points problem, plus very tight bounds for the $3 \times 3 \times 4$ case.

3X3X3 PERFECT SOLUTION 13 lines

1.1

Figure 3 . The $3 \times 3 \times 3$ puzzle has finally been solved: $h_{u}(3,3,3)=h_{l}(3,3,3)=13$. This solution can trivially be proved to be optimal.

Corollary 1

$$
\begin{equation*}
h_{l}(3,3,3)=h_{u}(3,3,3)=h(3,3,3)=13 . \tag{5}
\end{equation*}
$$

Proof The covering path of the $3 \times 3 \times 3$ case shown in Figure 3 consists of 13 straight lines connected at their end-points, and equation (2) gives $h_{l}(3,3,3)=\lceil 12\rceil+1=13$.

Figure 4. Best known (non-crossing) spanning path for the $3 \times 3 \times 4$ puzzle. $15=h_{u}=h_{l}+1$.

Figure 5. Best known spanning path of the $3 \times 4 \times 4$ puzzle. $19=h_{u}=h_{l}+3$.

Figure 6. An original spanning path for the $4 \times 4 \times 4$ puzzle. $23=h_{u}=h_{l}+2$ [12].

Figure 7. Best known (non-crossing) spanning path for the $3 \times 3 \times 5$ puzzle. $16=h_{u}=h_{l}+2$.
3X4X5 best upper bound:
20 lines
NO INTERSECTION

Figure 8. Best known (non-crossing) spanning path for the $3 \times 4 \times 5$ puzzle, consisting of $20=h_{u}=h_{l}+3$ lines.
$3 \times 5 \times 5$ best upper bound:
24 lines

Figure 9. Best known spanning path for the $3 \times 5 \times 5$ puzzle. $24=h_{u}=h_{l}+5$.

Figure 10. Best known spanning path for the $4 \times 4 \times 5$ puzzle. $26=h_{u}=h_{l}+4$.

$4 \times 5 \times 5$ best upper bound:
 31 lines

Figure 11. Best known spanning path for the $4 \times 5 \times 5$ puzzle. $31=h_{u}=h_{l}+6$.
$5 \times 5 \times 5$ best upper bound:
36 lines

Figure 12. Best known upper bound of the $5 \times 5 \times 5$ puzzle. $36=h_{u}=h_{l}+5$.
Finally, it is interesting to note that the improved $h_{u}\left(n_{1}, n_{2}, n_{3}\right)$ can lower down the upper bound of the generalized k-dimensional puzzle too. As an example, we can apply the aforementioned 3D patterns to the generalized $n_{1} \times n_{2} \times \ldots \times n_{k}$ points problem using the simple method described in [11].

Let $k \geq 4$, given $n_{k} \leq n_{k-1} \leq \cdots \leq n_{4} \leq n_{1} \leq n_{2} \leq n_{3}$, we can conclude that

$$
\begin{equation*}
h_{u}\left(n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right)=\left(h_{u}\left(n_{1}, n_{2}, n_{3}\right)+1\right) \cdot \prod_{j=4}^{k} n_{j}-1 . \tag{6}
\end{equation*}
$$

3 Conclusion

In the present paper we have drastically reduced the gap $h_{u}\left(n_{1}, n_{2}, n_{3}\right)-h_{l}\left(n_{1}, n_{2}, n_{3}\right)$ for every previously unsolved puzzle such that $n_{3}<6$.

Moreover, by equation (6), $h(3,3,3)=13$ naturally provides a covering path with linklength $h_{u}(3,3,3,3)=41$ for the $3 \cdot 3 \cdot 3 \cdot 3$ points in \mathbb{R}^{4}.

We do not know if any of the patterns shown in figures 4 to 12 represent optimal solutions, since (by definition) $h_{l}\left(n_{1}, n_{2}, n_{3}\right) \leq h\left(n_{1}, n_{2}, n_{3}\right)$. Therefore, some open questions about the NP-complete [2] $n_{1} \times n_{2} \times n_{3}$ points problem remain to be answered, and the research in order to cancel the gap $h_{u}\left(n_{1}, n_{2}, n_{3}\right)-h_{l}\left(n_{1}, n_{2}, n_{3}\right)$, at least for every $n_{3} \leq 5$, is not over yet.

References

[1] Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B. (1999). The angular-metric traveling salesman problem. SIAM Journal on Computing 29, 697-711.
[2] Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P. (2009). Traversing a set of points with a minimum number of turns. Discrete \& Computational Geometry 41(4), 513-532.
[3] Collins, M. J. (2004). Covering a set of points with a minimum number of turns. International Journal of Computational Geometry \& Applications 14(1-2), 105-114.
[4] Collins, M.J., Moret, M.E. (1998). Improved lower bounds for the link length of rectilinear spanning paths in grids. Information Processing Letters 68(6), 317-319.
[5] Keszegh, B. (2013). Covering Paths and Trees for Planar Grids. arXiv, 3 Nov. 2013, https://arxiv.org/abs/1311.0452
[6] Kihn, M. (1995). Outside the Box: The Inside Story. FastCompany.
[7] Kranakis, E., Krizanc, D., Meertens, L. (1994). Link length of rectilinear Hamiltonian tours in grids. Ars Combinatoria 38, 177-192.
[8] Loyd, S. (1914). Cyclopedia of Puzzles. The Lamb Publishing Company, p. 301.
[9] Lung, C. T., Dominowski, R. L. (1985). Effects of strategy instructions and practice on nine-dot problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition 11(4), 804-811.
[10] Ripà, M., Bencini, V. (2018). $\mathrm{n} \times \mathrm{n} \times \mathrm{n}$ Dots Puzzle: An Improved "Outside The Box" Upper Bound. viXra, 25 Jul. 2018, http://vixra.org/pdf/1807.0384v2.pdf
[11] Ripà, M. (2014). The Rectangular Spiral or the $\mathrm{n}_{1} \times \mathrm{n}_{2} \times \ldots \times \mathrm{n}_{\mathrm{k}}$ Points Problem. Notes on Number Theory and Discrete Mathematics 20(1), 59-71.
[12] Ripà, M. (2019). The $3 \times 3 \times \ldots \times 3$ Points Problem solution. Notes on Number Theory and Discrete Mathematics 25(2), 68-75.
[13] Stein, C., Wagner, D.P. (2001). Approximation algorithms for the minimum bends traveling salesman problem. In: Aardal K., Gerards B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. LNCS, vol 2081, 406-421. Springer, Berlin, Heidelberg.

