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This paper presents a reformulation of classical mechanics which
is invariant under transformations between inertial and non-inertial
reference frames and which can be applied in any reference frame
without introducing fictitious forces.

Introduction

The reformulation of classical mechanics presented in this paper is obtained starting from
an auxiliary force of interaction ( called kinetic force, since this auxiliary force of interaction
is directly related to kinetic energy )

The kinetic force Kij exerted on a particle i of mass mi by another particle j of mass mj ,
caused by the interaction between particle i and particle j, is given by:

Kij = − mi mj

M

[
(~ai − ~aj)− 2 ~ω × (~vi − ~vj) + ~ω × [ ~ω × (~ri − ~rj) ]− ~α× (~ri − ~rj)

]
where ~ai, ~vi, ~ri are the acceleration, the velocity and the position of particle i, ~aj , ~vj , ~rj are
the acceleration, the velocity and the position of particle j ( belonging to an auxiliary system
of N particles, called Systema ) and finally M , ~ω, ~α are the mass, the angular velocity and
the angular acceleration of the Systema (see Annex I)

From the above equation it follows that the net kinetic force Ki ( =
∑N

j Kij ) acting on a
particle i of mass mi is given by:

Ki = − mi

[
(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R)

] [
Eq. 2

]
where ~R, ~V and ~A are the position, the velocity and the acceleration of the center of mass
of the Systema.

The magnitudes [ mi, mj , M, Kij , Ki ] are invariant under transformations between inertial
and non-inertial reference frames.

Any reference frame S is an inertial reference frame when the angular velocity ~ω of the
Systema and the acceleration ~A of the center of mass of the Systema are equal to zero
( ~ω = 0 and ~A = 0 ) relative to S. Therefore, the reference frame S is a non-inertial reference
frame when the angular velocity ~ω of the Systema or the acceleration ~A of the center of mass
of the Systema are not equal to zero ( ~ω 6= 0 or ~A 6= 0 ) relative to S.
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Equation of Motion

The total force Ti acting on a particle i is always zero.

Ti = 0

If the total force Ti is divided into the following two parts: the net kinetic force Ki and the
net dynamic force Fi (

∑
of gravitational forces, electrostatic forces, etc.) then we have:

Ki + Fi = 0

Now, substituting Ki by
[
Eq. 2

]
dividing by mi and rearranging, we obtain:

~ai = Fi/mi + ~A + 2 ~ω × (~vi − ~V )− ~ω × [ ~ω × (~ri − ~R) ] + ~α× (~ri − ~R)

From the above equation it follows that particle i can have a non-zero acceleration even
if there is no dynamic force acting on particle i, and also that particle i can have zero
acceleration (state of rest or of uniform linear motion) even if there is an unbalanced net
dynamic force acting on particle i.

However, from the above equation it also follows that Newton’s first and second laws are
valid in any inertial reference frame, since the angular velocity ~ω of the Systema and the
acceleration ~A of the center of mass of the Systema are equal to zero relative to any inertial
reference frame.

General Observations

All the equations presented in this paper can be applied in any inertial reference frame and
also in any non-inertial reference frame.

Additionally, inertial and non-inertial observers must not introduce fictitious forces into Fi.

In this paper, the following magnitudes [m, r, v, a, M, K, T, K, F ] are invariant under
transformations between inertial and non-inertial reference frames.

The kinetic forces are caused by the interactions between the particles and the net kinetic
force is the force that balances the net dynamic force in each particle of the Universe.

In addition, the kinetic forces remain invariant under transformations between inertial and
non-inertial reference frames ( as all dynamic forces do )

In this paper, the kinetic forces and the dynamic forces can obey or disobey Newton’s third
law in its weak form or in its strong form ( this is one of the main goals of this paper )

On the other hand, this paper does not contradict Newton’s first and second laws since these
two laws are valid in any inertial reference frame ( in Newtonian mechanics the kinetic forces
are completely excluded )

Finally, the reformulation of classical mechanics presented in this paper is observationally
equivalent to Newtonian mechanics. However, non-inertial observers can only use Newtonian
mechanics if they introduce fictitious forces into Fi.
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Annexes

Relational Systema

In classical mechanics, the Systema is an auxiliary system of N particles that must always be
free of internal and external dynamic forces, that must be three-dimensional, and that the
relative distances between the N particles must be constant.

The position ~R, the velocity ~V and the acceleration ~A of the center of mass of the Systema
relative to a reference frame S (and the angular velocity ~ω and the angular acceleration ~α
of the Systema relative to the reference frame S) are given by:

M .=
∑N

i mi

~R .= M −1
∑N

i mi ~ri

~V .= M −1
∑N

i mi ~vi

~A .= M −1
∑N

i mi ~ai

~ω
.= I−1

↔
· ~L

~α
.= d(~ω)/dt

I
↔ .=

∑N

i mi [ |~ri − ~R |2 1
↔
− (~ri − ~R)⊗ (~ri − ~R) ]

~L .=
∑N

i mi (~ri − ~R)× (~vi − ~V )

where M is the mass of the Systema, I
↔

is the inertia tensor of the Systema (relative to ~R)
and ~L is the angular momentum of the Systema relative to the reference frame S.

Invariant Magnitudes

(~ri − ~R) .= ri = ri
′

(~ri
′ − ~R′) .= ri

′ = ri

(~vi − ~V )− ~ω × (~ri − ~R) .= vi = vi
′

(~vi
′ − ~V ′)− ~ω ′ × (~ri

′ − ~R′) .= vi
′ = vi

(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R) .= ai = ai
′

(~ai
′ − ~A′)− 2 ~ω ′ × (~vi

′ − ~V ′) + ~ω ′ × [ ~ω ′ × (~ri
′ − ~R′) ]− ~α′ × (~ri

′ − ~R′) .= ai
′ = ai
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Appendix A

Fields and Potentials I

The net kinetic force Ki acting on a particle i of mass mi can also be expressed as follows:

Ki = + mi

[
E + (~vi − ~V )×B

]
Ki = + mi

[
−∇φ − ∂A

∂t
+ (~vi − ~V )× (∇×A)

]
Ki = + mi

[
− (~ai − ~A) + 2 ~ω × (~vi − ~V )− ~ω × [ ~ω × (~ri − ~R) ] + ~α× (~ri − ~R)

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 [ ~ω × (~ri − ~R) ]2 + 1/2 (~vi − ~V )2

A = − [ ~ω × (~ri − ~R) ] + (~vi − ~V )

∂A
∂t

= − ~α× (~ri − ~R) + (~ai − ~A)

∇φ = ~ω × [ ~ω × (~ri − ~R) ]

∇×A = − 2 ~ω

The net kinetic force Ki acting on a particle i of mass mi can also be obtained starting from
the following kinetic energy:

Ki = − mi

[
φ − (~vi − ~V ) ·A

]
Ki = 1/2 mi

[
(~vi − ~V )− ~ω × (~ri − ~R)

]2
Ki = 1/2 mi

[
vi

]2
Since the kinetic energy Ki must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Ki = − d

dt

[
∂ 1/2 mi

[
vi

]2
∂ vi

]
+

∂ 1/2 mi

[
vi

]2
∂ ri

= − mi ai

where ri, vi and ai are the invariant position, the invariant velocity and the invariant
acceleration of particle i (see Annex II )
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Appendix B

Fields and Potentials II

The net kinetic force Ki acting on a particle i of mass mi ( relative to a reference frame S
fixed to a particle s ( ~rs = ~vs = ~as = 0 ) of mass ms, with invariant velocity vs and invariant
acceleration as ) can also be expressed as follows:

Ki = + mi

[
E + ~vi ×B

]
Ki = + mi

[
−∇φ − ∂A

∂t
+ ~vi × (∇×A)

]
Ki = + mi

[
− (~ai + as) + 2 ~ω × ~vi − ~ω × ( ~ω × ~ri ) + ~α× ~ri

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 ( ~ω × ~ri )2 + 1/2 (~vi + vs)2

A = − ( ~ω × ~ri ) + (~vi + vs)

∂A
∂t

= − ~α× ~ri + (~ai + as)

∇φ = ~ω × ( ~ω × ~ri )

∇×A = − 2 ~ω

The net kinetic force Ki acting on a particle i of mass mi can also be obtained starting from
the following kinetic energy:

Ki = − mi

[
φ − (~vi + vs) ·A

]
Ki = 1/2 mi

[
(~vi + vs)− ( ~ω × ~ri )

]2
Ki = 1/2 mi

[
vi

]2
Since the kinetic energy Ki must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Ki = − d

dt

[
∂ 1/2 mi

[
vi

]2
∂ vi

]
+

∂ 1/2 mi

[
vi

]2
∂ ri

= − mi ai

where ri, vi and ai are the invariant position, the invariant velocity and the invariant
acceleration of particle i (see Annex II )

5



Appendix C

Fields and Potentials III

The kinetic force Kij exerted on a particle i of mass mi by another particle j of mass mj

can also be expressed as follows:

Kij = + mi mj M −1
[
E + (~vi − ~vj)×B

]
Kij = + mi mj M −1

[
−∇φ − ∂A

∂t
+ (~vi − ~vj)× (∇×A)

]
Kij = + mi mj M −1

[
− (~ai − ~aj ) + 2 ~ω× (~vi −~vj)− ~ω× [ ~ω× (~ri −~rj) ] + ~α× (~ri −~rj)

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 [ ~ω × (~ri − ~rj) ]2 + 1/2 (~vi − ~vj)2

A = − [ ~ω × (~ri − ~rj) ] + (~vi − ~vj)

∂A
∂t

= − ~α× (~ri − ~rj) + (~ai − ~aj )

∇φ = ~ω × [ ~ω × (~ri − ~rj) ]

∇×A = − 2 ~ω

The kinetic force Kij exerted on a particle i of mass mi by another particle j of mass mj

can also be obtained starting from the following kinetic energy:

Kij = − mi mj M −1
[
φ − (~vi − ~vj) ·A

]
Kij = 1/2 mi mj M −1

[
(~vi −~vj)− ~ω × (~ri − ~rj)

]2
Kij = 1/2 mi mj M −1

[
vi − vj

]2
Since the kinetic energy Kij must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Kij = − d

dt

[
∂ 1/2

mi mj

M

[
vi − vj

]2
∂ [vi − vj ]

]
+

∂ 1/2
mi mj

M

[
vi − vj

]2
∂ [ ri − rj ]

= − mi mj

M
[
ai − aj

]
where ri,vi,ai, rj ,vj and aj are the invariant positions, the invariant velocities and the
invariant accelerations of particles i and j (see Annex II )
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