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Abstract: It is pointed out that, while Suskind and Glogower claim “The phase operator for an 

oscillator is shown not to exist.”, they actually showed absolute phase operator, which is physically 

meaningless, does not exist. It is also pointed out that, they showed countably infinitely many 

trigonometric relative (relative between two oscillators) phase states, which form complete basis and 

are, in a sense, best possible quantum “phase states”, exist. In addition, continuously infinitely many 

phase states are constructed at classical, that is, infinitely many quanta, limit. Similarly, relative time 

states and operator are constructed with two oscillators with different angular velocities. 

 

1. Introduction 

There are various attempts to construct phase state with single oscillator, for example, by Dirac 

[1], Suskind and Glogower [2] and Pegg and Barnett [3]. Though they have difficulties (e.g. [2] 

and [3] criticize difficulties of [1] and [1, 2], respectively), it is not necessary to discuss them in 

detail, because state constructed is that of absolute phase, which is not an observable and is 

physically meaningless. 

Usually, it is not a problem to represent quantum state including absolute phase by ket 

vectors of a single oscillator, it is because value represented is invariant under time translation. 

For example, even if a number state |��, by time translation, becomes e���|��, both states 

represent the same number value of �. However, as is stated “at time 
 the state becomes 

|� − 
�” in [3] as if it were a desirable property, phase value represented by state constructed 

with a single oscillator changes by time translation from � to � − 
, which means the value is 

that of absolute phase, which is not an observable and is physically meaningless. 

Though it is stated “phase (defined as the time since the wave was in a standard phase)” 

[1], we can’t evaluate or control quality of implicit “standard phase” and, in [1, 2], it is implicitly 

assumed that the “standard phase” should have infinite accuracy with no quantum fluctuations 

constructed only as a classical state involving infinitely many quanta. It makes states related to 

absolute phase classical states consisting from infinitely many quanta. For example, consider 

Hermitian trigonometric absolute phase operator of cos ��  introduced in [4]. In [2], its 



eigenvectors are computed to be (Eq. (18) of [2]): 

� sin�� + 1��|��
�

 

which are a zero vector (if � is multiple of π) or vectors with infinite norm and infinite average 

number (otherwise), none of which are within Hilbert space representing quantum states and non-

zero eigenvectors are located at the classical limit. Though, in section III of [2], it is stated “wave 

packets in cos space spread with time”, classical packets do not spread, “they are states for which 

the uncertainties in the non-commuting operators sin �� and cos �� are zero!”, it is of course that 

uncertainties of classical states are zero, and “any quantum oscillator can be used as an arbitrarily 

accurate clock”, it is because the oscillator considered is not quantum but classical. 

 Approach of [3] is to have less implicit “standard phase” by finite average number of 

quanta with reasonable (w.r.t. the number) quality and increase the number (and the quality) to 

the infinity, which may result in accurate results as long as relative phase between an observed 

and the “standard phase” is considered. However, as what we can actually observe is relative 

phase between two oscillators both with finite average number of quanta, the approach is not 

applicable to the reality except as approximation for extreme cases. Though in section VIII 

“PHASE DIFFERENCES” of [3], it is argued “Our phase difference operator is simply ���� −
����, where again the subscripts 1 and 2 refer to the individual modes.”, it is obvious that such 

phase difference involving the “standard phase” is noisier than that considered in section V “Phase 

Difference of Two Oscillators” of [2]. Actually, “A phase difference measurement can lead to a 

countably infinite number of results regardless of total excitation number.” [3] means a finite 

number of results for finitely excited states of [2] is broadened by noise. 

 Relative phase introduced by [2] and Ban [5] does not have such difficulties, though its 

importance has not been properly recognized, perhaps because difficulties of absolute phase have 

not been properly understood. 

In sections 2, implication that countably infinitely many eigenvectors of trigonometric 

relative phase operator introduced in section V of [2] form complete basis is discussed. In section 

3, continuous phase states are constructed at classical limit. In section 4, relative time states and 

operator, similar to those of [5], are constructed and is argued that infiniteness is not a problem 

for them. Section 5 concludes the letter. 

 

2. Eigenvectors of Trigonometric Relative Phase Operator 

In [2], using direct product of number state of two oscillators: |��|��, where |�� and |�� are 

number state of oscillators 1 and 2, respectively, exponential relative phase operators are defined 

as e������� � = ∑ |� − 1��#$,%#& |� + 1�'�|'�|  and e�������� � = ∑ |� + 1��#&,%#$ |� −
1�'�|'�|. Then, Hermitian trigonometric relative phase operators are defined as 



cos(��& − ��)* = e������� � + e�������� �
2  

sin(��& − ��)* = e������� � − e�������� �
2i  

Obviously, all the operators above preserve the total number - = � + �  because m + n =
�m − 1� + �n + 1� = �m + 1� + �n − 1�. As is pointed out in [2], trigonometric relative phase 

operators commute with total number operator “��& + ��)”, which means they share common 

(finite) eigenvectors, which means trigonometric relative phase is, unlike absolute one in [2], a 

(quantum) observable. 

 Then, as all the eigenstates of cos(��& − ��)*, which have zero trigonometric relative 

phase and zero total number uncertainty, form a complete basis for the Hilbert space representing 

states of two oscillators, the eigenstates are best possible quantum “phase states”. Any state can 

be represented by linear combination of the eigenvectors and no additional information can be 

extracted from the state. Moreover, “state with phase difference �” [2]: 

|-, �� = � e/%�|��
0

%1$
|- − �� �1� 

which should have little relative phase uncertainty, is shown to be represented by the eigenstates 

well as “the uncertainty of cos �� is” [2]: 

〈cos)〉 − 〈cos〉) = 1 − 2-
�- + 1�) cos) � 

the eigenstates are good enough. 

 A problem of cos operator eigenstates as phase states is “Each |cos �� state can be 

thought of as a superposition of |+�� and |−�� states.” [2]. That is, we need 1 bit more 

information to know the phase. In theoretical analysis, we can apply cos and sin operators to the 

same state to get the information. In practice, we must divide observed state by two, dilute by 

vacuum (for light, by a half mirror) and apply sin and cos operators to the divided states. As 

reduction of signal to noise ratio by half by the division means 1 bit of information loss, it is, in a 

sense, best possible. Ideally sensitive operators rarely commute. 

 

3. Continuous Relative Phase States 

Ban [5] defines the continuous relative phase states with two oscillators and infinite number of 

quanta for the first time, though the states are a little complicated. 

In this letter, instead, by making - of Eq. (1) infinitely large, continuous relative phase 

states simpler than that of [5] is constructed as follows. 

By restricting R of Eq. (1) to be even and introducing N and n as R=2N and m=N+n, we 



obtain: 

|-, �� = |24, �� = e�5� � e���|4 + ��
5

�1�5
|4 − �� 

where absolute phase of e�5� may be ignored. Then: 

lim5→8'�9, 24|24, �� = lim5→8 � � '4 − �9|'4 + �9|e�(����:�:*|4 + ��|4 − ��
5

�1�5

5

�:1�5
 

= lim5→8 � e��(���:*
5

�1�5
= � δ�� − �9 + 2<��

8

�1�8
 

Thus, a (classical) state:    

|�� = lim5→8 � e=>?|4 + ��
5

�1�5
|4 − �� �2�    

is a relative phase state. Note that |�� = |� + 2�<�. 
From (2), relative phase operator to observe relative phase value in [0, 2π� should be: 

B� = CDEF→G$ H |���'�|I�
)J�K

$�F
    

then, as expected (omitting L → +0) 

BM|�� = H N�′P �′ Q�′N I�′2π
0

|�� = H | �′P �′ � δ R� − �′ + 2π�S
∞

�=−∞

2π
0

I�′ 

= U� − 2π V �
2πWX |�� 

however, as the operator involves '�| and inner product between '�| and usual quantum states 

becomes meaningless as 4 → ∞, the operator is not useful for usual quantum states. 

 As phase uncertainties of classical states, in general, are zero, any such classical states 

may, in a sense, be recognized as phase states, which is why phase state of equation (2) and that 

of [5] differ. Then, the most experimentally practical continuous phase state should be direct 

product (thus, unentangled) of two coherent states, at infinite quant limit as lim |
Y→8

e��Z[ |Z� �Z ∈
ℝ�. 
 

4. Relative Time State 

That relative time is an observable is obvious, because, with a clock, we can measure duration of 

an interval between two events, which is the observation of relative time. 



Relative time state is first defined in [5], though it is a little complicated.  

Instead, like the previous section, based on Eq. (1) but with angular velocity difference 

of Δ > 0, relative time state can be constructed starting from lim5→8 ∑ e��`ab|4 + ��|4 −5�1�5
��, though, result of inner product of such states is ∑ δ�Δ�
 − 
9� + 2<��8�1�8 . That is, to 

remove periodicity, we must make Δ infinitely small. By making Δ = $/4, where $ is 

the maximum angular velocity difference between the oscillators, and adjusting coefficient, 

relative time state should be: 

|
� = CDEad→8 CDE5→8 � e$
4 e��adb5 |4 + ��|4 − ��

5

�1�5
�3� 

    

as:    

'
9|
� = limad→8 lim5→8 � � '4 − �9|'4 + �9| $
4 e�ad(�b��:b:*

5 |4 + ��|4 − ��
5

�1�5

5

�:1�5
 

= limad→8 lim5→8 � e��`a(b�b:*Δ
5

�1�5
= limad→8 H e�a(b�b:*I

ad

�ad
 

= δ�
 − 
9� 
Similar to continuous phase states, relative time states are obtained at infinite quanta limit. As 

such, relative time states should not be unique allowing variations like those of [5]. 

The relative time operator should be: 

g� = H |
�
'
|I

8

�8
    

Though, like phase operator, it may be argued that the operator is not useful for usual 

quantum state with finite average number of quanta, remember that infiniteness is necessary to 

remove periodicity. That is, time can be defined only if a quantum system is unusual including 

infinitely many quanta. So, it is not a problem that the relative time operator is applicable only to 

such states. 

  

5. Conclusions 

It is pointed out that attempts to derive phase states using a single oscillator is physically 

meaningless, because, with a single oscillator, only absolute phase, which is physically 

meaningless, can be represented. Implicitly assumed standard phase without quantum fluctuation 

makes various absolute phase related states classical (w.r.t. the number of quanta). It is also 

pointed out that Suskind and Glogower showed, using two oscillators, countably infinitely many 



eigenstates of trigonometric relative phase operators are complete [2], which means, in a sense, 

the eigenstates are best possible quantum “phase states”. 

It is also shown that continuous phase states can be constructed at classical (w.r.t. the 

number of quanta) limit and, similarly, relative time states and operator can be constructed. Unlike 

continuous phase operators, infiniteness related to time operator is not a problem because any 

quantum system with time must have infinitely many quanta. 

As time states must be relative, when Lorentz transformations are involved, position 

states must also be relative. 
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