Deep LearningRetrosynthesis

Researchers; from biochemists to:material scientists, have longrelied on the rich variety
of organic moleculesto solve pressing challendas)

Social,-economic, environmental and health-inequalities within cities can be detected
using street imagery! [24]

Citizen science is a’boon for:resehers, providing reams jof data' about everything from
animal species to distant.galaxief23]

In early 2018, with-support from IBM Corporate CGignship-and the Danish Ministry: for
Foreign Affairs, IBM:and the Danish-Refugee: Council (DRC).embarked ona partnership
aimed squarely at the need to-better, understandgration drivers and-evidencéased
policy guidance for.a range of stakeholders. [22]

Scientistsat thel Allen institute have used:machine learning:to train.computers to see
parts of the cell the:human eye cannot easily distinguish./[21]

Small angle Xay scattering (SAXS) isrone of:a:number of biophysical techniques used for
determmining the structural characteristics of biomolecules: [20]

A deep neural network:running on;an ordinary desktop .computer:is interpreting /highly
technical data related tonational security as well asand sometimes better than
today's bestautomated methods orevenrhan experts[19]

Scientists at the /National Center for; Supercomputing Applications (NCSA); located at the
University «of lllinois at' UrbanaChampagn, have pioneered the:use of GRttelerated
deep/learning for rapid/detection and characterization of gravitational waves: [18]

Researchers from QueenMary University of London-have 'developed/a: mathematical
model forthe-emergence’ of innovations. [17]

Quantum computers can be made to utilize effects such as quantum coherence and
entanglement to accelerate machine learning. [16]

Neural networks lean how to carry out certain tasks by analyzing large amounts of
data displayed to them. [15]

Who is the better experimentalist, a human or a robot? When it comes to exploring
synthetic and crystallization conditions for inorganic gigantic molecules, aeliy
learning machines are clearly ahead, as demonstrated by British Scientists in an
experiment with polyoxometalates published in the journal Angewandte Chemie. [14]


https://phys.org/tags/migration/

Machine learning algorithms are designed to improve as they encounter more data,
making them a versatile technology for understanding large sets of photos such as those
accessible from Google Images. Elizabeth Holm, professor of materials science and
engineering at Carnegie Mellon University, is leveraging this technology to better
understandthe enormous number of research images accumulated in the field of
materials science. [13]

With the help of artificial intelligence, chemists from the University of Basel in
Switzerland have computed the characteristics of about two million crystals mageof
four chemical elements. The researchers were able to identify 90 previously unknown
thermodynamically stable crystals that can be regarded as new materials. [12]

The artificial intelligence system's ability to set itself up quickly every morninglan
compensate for any overnight fluctuations would make this fragile technology much
more useful for field measurements, saidlead researcher Dr Michael Hush from
UNSW ADFA. [11]

Quantum physicist Mario Krenn and his colleagues in the group of Anton

Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian
Academy of Sciences have developed an algorithm which designs new useful quantum
experiments. As the computer does not rely on human intuition, it finds novel unfamiliar
solutions. [10]

Researchers at the University of Chicago's Institute for Molecular Engineering and the
University of Konstanz have demonstrated the ability to generate a quantum logic
operation, or rotation of the qubit, that surprisingly? is intrinsically resilient to noise

as well as to variations in the strength or duration of the control. Their achievement is
based on a geometric concept known as the Berry phase and is implemented through
entirely optical means within a single electronic spin in diamonél]

New research demonstrates that particles at the quantum level can in fact be seen as
behaving something like billiard balls rolling along a table, and not merely as the
probabilistic smears that the standard interpretation of quantum mechanics sugges
But there's a catch the tracks the particles follow do not always behave as one would
expect from "realistic” trajectories, but often in a fashion that has been termed
"surrealistic.” [8]

Quantum entanglemerst which occurs when two or more patrticles are correlated in
such a way that they can influence each other even across large distanisesot an alt
or-nothing phenomenon, but occurs in various degrees. The more a quantum state is
entangled with its partner, the better the states will perform in quantum information
applications. Unfortunately, quantifying entanglement is a difficult process involving
complex optimization problems that give even physicists headaches. [7]

A trio of physiciss in Europe has come up with an idea that they believe would allow a
person to actually witness entanglement. Valentina Caprara Vivoli, with the University



of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with
the Universty of Basel, have together written a paper describing a scenario where a
human subject would be able to withess an instance of entanglemehey have

uploaded it to the arXiv server for review by others. [6]

The accelerating electrons explain not onlygiMaxwell Equations and the

Special Relativity, but the Heisenberg Uncertainty Relation, the WBaeticle Duality
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Theories.

The Planck Distribution Law of the electrongaetic oscillators explains the

electron/proton mass rate and the Weak and Strong Interactions by the diffraction

patterns. The Weak Interaction changes the diffraction patterns by moving the electric

charge from one side to the other side of the diffraxtipattern, which violates the CP
and Time reversal symmetry.

The diffraction patterns and the locality of the seffaintaining electromagnetic
potential explains also the Quantum Entanglement, giving it as a natural part of the
relativistic quantum theory.
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Preface

Physicists are continually looking for ways to unify the theory of relativity, which describes
largescale phenomena, with quantum theory, which describes ssnalé phenomena. In a new
proposed experiment in this area, two toasteized "nanosatellites"arrying entangled
condensates orbit around the Earth, until one of them moves to a different orbit with different
gravitational field strength. As a result of the change in gravity, the entanglement between the
condensates is predicted to degrade by u2@%6. Experimentally testing the proposal may be
possible in the near future. [5]

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are
generated or interact in ways such that the quantum state of each particleotdoe described
independentlyc instead, a quantum state may be given for the system as a whole. [4]

| think that we have a simple bridge between the classical and quantum mechanics by
understanding the Heisenberg Uncertainty Relations. It makes clear that the particles are not point
like but have a dx and dp uncertainty.

Deep learning techniques teach neural model to 'play' retrosynthesis

Researchers, from biochemists to material scientists, have long relied on the rich vaoegaoic
molecules to solve pressing challenges. Some molecules may be useful in treating diseases, others
for lighting our digital displays, still others for pigments, paints, and plastics. The unique properties
of each molecule are determined by itsistturet that is, by the connectivity of its constituent

atoms. Once a promising structure is identified, there remains the difficult task of making the
targeted molecule through a sequence of chemical reactions. But which ones?



Organic chemists generally vkobackwards from the target molecule to the starting materials using

a process called retrosynthetic analysis. During this process, the chemist faces a series of complex
and interrelated decisions. For instance, of the tens of thousands of different idaneactions,

which one should you choose to create the target molecule? Once that decision is made, you may
find yourself with multiple reactant molecules needed for the reaction. If these molecules are not
available to purchase, then how do you seléw appropriate reactions to produce them?

Intelligently choosing what to do at each step of this process is critical in navigating the huge
number of possible paths.

Researchers at Columbia Engineering have develoggehd technigue based on

reinforcement learning that trains @eural network model to correctly select the "best"
reaction at each step of the retrosynthetic process. This forml gfévides a framework for
researchers to design chemical syntheses that optimize user specified objectives such synthesis
cost, safety, and sustainability. The new approach, published May BC8yCentral Scienée

more successful (by ~60%) than erigtstrategies for solving this challenging search problem.

"Reinforcement learning has created computer players that are much better than humans at playing
complex video games. Perhaps retrosynthesis is no different! This study gives us hope that
reinforcement-learning algorithms will be perhaps one day better than human players at the ‘game’
of retrosynthesis," says Alan AspuBuzik, professor of chemistry and computer science at the
University of Toronto, who was not involved with the study.

The team franed the challenge of retrosynthetic planning as a game like chess and Go, where the
combinatorial number of possible choices is astronomical and the value of each choice uncertain
until the synthesis plan is completed and its cost evaluated. Unlike esitlidies that used heuristic
scoring functions simple rules of thumb to guide retrosynthetic planning, this new study used
reinforcement learning techniques to make judgments based on the neural model's own
experience.

"We're the first to apply reinforcenm learning to the problem of retrosynthetic analysis," says Kyle
Bishop, associate professor of chemical engineering. "Starting from a state of complete ignorance,
where the model knows absolutely nothing about strategy and applies reactions randomly, the
model can practice and practice until it finds a strategy that outperforms a heoefined

heuristic."

In their study, Bishop's team focused on using the numbé&eétCtion steps as the measurement

of what makes a "good" synthetic pathway. They had thieiinforcement learning model

tailor its strategy with this goal in mind. Using simulated experience, the team trained the model's
neural network b estimate the expected synthesis cost or value of any given molecule based on a
representation of its molecular structure.

The team plans to explore different goals in the future, for instance, training the model to minimize
costs rather than the numberfoeactions, or to avoidnolecules that could be toxic. The
researchers are also trying to reduce the number of simulations required for the model to learn its
strategy, as the training process was quite panationally expensive.
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"We expect that our retrosynthesis game will soon follow the way of chess and Go, in which self
taught algorithms consistently outperform human experts," Bishop notes. "And we welcome
competition. As with chesglaying computer progams, competition is the engine for
improvements in the statef-the-art, and we hope that others can build on our work to

demonstrate evebetter performance.”

The study is titled "Learning retrasthetic planning through simulated experiencf5]

Inequalities in the UK can be detected using deep learning image

analysis

Social, economic, environmental and health inequalities within cities can be detected using street
imagery. The findings, from scientists at Imperial College London, are publisbeigirific

Reportshis week

Detailed measurements of the substantial inequalities that exist within large cities like London are
crucial for informing and evaluating policies that aim to reduce them. However, only a small
number of countries have fully linked statistical dataséiat tallow for reattime measurements.

Esra Suel and colleagues from Imperial's School of Public Health usedlaate#ry approach to
train a computer programme to detect inequalities in four major UK citiesndon, Birmingham,
Manchester and Leedsusing publicly available street view images and government statistics.

Trained on 156,581 images from London corresponding to 156,581 postcodes, the programme
predicted outcomes with similar accuracy in the other three cities, after it had beestuiresl with
only 1% of additional images collected in the West Midlands, Greater Manchester and West
Yorkshire.

The authors hypothesized that some features of cities and urban life, such as quality of housing and
the living environment, have direct visual sigrthlst a computer could recognize.

Local shops and disrepair

Thesevisual signals include building materials and disrepair, cars, or local shops. Combined with
government statistics on outcomes $uas housing conditions, mean income, or mortality and
morbidity rates for one cityynages may be used to train a computer programme to detect
inequalities in other cities that lack statistical data.

Theauthors found that their computer programme was most successful at recognizing differences
in quality of the living environment and mean income.

'‘Measuring social, environmental and health inequalities using deep learning and street imagery' by
E.Suel eal is published in the journ8cientific Repori$24]
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Al adjusts for gaps in citizen science data
Citizen science is a boon for researchers, providing reams of data about everything from animal
species to distant galaxies.

But crowdsourced informationan be inconsistent. More reports come from densely populated
areas and fewer from spots that are hard to access, creating challenges for researchers who need
evenly distributed data.

"There is a huge bias in the data set because the data is collecterllneers,” said Di Chen, a
doctoral student ircomputer science and first author of "Bias Reduction via End to End Shift
Learning: Application to Citizen Science,” which will be presented at the@derence on
Artificial Intelligence, Jan. Z#eb. 1 in Honolulu.

"Since this is highly motivated by their personal interest, the distribution of this kind of data is not
what scientists want,” Chen said. "All the data is actually distributed alongnoeitls and in urban
areas because most people don't want to drive 200 miles to help us explore birds in a desert."

To compensate, Chen and Carla Gomes, professor of computer science and director of the Institute
for Computational Sustainability, developadieep learningnodel that effectively corrects for

location biases in citizen science by comparing the population densities of various locations. Gomes
and Chen tested their model on data from the Cornell LiaDrithology's eBird, which collects

more than 100 million bird sightings submitted annually by birdwatchers worldwide.

"When | communicate with conservation biologists and ecologists, a big part of communicating
about these estimates is convincing thehat we are aware of these biases and, to the degree
possible, controlling for them," said Daniel Fink, a senior research associate at the Lab of
Ornithology who is collaborating with Gomes and Chen on this work. "This gives [biologists and
ecologists] a biter reason to trust these results and actually use them, and base decisions on
them."

Researchers have long been aware of the problems with citizen science data and have tried various
methods to address them, including other types of statistical modetgeéts that offer incentives

to entice volunteers to travel to remote spots or search fordegpular species have shown

promise, but these can be expensive and hard to conduct on a large scale.

A massive data set like eBird's is useful in machine legrmihere large amounts of data are used
to train computers to make predictions and solve problems. But because of the location biases, a
model created with the eBird data would make inaccurate predictions.

Adjusting forbias in the eBird data is further complicated by the data's many characteristics. Each
bird sighting in the system comprises 16 distinct pieces of information, making it computationally
challenging.

Chen and Gomesolved the problem usingdeep learning model ¢ a kind of artificial intelligence
that is good at classifyingthat adjusts for population differences in different areas by comparing
their ratios of density.
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"Right now the data we get is essentially biased because the birds don't just stay around cities, so
we need to factor that in and correct that," Gomes said. "We need to make sure the training data is
going to match what you would have the real world."

Chen and Gomes tested several models and found their deep learning algorithm to be more
effective than other statistical or machine learning models at predicting where bird species might
be found.

Though they worked with eBird, their @imgs could be used in any kind of citizEmence project,
Gomes said.

"There are many, many applications that relyaitizen science, and this problenis prevalent, so
you really need to correct for it, whether people are classifyiimds, galaxies or other situations
where data biases can skew the learned model," she g284.

Machine learning in action fo r the humanitarian sector

Governments across the world came together in Marrakesh this past December to ratify a pact to
improve cooperation on international migration. Among other objectives, the Global Compact for
Migration seeks to use "accurate andatigregated data as a basis for evidebesed policies."

How can machine learning technologies help with deeply polarizing societal issues like migration?

In early 2018, with support from IBM Corporate Citizenship and the Danish Ministry for Foreign
Affairs, IBM and the Danish Refugee Council (DRC) embarked on a partnership aimed squarely at
the need to better understanchigration drivers and evidencéased policy guidance for a range of
stakeholders. At theecent THINK Copenhagen keynote, the Secretary General of the DRC, Christian
Friis Bach, presented the first results of this effort.

In this post, I'll walk through the development of a machine learning system that provides strategic
forecasts of mixed migtion along with scenario analysis. Mixed migration refers to ebosder
movements of people that are motivated by a multiplicity of factors to move, including refugees
fleeing persecution and conflict, victims of trafficking, and people seeking betbsrand

opportunity. Such populations have a range of legal statuses, some of which are not reflected in
official government statistics.

Credit: IBM

Understanding migration dynamics and drivers is inherently complex. Circumstances differ from
person to grson. The question "why did you decide to move?" is not straightforward for people to
answer. However, to the extent that individual decisions reflect structural societal factors, the
dynamics can be partially explained by aggregate measures. For insgmoc®mic drivers for
movement can be expected to be related to employment opportunities and therefore macro
indicators on employment. These challenges are compounded by data availability and coverage on
specific indicators.

The forecasting system
We stated by leveraging the 4MI monitoring program run by the DRC through which thousands of
migrants on the move are interviewed. Analysis of survey data revealdevighclusters of drivers
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for migration. These clusters ranged from lack of rights and otherakservices, to economic
necessity and conflict. These drivers are then mapped to quantitative indicators. Features derived
from these indicators are then fed to a model that generates forecasts along with confidence
intervals (Figure 1). In additiorhe system also generates context for each prediction by showing
specific drivers that contributed to the forecast.

Using these indicators, we developed an ensemble model to make strategic forecasts annually for
bilateral flows on mixeemigration volumes anually. Our evaluations showing error rates to be
within a few thousand persons per year even for countries with volatile conditions. The system
further allows for scenario analysis, where relative changes in influencing factors can be modelled
to make adjisted predictions.

Interesting countetintuitive dynamics emerge from such analysis. For instamoemployment

rates in Ethiopia are above average compared to-Saharan countries. A large numbgr

Ethiopians travel to Saudi Arabia for work. Increases in employment rates to the best fifth in the
region will result in greater migration to the UK (two percent increase), Sweden (two percent
increase) and Saudi Arabia (eight percent increase). Tilestean increased ability and means of
Ethiopians to meet their aspirations abroad. If unemployment increases to the worst levels, the
model predicts an increase of migration to South Africa (three percent increase) and Saudi Arabia
(four percent increas), with EU destinations largely invariant to increases in unemployment.

Figure 2: Correlation matrix for all features considered in the model (no temporal effects). Credit:
IBM

Such detailed quantitative analysis has previously not been availablekiehstiglers who need to
formulate policy responses.
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Causal inference

The forecasting system described above is purely-ddten where we rely on the model to derive
relationships between all the variables. Alternatively, if we seek to exploit subject meagpertise
and include specific insights in the system, we could take the approach of probabilistic graphical
models.

At a workshop held at IBM Researcheland, subject matter experts from the Mixed Migration
Centre in Geneva and DRC drew out the "ge#ti' network showing how they expect indicator
clusters to be causally linked. Using this as input, we then combined their expert opinion with the
data. We used a technique called structure learning to develop such a network.

Forecasting using such netvks typically don't perform as well as purely datd@ven approaches
presented above; nevertheless, they do aid in scenario analysis and policy analysis.

What's next?
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Figure 3: (left) causal network drawn by experts and (right) network learnt basexpemt opinion
and evidence based on data for all of Stdtharan Africa. Credit: IBM

These are the first few steps towards a future where policy makers have instant access to evidence
when and where it is needed and where complex relationships can beregpasily to provide
more insight driving better policy.

For now, we are continuing to improve the system and gather user feedback with subject experts
within the DRC. Following more detailed validation, we will look to expand the geographic scope
and sceario analysis capabilitieR22]
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Machine learning technique to predict human cell organization

published in nature methods

Scientists at the Allen Institute have used machine learning to train computers to see parts of the
cell the human eyeannot easily distinguish. UsingBimages of fluorescently labeled cells, the
research team taught computers to find structures inside living cells without fluorescent labels,
using only black and white images generated by an inexpensive technique ksdwightfield
microscopy. A study describing the new technique is published today in the jiNahake

Methods

Fluorescence microscopy, which uses glowing molecular labels to pinpoint specific paits, if

very precise but only allows scientists to see a few structures in the cell at a time. Human cells have
upwards of 20,000 different proteins that, if viewed together, could reveal important information
about both healthy andliseased cells.

"This technology lets us view a larger set of those structures than was possible before," said Greg
Johnson, Ph.D., Scientist at the Allen Institute for Cell Science, a division of the Allen Institute, and
seniorauthor on the study. "This means that we can explore the organization of the cell in ways
that nobody has been able to do, especiallfivie cells."

The prediction tool could also help scientists underdtarinat goes wrong in cells during disease,

said Rick Horwitz, Ph.D., Executive Director of the Allen Institute for Cell Science. Cancer researchers
could potentially apply the technique to archived tumor biopsy samples to better understand how
cellular stuctures change as cancers progress or respond to treatment. The algorithm could also aid
regeneration medicine by uncovering how cells change in real time as scientists attempt to grow
organs or other new body structures in the lab.

"This technique has hegpotential ramifications for these and related fields," Horwitz said. "You
can watch processes live as they are taking pldate almost like magic. This method allows us, in
the most noninvasive way that we have so far, to obtain information abdowtan cells that we
were previously unable to get."

The combination of the freely available prediction toolset and brightfield microscopy could lower
research costs if used in placefloiorescence microscopy, which requires expensive equipment

and trained operators. Fluorescent tags are also subject to fading, and the light itself can
damageliving cells, limiting the technique's utility to study live cells and their dynamics. The

machine learning approach would allow scientists to track precise changes in cells over long periods
of time, potentially shedding light on events such as early developmedisease progression.

To the human eye, cells viewed in a brightfield microscope are sacs rendered in shades of gray. A
trained scientist can find the edges of a cell and the nucleus, the cell'sstolkkje compartment,

but not much else. The researtdam used an existing machine learning technique, known as a
convolutional neural network, to train computers to recognize finer details in these images, such as
the mitochondria, cells' powerhouses. They tested 12 different cellular structures and thel mod
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generated predicted images that matched the fluorescently labeled images for most of those
structures, the researchers said.

It also turned out what the algorithm was able to capture surprised even the modeling scientists.

"Going in, we had this ideadhif our own eyes aren't able to see a certain structure, then the
machine wouldn't be able to learn it,” said Molly Maleckar, Ph.D., Director of Modeling at the Allen
Institute for Cell Science and an author on the study. "Machines can see things wédleap'can

learn things we can't. And they can do it much faster.”

The technique can also predict precise structural information from images taken with an electron
microscope. The computational approach here is the same, said Forrest Collman, PhiantAssis
Investigator at the Allen Institute for Brain Science and an author on the study, but the applications
are different. Collman is part of a team working to map connections between neurons in the mouse
brain. They are using the method to line up imagéthe neurons taken with different types of
microscopes, normally a challenging problem for a computer and a laborious task for a human.

"Our progress in tackling this problem was accelerated by having our colleagues from the Allen
Institute for Cell Sciece working with us on the solution,” Collman said.

Roger Brent, Ph.D., a Member of the Basic Sciences Division at Fred Hutchinson Cancer Research
Center, is using the new approach as part of a research effort he is leading to improve the "seeing
power" of microscopes for biologists studying yeast and mammalian cells. "Replacing fluorescence
microscopes with less light intensive microscopes would enable researchers to accelerate their
work, make better measurements of cell and tissue function, and save swney in the process,"
Brent said. "By making these networks available, the Allen Institute is helping to democratize
biological and medical research21]

Machine learning classifies biomolecules
Small angle Xay scattering (SAXS) is one of a nunddebiophysical techniques used for

determining the structural characteristics of biomoleculgianiel Franke and colleagues from
the European Molecular Biology Laboratory have recently published a machine

learningbased method to classify biomolecules using existing SAXSBimp)hyS.
J. 114 2485).

The method can be used tassify shape, as well as estimate structural parameters such as the
maximal diameter or molecular mass of the molecule under study. These estimates may then serve
as a valuable method for validating expected values.

The team decided on a set of shapessiéications for biomolecules: compact spheres, flat discs,
extended rods, compasdtollow cylinders, hollow spheres and flat rings. They used simulations to
obtain idealized scattering profiles of each of these different geometries across a range osheight
widths and lengths ranging from 10 to 500 A.
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The researchers used innovative data reduction approaches to reduce each of the scattering profiles

to a point in normalized apparent volume spabté, Representing the data in this way is
advantageous because structurst share similar structural characteristics will occupy a similar

position inV space.

The process of classifying an unknown scattering profile then amounts to calculating its position

in V space and locating the nearest points\irspace for whiclparameters are already known. The
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points inV space. A machine can be programmed to perform all of these steps.
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Using machine learning

The team simulated some38,000 scattering patterns and used these to train an algorithm to
categorize different scattering patterns. Each scattering pattern was then removed in turn, and the
remaining data used to predict the shape classification of the removed pattern.

This traning procedure allowed the researchers to refine the weights assigned to the nearest
neighbour structures itV space, so as to maximize the accuracy of the machine classification.

Predicting structural parameters
To test the predictive power of the shapkassification method, the researchers harvested

scattering data from the Protein Data Bamk[) B) and the Small Angle Scattering Biological Data

Bank EASBDB).

From the atomic stictures stored in the PDB, they usedR Y SOL software to generate
scattering intensities, as well as values of structural parameters such as the maximal diameter and

molecular mass. Aftanapping the known structures t space, an equivalent algorithm was then
used to predict the structural parameters based on the generated scattering intensity. Here, the
machine prediction was within 10% of the expected value in 90% of cases.

The SASBDBqvides scattering intensity as well as user generated values of structural parameters
such as the maximal diameter. The researchers also observed good agreement from the structures
collected from the SASBDB, with the machine predicting a small, systaltydtigver value for the
maximal diameter. This offset reflects the fact that molecules tend to occupy an extended
configuration in solution.

The protocol developed by the team shows that data mining has significant potential to increase the
efficiency andeliability of scattering data, which could have huge benefit for the biophysics
community.[20]

Enhanced detection of nuclear events, thanks to deep learning

A deep neural network running on an ordinary desktop computer is interpreting highly tethnica
data related to national security as welltaand sometimes better thantoday's best automated
methods or even human experts.

The progress tackling some of the most complex problems of the environment, the cosmos and
national security comes from scienssat the Department of Energy's Pacific Northwest National
Laboratory who presented their work at the 11th MARC conferendethods and Applications of
Radioanalytical Chemistryin April in Hawaii. Their work emplogsep learning, in which

machines are enabled to learn and make decisions without being explicitly programmed for all
conditions.

The research probes incredibly complex data sets from the laboratory's shallow underground lab,
where scientists etect the faintest of signals from a planet abuzz in activity. In the laboratory
buried 81 feet beneath concrete, rock and earth, thick shielding dampens signals from cosmic rays,
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electronics and other sources. That allows PNNL scientists to isolate eipthielesignals of interest
collected from anywhere on the planet.

Those signals signify events called radioactive decays, when a particle such as an electron is emitted
from an atom. The process is happening constantly, through both natural and humatyactiv

Scientists can monitor changes in levels of ar§dnwhich could indicate prior nuclear test activity,

and argon39, whose levels help scientists determine the age of groundwater and learn more about
the planet.

The lab has accumulated data on milkoof radioactive decay events since it opened in 2010. But
it's a noisy world out there, especially for scientists listening for very rare signals that are easily
confused with signals of a different and frequently routine origiar instance, a personifiping on

a light switch or receiving a call on a cell phone.

PNNL scientist Emily Mace, who presented at MARC, is an expert in interpreting the features of such
signals when an event might indicate underground nuclear testing, for example, or a rapidly
depleting aquifer. Much like physicians perusea)s for hints of disease, Mace and her colleagues

pore over radioactive decay event data regularly to interpret the signiisir energy, timing,

peaks, slopes, duration, and other features.

"Some pulse shapeare difficult to interpret,” said Mace. "It can be challenging to differentiate
between good and bad data."

Recently Mace and colleagues turned for input to their colleagues who are experts in deep learning,
an exciting and active subfield of artificiafelligence. Jesse Ward is one of dozens of deep learning
experts at the lab who are exploring several applications through PNNL's Deep Learning for
Scientific Discovery Agile Investment. Mace sent Ward information on nearly 2 million energy pulses
detected in the Shallow Underground Laboratory since 2010.

Ward used a clean sample set of 32,000 pulses to train the network, inputting many features of
each pulse and showing the network how the data was interpreted. Then he fed the network
thousands more sigals as it taught itself to differentiate between "good" signals that showed
something of interest and "bad" signals that amounted to unwanted noise. Finally, he tested the
network, feeding it increasingly complex sets of data that are difficult even fmerexto interpret.

The network he created interprets pulse shape events with an accuracy that equals and sometimes
surpasses the knowow of experts like Mace. With straightforward data, the program sorted more
than 99.9 percent of the pulses correctly.

Results are even more impressive when the data is noisy and includes an avalanche of spurious
signals:

In an analysis involving 50,000 pulses, the neural network agreed 100 percent of the time with the
human expert, besting the best conventional computeaditechniques which agreed with the
expert 99.8 percent of the time.

In another analysis of 10,000 pulses, the neural net correctly identified 99.9 percent of pulses
compared to 96.1 percent with the conventional technique. Included in this analysis weere th



toughest pulses to interpret; with that subset, the neural network did more than 25 times better,
correctly classifying 386 out of 400 pulses compared to 14 of 400 for the conventional technique.

"This is a relatively simplesural network but the results are impressive," said Ward. "You can do
productive work on important scientific problems with a fairly primitive machine. It's exciting to
consider what else is possible."

The project posed annexpected challenge, however: The shallow underground lab is so pristine,
with most spurious noise signals mitigated before they enter the data stream, that Ward found
himself asking Mace for more bad data.

"Signals can be well behaved or they can be yooehaved," said Ward. "For tmetwork to learn
about the good signals, it needs a decent amount of bad signals for comparison."

The problem of culling through vast amountsdata looking for meaningful signals has a raft of
implications and extends to many areas of science. At PNNL, one area is the search for signals that
would result from dark matter, the vast portion of matter in our universe whose origin and
whereabouts is unknown. Another is the automatic detection of breast cancers and other tissue
anomalies.

"Deep learning is making it easier for us to filter out a small number of good events that are
indicative of the activity of interest," said Craig Adtsetuclear physicist and PNNL laboratory
fellow. "It's great to see deefearning techniques actually doing a better job than our previous best
detection techniques.[19]

Scientists pioneer use of deep learning for real -time gravitational wave

discovery

Scientists at the National Center for Supercomputing Applications (NCSA), located at the University
of lllinois at Urbana&hampaign, have pioneered the use of Giedelerated deep learning for rapid
detection and characterization of gravitational wavEéhkis new approach will enable astronomers

to study gravitational waves using minimal computational resources, reducing time to discovery and
increasing the scientific reach of gravitational wave astrophysics. This innovative research was
recently publishd in Physics Letters.B

Combining deep learning algorithms, numerical relativity simulations of black hole mergers
obtained with the Einstein Toolkit run on the Blue Waters supercompuéerd data from the LIGO
Open Science Center, NCSA Gravity Group relsera Daniel George and Eliu Huerta produced
Deep Filtering, an entb-end timeseries signal processing method. Deep Filtering achieves similar
sensitivities and lower errors compared to establiskyealvitational wave detection algorithms,

while being far more computationally efficient and more resilient to noise anomalies. The method
allows faster than reaime processing odravitational waves in LIGO's raw data, and also enables
new physics, since it can detect new classes of gravitational wave sources that may go unnoticed
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with existing detection algorithms. GeorgedaHuerta are extending this method to identify in real
time electromagnetic counterparts to gravitational wave events in future LSST data.

NCSA's Gravity Group leveraged NCSA resources from its Innovative Systems Laboratory, NCSA's
Blue Waters supercomputeand collaborated with talented interdisciplinary staff at the University

of lllinois. Also critical to this research were the GPUs (Tesla P100 anb) péXided by NVIDIA,

which enabled an accelerated training of neural networks. Wolfram Researcplajsal an

important role, as the Wolfram Language was used in creating this framework for deep learning.

George and Huerta worked with NVIDIA and Wolfram researchers to create this demo to visualize
the architecture of Deep Filtering, and to get insights its neuronal activity during the detection

and characterization of real gravitational wave events. This demo highlights all the components of
Deep Filtering, exhibiting its detection sensitivity and computational performance. [18]

Mathematicians de velop model for how new ideas emerge
Researchers from Queen Mary University of London have developed a mathematical model for the
emergence of innovations.

Studying creative processes and understanding how innovations arise and how novelties can trigger
further discoveries could lead to effective interventions to nurture the success and sustainable
growth of society.

Empirical findings have shown that the way in which novelties are discovered follows similar
patterns in a variety of different contexts inding science, arts, and technology.

The study, published iRhysical Review Lettelistroduces a new mathematical framework that
correctly reproduces the rate at which novelties emerge in real systems, known as Heaps' law, and
can explain why discoveriese strongly correlated and often come in clusters.

It does this by translating the theory of the 'adjacent possible', initially formulated by Stuart
Kauffman in the context of biological systems, into the language of complex networks. The adjacent
possilte is the set of all novel opportunities that open up whemeav discovery is made. Networks

have emerged as a powerful way to both investigate real world systems, by capturing the essential
relations béween the components, and to model the hidden structure behind many complex social
phenomena.
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In this work, networks are used to model the underlying space of relations among concepts.

Lead author Professor Vito Latora, from Queen Mary's School of Mathematical Sciences, said: "This
research opens up new directions for the modelling of innovation, together with a new framework
that could become important in the investigation of technologjitéological, artistic, and

commercial systems."

He added: "Studying the processes through which innovations arise can help understanding the
main ingredients behind a winning idea, a breakthrough technology or a successful commercial
activity, and is fudamental to devise effective daiaformed decisions, strategies, and
interventions to nurture the success and sustainable growth of our society."

In the study, the discovery process is modelled as a particular class of random walks, named
'reinforced’ waks, on an underlying network of relations among concepts and ideas. An innovation
corresponds to the first visit of a site of the network, and every time a walker moves from a concept
to another, such association (an edge in the network) is reinforcetatdttwill be used more

frequently in the future. The researchers named this the 'edgjeforced random walk' model.
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To show how the model works in a real case, they also constructed a dataset of 20 years of scientific
publications in different disciples, such as astronomy, ecology, economics and mathematics to
analyse the appearance of new concepts. This showed that, despite its simplicity, the edge
reinforced random walk model is able to reproduce how knowledge grows in modern science.

Professor Vito Latora added: "The framework we present constitutes a new approach for the study
of discovery processes, in particular those for which the underlying network can be directly
reconstructed from empirical data, for example users listening tisimover a

similaritynetwork between songs. We are already working on this idea, together with an extended
version of oumodel, where we study the collective elgpation of these networked spaces by
considering multiple walkers at the same timgL7]

Rise of the quantum thinking machines
Quantum computers can be made to utilize effects such as quantum coherence and entanglement
to accelerate machine learning.

Although we typically view information as being an abstract or virtual entity, information, of
course, must be stored in a physicadium. Information processing devices such as computers
and phones are therefore fundamentally governed by the laws of physics. In this way, the
fundamental physical limits of an agent's ability to learn are governed by the laws of physics. The
best know theory of physics is quantum theory, which ultimately must be used to determine the
absolute physical limits of a machine's ability to learn.

A quantum algorithm is a stepwise procedure performed on a quantum computer to solve a
problem such as searclgra database. Quantum machine learning software makes use of quantum
algorithms to process information in ways that classical computers cannot. These quantum effects
open up exciting new avenues which can, in principle, outperform the best known classical
algorithms when solving certain machine learning problems. This is known as quantum enhanced
machine learning.

Machine learning methods use mathematical algorithms to search for certain patterns in large data
sets. Machine learning is widely used in ba@dteology, pharmaceuticals, particle physics and many
other fields. Thanks to the ability to adapt to new data, machine learning greatly exceeds the ability
of people. Despite this, machine learning cannot cope with certain difficult tasks.

Quantum enhanaoment is predicted to be possible for a host of machine learning tasks, ranging
from optimization to quantum enhanced deep learning.

In the new paper published in Nature, a group of scientists led by Skoltech Associate Professor
Jacob Biamonte produced eafsibility analysis outlining what steps can be taken for practical
quantum enhanced machine learning.

The prospects of using quantum computers to accelerate machine learning has generated recent
excitement due to the increasing capabilities of quanturmpaters. This includes a commercially
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available 2000 spin quantum accelerated annealing by the Cdeasksd company Wave
Systems Inc. and a 16 qubit universal quantum processor by IBM which is accessible via a (currently
free) cloud service.

The availallity of these devices has led to increased interest from the machine learning

community. The interest comes as a bit of a shock to the traditional quantum physics community,
in which researchers have thought that the primary applications of quantum campuiould be

using quantum computers to simulate chemical physics, which can be used in the pharmaceutical
industry for drug discovery. However, certain quantum systems can be mapped to certain machine
learning models, particularly deep learning modelsa@um machine learning can be used to

work in tandem with these existing methods for quantum chemical emulation, leading to even
greater capabilities for a new era of quantum technology.

"Early on, the team burned the midnight oil over Skype, debating titeafield even was our
synthesis will hopefully solidify topical importance. We submitted our draft to Nature, going
forward subject to significant changes. All in all, we ended up writing three versions over eight
months with nothing more than the titlen common," said lead study author Biamonte. [16]

A Machine Learning Systems That Called Neural Networks Perform

Tasks by Analyzing Huge Volumes of Data

Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed
to them. These machine learning systems continually learn and readjust to be able to carry out the
task set out before them. Understanding how neural networks work helps researchers to develop
better applications and uses for them.

At the 2017 Conference dempirical Methods on Natural Language Processing earlier this month,
MIT researchers demonstrated a new gengraipose technique for making sense of neural
networks that are able to carry out natural language processing tasks where they attempt to
extrad data written in normal text opposed to something of a structured language like database
query language.

The new technique works great in any system that reads the text as input and produces symbols as

the output. One such example of this can be seeamimutomatic translator. It works without the

need to access any underlying software too. Tommi Jaakkola is Professor of Electrical Engineering
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simple randomizaon. And what you are predicting is now a more complex object, like a sentence,
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As part of the research, Jaakkola, and colleague David Alveks, an MIT graduate student in

electrical engineering and comiar science and first author on the paper, used a blagk neural

net in which to generate test sentences to feed bkadk neural nets. The duo began by teaching

the network to compress and decompress natural sentences. As the training continues the
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Neural nets work on probabilities. For example, an objecbgnition system could be fed an

image of a cat, and it would pcess that image as it saying 75 percent probability of being a cat,
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sentence along with the probability that each is correct. So, once the system has generated a list of
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allows the researchers to analyze and determiigch inputs have an effect on which outputs.

During the research, the pair applied this technique to three different types of a natural language
processing system. The first one inferred the way in which words were pronounced; the second
was a set of traslators, and the third was a simple computer dialogue system which tried to
provide adequate responses to questions or remarks. In looking at the results, it was clear and
pretty obvious that the translation systems had strong dependencies on individwek of both

the input and output sentences. A little more surprising, however, was the identification of gender
biases in the texts on which the machine translation systems were trained. The dialogue system
was too small to take advantage of the trainsg.
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model that is not doing a good job, can you first use this kind of approach to identify problems? A

motivating application of this kind of interpretaityl is to fix systems, to improve systems, by
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Active machine learning for the discovery and crystallization of gigantic

polyoxometalate molecules

Who is the better experimentalist, a human or a rgbdVhen it comes to exploring synthetic and
crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly
ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in
the journal Angwandte Chemie.

Polyoxometalates form through sedssembly of a large number of metal atoms bridged by oxygen
atoms. Potential uses include catalysis, electronics, and medicine. Insights into the self
organization processes could also be of use in dguedofunctional chemical systems like
"molecular machines".

Polyoxometalates offer a nearly unlimited variety of structures. However, it is not easy to find new
ones, because the aggregation of complex inorganic molecules to gigantic molecules is & proces
that is difficult to predict. It is necessary to find conditions under which the building blocks
aggregate and then also crystallize, so that they can be characterized.

A team led by Leroy Cronin at the University of Glasgow (UK) has now developed a new approach
to define the range of suitable conditions for the synthesis and crystallization of polyoxometalates.
It is based on recent advances in machine learning, knovactage learning. They allowed their
trained machine to compete against the intuition of experienced experimenters. The test example
was Na(6)[Mo(120)Ce(6)0O(366)H(12)(H(2)0)(78)]-200 H(2)O, a neshajped polyoxometalate
cluster that was recently disgered by the researchers' automated chemical robot.



In the experiment, the relative quantities of the three necessary reagent solutions were to be
varied while the protocol was otherwise prescribed. The starting point was a set of data from
successful andnsuccessful crystallization experiments. The aim was to plan ten experiments and
then use the results from these to proceed to the next set of ten experimemtstal of one

hundred crystallization attempts.

Although the fleskand-blood experimentersvere able to produce more successful crystallizations,
the far more "adventurous” machine algorithm was superior on balance because it covered a
significantly broader domain of the "crystallization space". The quality of the prediction of whether
an expennent would lead to crystallization was improved significantly more by the machine than
the human experimenters. A series of 100 purely random experiments resulted in no improvement.
In addition, the machine discovered a range of conditions that led tdatsywhich would not have
been expected based on pure intuition. This "unbiased" automated method makes the discovery of
novel compounds more probably than reliance on human intuition. The researchers are now
looking for ways to make especially efficietddms™ of man and machine. [14]

Using machine learning to understand materials

Whether you realize it or not, machine learning is making your online experience more efficient.
The technology, designed by computer scientists, is used to better understaalyze, and
categorize data. When you tag your friend on Facebook, clear your spam filter, or click on a
suggested YouTube video, you're benefitting from machine learning algorithms.

Machine learning algorithms are designed to improve as they encoumtee data, making them a
versatile technology for understanding large sets of photos such as those accessible from Google
Images. Elizabeth Holm, professor of materials science and engineering at Carnegie Mellon
University, is leveraging this technologyttetter understand the enormous number of research
images accumulated in the field of materials science. This unique application is an interdisciplinary
approach to machine learning that hasn't been explored before.

"Just like you might search for cutetgactures on the internet, or Facebook recognizes the faces
of your friends, we are creating a system that allows a computer to automatically understand the
visual data of materials science," explains Holm.

The field of materials science usually relieshmiman experts to identify research images by hand.
Using machine learning algorithms, Holm and her group have created a system that automatically
recognizes and categorizes microstructural images of materials. Her goal is to make it more
efficient for mderials scientists to search, sort, classify, and identify important information in their
visual data.

"In materials science, one of our fundamental data is pictures," explains Holm. "Images contain
information that we recognize, even when we find it idifilt to quantify numerically."

Holm's machine learning system has several different applications within the materials science field
including research, industry, publishing, and academia. For example, the system could be used to
create a visual search afscientific journal archives so that a researcher could find out whether a
similar image had ever been published. Similarly, the system can be used to automatically search



and categorize image archives in industries or research labs. "Big companieeardthives of
600,000 or more research images. No one wants to look through those, but they want to use that
data to better understand their products,” explains Holm. "This system has the power to unlock
those archives."

Holm and her group have been vkamg on this research for about three years and are continuing
to grow the project, especially as it relates to the metd printing field. For example, they are
beginning to compile a database of experimental and simulated metal powder micrographs in
order to better understand what types of raw materials are best suited fDri@inting processes.

Holm published an article about this research in the December 2015 issue of Computational
Materials Science titled "A computer vision approach for automatelyesis and classification of
microstructural image data." [13]

Artificial intelligence helps in the discovery of new materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have
computed the characterists of about two million crystals made up of four chemical elements. The
researchers were able to identify 90 previously unknown thermodynamically stable crystals that
can be regarded as new materials.

They report on their findings in the scientific joatriPhysical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First
discovered in El Paso County (Colorado, USA), it can also be found in the Rocky Mountains, Virginia
and the Apennines (ltaly). Bxperimental databases, elpasolite is one of the most frequently

found quaternary crystals (crystals made up of four chemical elements). Depending on its
composition, it can be a metallic conductor, a s@minductor or an insulator, and may also emit

light when exposed to radiation.

These characteristics make elpasolite an interesting candidate for use in scintillators (certain
aspects of which can already be demonstrated) and other applications. Its chemical complexity
means that, mathematically speakinigis practically impossible to use quantum mechanics to
predict every theoretically viable combination of the four elements in the structure of elpasolite.

Machine learning aids statistical analysis

Thanks to modern artificial intelligence, Felix Faledoctoral student in Prof. Anatole von

Lilienfeld's group at the University of Basel's Department of Chemistry, has now succeeded in
solving this material design problem. First, using quantum mechanics, he generated predictions for
thousands of elpasité crystals with randomly determined chemical compositions. He then used

the results to train statistical machine learning models (ML models). The improved algorithmic
strategy achieved a predictive accuracy equivalent to that of standard quantum meahanic
approaches.

ML models have the advantage of being several orders of magnitude quicker than corresponding
quantum mechanical calculations. Within a day, the ML model was able to predict the formation
energyc an indicator of chemical stabilityof all two million elpaolite crystals that theoretically



can be obtained from the main group elements of the periodic table. In contrast, performance of
the calculations by quantum mechanical means would have taken a supercomputer more than 20
million hours.

Unknown materials with interesting characteristics

An analysis of the characteristics computed by the model offers new insights into this class of
materials. The researchers were able to detect basic trends in formation energy and identify 90
previously unknown crystals that should be thermodynamicalligletaaccording to quantum
mechanical predictions.

On the basis of these potential characteristics, elpasolite has been entered into the Materials
Project material database, which plays a key role in the Materials Genome Initiative. The initiative
was laurched by the US government in 2011 with the aim of using computational support to
accelerate the discovery and the experimental synthesis of interesting new materials.

Some of the newly discovered elpasolite crystals display exotic electronic charartearsdi

unusual compositions. "The combination of artificial intelligence, big data, quantum mechanics and
supercomputing opens up promising new avenues for deepening our understanding of materials
and discovering new ones that we would not consider if @le2d solely on human intuition,” says
study director von Lilienfeld. [12]

Physicists are putting themselves out of a job, using artificial

intelligence to run a complex experiment

The experiment, developed by physicists from The Australian Nationarsijp(ANU) and UNSW
ADFA, created an extremely cold gas trapped in a laser beam, known as&iBzisa
condensate, replicating the experiment that won the 2001 Nobel Prize.

"l didn't expect the machine could learn to do the experiment itself, froratsb, in under an
hour," said cdead researcher Paul Wigley from the ANU Research School of Physics and
Engineering.

"A simple computer program would have taken longer than the age of the Universe to run through
all the combinations and work this out."

BoseEinstein condensates are some of the coldest places in the Universe, far colder than outer
space, typically less than a billionth of a degree above absolute zero.

They could be used for mineral exploration or navigation systems as they are extsamsitve to
external disturbances, which allows them to make very precise measurements such as tiny changes
in the Earth's magnetic field or gravity.

The artificial intelligence system's ability to set itself up quickly every morning and compensate for
any overnight fluctuations would make this fragile technology much more useful for field
measurements, said eead researcher Dr Michael Hush from UNSW ADFA.

"You could make a working device to measure gravity that you could take in the back of alcar, an
the artificial intelligence would recalibrate and fix itself no matter what," he said.



"It's cheaper than taking a physicist everywhere with you."

The team cooled the gas to around 1 microkelvin, and then handed control of the three laser
beams over tdhe artificial intelligence to cool the trapped gas down to nanokelvin.

Researchers were surprised by the methods the system came up with to ramp down the power of
the lasers.

"It did things a person wouldn't guess, such as changing one laser's powadown, and
compensating with another,” said Mr Wigley.

"It may be able to come up with complicated ways humans haven't thought of to get experiments
colder and make measurements more precise.

The new technique will lead to bigger and better experitsesaid Dr Hush.

"Next we plan to employ the artificial intelligence to build an even larger Eis&tein condensate
faster than we've seen ever before," he said.

The research is published in the Nature group journal Scientific Reports. [11]

Quantum experiments designed by machines

The idea was developed when the physicists wanted to create new quantum states in the
laboratory, but were unable to conceive of methods to do so. "After many unsuccessful attempts
to come up with an experimental implemeti@n, we came to the conclusion that our intuition
about these phenomena seems to be wrong. We realized that in the end we were just trying
random arrangements of quantum building blocks. And that is what a computer can do as well
but thousands of timeaster", explains Mario Krenn, PhD student in Anton Zeilinger's group and
first author research.

After a few hours of calculation, their algorithnwhich they call Melvir found the recipe to the
guestion they were unable to solve, and its structurepsised them. Zeilinger says: "Suppose | want
build an experiment realizing a specific quantum state | am interested in. Then humans intuitively
consider setups reflecting the symmetries of the state. Yet Melvin found out that the most simple
realization ca be asymmetric and therefore counterintuitive. A human would probably never come
up with that solution."

The physicists applied the idea to several other questions and got dozens of new and surprising
answers. "The solutions are difficult to understand, but we were able to extract some new
experimental tricks we have not thought of before. Some of these ceoenglesigned experiments
are being built at the moment in our laboratories”, says Krenn.

Melvin not only tries random arrangements of experimental components, but also learns from
previous successful attempts, which significantly speeds up the disc@aterfor more complex
solutions. In the future, the authors want to apply their algorithm to even more general questions
in guantum physics, and hope it helps to investigate new phenomena in laboratories. [10]



Moving electrons around loops with light: Aqu antum device based on

geometry

Researchers at the University of Chicago's Institute for Molecular Engineering and the University of
Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the
qubit, that- surprisingly is intrinsically resilient to noise as well as to variations in the strength or
duration of the control. Their achievement is based on a geometric concept known as the Berry
phase and is implemented through entirely optical means within a single elecispini in

diamond.

Their findings were published online Feb. 15, 2016, in Nature Photonics and will appear in the
March print issue. "We tend to view quantum operations as very fragile and susceptible to noise,
especially when compared to conventionalafenics,” remarked David Awschalom, the Liew
Family Professor of Molecular Engineering and senior scientist at Argonne National Laboratory,
who led the research. "In contrast, our approach shows incredible resilience to external influences
and fulfills akey requirement for any practical quantum technology."

Quantum geometry

When a quantum mechanical object, such as an electron, is cycled along some loop, it retains a
memory of the path that it travelled, the Berry phase. To better understand this conibep

Foucault pendulum, a common staple of science museums helps to give some intuition. A
pendulum, like those in a grandfather clock, typically oscillates back and forth within a fixed plane.
However, a Foucault pendulum oscillates along a plane ttaatuglly rotates over the course of a

day due to Earth's rotation, and in turn knocks over a series of pins encircling the pendulum.

The number of knockedver pins is a direct measure of the total angular shift of the pendulum's
oscillation plane, its apired geometric phase. Essentially, this shift is directly related to the
location of the pendulum on Earth's surface as the rotation of Earth transports the pendulum along
a specific closed path, its circle of latitude. While this angular shift depentteqarticular path
traveled, Awschalom said, it remarkably does not depend on the rotational speed of Earth or the
oscillation frequency of the pendulum.

"Likewise, the Berry phase is a similar pdépendent rotation of the internal state of a quantum
system, and it shows promise in quantum information processing as a robust means to manipulate
qubit states," he said.

A light touch

In this experiment, the researchers manipulated the Berry phase of a quantum state within a
nitrogenvacancy (NV) centean atomiescale defect in diamond. Over the past decade and a half,
its electronic spin state has garnered great interest as a potential qubit. In their experiments, the
team members developed a method with which to draw paths for this defect's spiarging the
applied laser light. To demonstrate Berry phase, they traced loops similar to that of a tangerine
slice within the quantum space of all of the potential combinations of spin states.

"Essentially, the area of the tangerine slice's peel that vesvddictated the amount of Berry phase
that we were able to accumulate," said Christopher Yale, a postdoctoral scholar in Awschalom's
laboratory, and one of the elead authors of the project.



This approach using laser light to fully control the pathhef ¢lectronic spin is in contrast to more
common techniques that control the NV center spin, through the application of microwave fields.
Such an approach may one day be useful in developing photonic networks of these defects, linked
and controlled entirg} by light, as a way to both process and transmit quantum information.

A noisy path

A key feature of Berry phase that makes it a robust quantum logic operation is its resilience to
noise sources. To test the robustness of their Berry phase operatianseglearchers intentionally
added noise to the laser light controlling the path. As a result, the spin state would travel along its
intended path in an erratic fashion.

However, as long as the total area of the path remained the same, so did the Bagsy thiat they
measured.

"In particular, we found the Berry phase to be insensitive to fluctuations in the intensity of the
laser. Noise like this is normally a bane for quantum control," said Brian Zhou, a postdoctoral
scholar in the group, and dead auhor.

"Imagine you're hiking along the shore of a lake, and even though you continually leave the path to
go take pictures, you eventually finish hiking around the lake," said F. Joseph Hererdaas, co
author, and now a staff scientist at Argonne Na#bhaboratory. "You've still hiked the entire loop
regardless of the bizarre path you took, and so the area enclosed remains virtually the same.”

These optically controlled Berry phases within diamond suggest a route toward robust and
faulttolerant quantum information processing, noted Guido Burkard, professor of physics at the
University of Konstanz and theory collaborator on the project.

"Though its technological applications are still nascent, Berry phases have a rich underlying
mathematical frameworkhat makes them a fascinating area of study,” Burkard said. [9]

Researchers demonstrate 'quantum surrealism'

In a new version of an old experiment, CIFAR Senior Fellow Aephraim Steinberg (University of
Toronto) and colleagues tracked the trajectoriephbtons as the particles traced a path through
one of two slits and onto a screen. But the researchers went further, and observed the "nonlocal”
influence of another photon that the first photon had been entangled with.

The results counter a lorgtanding criticism of an interpretation of quantum mechanics called the
De BroglieBohm theory. Detractors of this interpretation had faulted it for failing to explain the
behaviour of entangled photons realistically. For Stefgbthe results are important because they
give us a way of visualizing quantum mechanics that's just as valid as the standard interpretation,
and perhaps more intuitive.

"I'm less interested in focusing on the philosophical question of what's ‘realiyhete. | think the
fruitful question is more down to earth. Rather than thinking about different metaphysical
interpretations, | would phrase it in terms of having different pictures. Different pictures can be
useful. They can help shape better intuiteoh



At stake is what is "really" happening at the quantum level. The uncertainty principle tells us that
we can never know both a particle's position and momentum with complete certainty. And when
we do interact with a quantum system, for instance by mear it, we disturb the system. So if

we fire a photon at a screen and want to know where it will hit, we'll never know for sure exactly
where it will hit or what path it will take to get there.

The standard interpretation of quantum mechanics holds that this uncertainty means that there is
no "real” trajectory between the light source and the screen. The best we can do is to calculate a
"wave function” that shows the odds of the photon being iy @ne place at any time, but won't

tell us where it is until we make a measurement.

Yet another interpretation, called the De BrogBehm theory, says that the photons do have real
trajectories that are guided by a "pilot wave" that accompanies theiglartThe wave is still
probabilistic, but the particle takes a real trajectory from source to target. It doesn't simply
"collapse” into a particular location once it's measured.

In 2011 Steinberg and his colleagues showed that they could follow trajestor photons by
subjecting many identical particles to measurements so weak that the particles were barely
disturbed, and then averaging out the information. This method showed trajectories that looked
similar to classical onesay, those of balls figg through the air.

But critics had pointed out a problem with this viewpoint. Quantum mechanics also tells us that
two particles can be entangled, so that a measurement of one particle affects the other. The critics
complained that in some cases, a maasnent of one particle would lead to an incorrect

prediction of the trajectory of the entangled particle. They coined the term "surreal trajectories” to
describe them.

In the most recent experiment, Steinberg and colleagues showed that the surrealisen was
consequence of notocality- the fact that the particles were able to influence one another
instantaneously at a distance. In fact, the "incorrect" predictions of trajectories by the entangled
photon were actually a consequence of where in their cotingeentangled particles were
measured. Considering both particles together, the measurements made sense and were
consistent with real trajectories.

Steinberg points out that both the standard interpretation of quantum mechanics and the De
BroglieBohm inerpretation are consistent with experimental evidence, and are mathematically
equivalent. But it is helpful in some circumstances to visualize real trajectories, rather than wave
function collapses, he says. [8]



Physicists discover easy way to measure en tanglement ? on a sphere
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determined by the distance from th@ot state z, the point at which there is no entanglement. The
closer to z, the less the entanglement (red); the further from z, the greater the entanglement
(blue). Credit: Regula and Adesso. ©2016 American Physical Society

Now in a new paper to be pultied in Physical Review Letters, mathematical physicists Bartosz
Regula and Gerardo Adesso at The University of Nottingham have greatly simplified the problem of
measuring entanglement.

To do this, the scientists turned the difficult analytical probleno i easy geometrical one. They
showed that, in many cases, the amount of entanglement between states corresponds to the
distance between two points on a Bloch sphere, which is basically a normal 3D sphere that
physicists use to model quantum states.

As he scientists explain, the traditionally difficult part of the math problem is that it requires
finding the optimal decomposition of mixed states into pure states. The geometrical approach
completely eliminates this requirement by reducing the many possilzlys that states could
decompose down to a single point on the sphere at which there is zero entanglement. The
approach requires that there be only one such point, or "root," of zero entanglement, prompting
the physicists to describe the method as "owetrto rule them all.”

The scientists explain that the "one root" property is common among quantum states and can be
easily verified, transforming a formidable math problem into one that is trivially easy. They
demonstrated that the new approach works fmany types of twe three- and fourqubit

entangled states.



"This method reveals an intriguing and previously unexplored connection between the quantum
features of a state and classical geometry, allowing altroo¢ states to enjoy a convenient visual
representation which considerably simplifies the study and understanding of their properties," the
researchers explained.

The simple way of measuring a state's entanglement could have applications in many technological
areas, such as quantum cryptograpbgmputation, and communication. It could also provide

insight into understanding the foundations of thermodynamics, condensed matter physics, and
biology. [7]

An idea for allowing the human eye to observe an instance of
entanglement
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Scheme of the proposal for detecting entanglement with the human eye. Credit: arXiv:1602.01907

Entanglement, is of course, where two quantum particles are intrinsically linked to the extent that
they actually share the same existence, even though the\beaseparated and moved apart. The
idea was first proposed nearly a century ago, and it has not only been proven, but researchers
routinely cause it to occur, but, to date, not one single person has every actually seen it happen
they only know it happenBy conducting a series of experiments. It is not clear if anyone has ever
actually tried to see it happen, but in this new effort, the research trio claim to have found a way to
make it happen if only someone else will carry out the experiment on a wilialyinteer.

The idea involves using a beam splitter and two beans oftlightinitial beam of coherent photons
fired at the beam splitter and a secondary beam of coherent photons that interferes with the
photons in the first beam causing a change of ph&seing the light to be reflected rather than
transmitted. In such a scenario, the secondary beam would not need to be as intense as the first,
and could in fact be just a single coherent phatdhit were entangled, it could be used to allow a
person tosee the more powerful beam while still preserving the entanglement of the original
photon.



The researchers suggest the technology to carry out such an experiment exists today, but also
acknowledge that it would take a special person to volunteer for suncassignment because to
prove that they had seen entanglement taking place would involve shooting a large number of
photons in series, into a person's eye, whereby the resolute volunteer would announce whether
they had seen the light on the order of theands of times. [6]

Quantum entanglement

Measurements of physical properties such as position, momentum, spin, polarization, etc.
performed on entangled particles are found to be appropriately correlated. For example, if a pair of
particles is generateth such a way that their total spin is known to be zero, and one particle is
found to have clockwise spin on a certain axis, then the spin of the other particle, measured on the
same axis, will be found to be counterclockwise. Because of the nature ofumaneasurement,
however, this behavior gives rise to effects that can appear paradoxical: any measurement of a
property of a particle can be seen as acting on that particle (e.g. by collapsing a number of
superimposed states); and in the case of entadglarticles, such action must be on the entangled
system as a whole. It thus appears that one particle of an entangled pair "knows" what
measurement has been performed on the other, and with what outcome, even though there is no
known means for such inforation to be communicated between the particles, which at the time

of measurement may be separated by arbitrarily large distances. [4]

The Bridge

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but
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the bridge between the Classical and Quantum Theories. [1]

Accelerating charges

The moving charges are self maintain the electromagnetic field locally, cabsingibvement and

this is the result of their acceleration under the force of this field. In the classical physics the
charges will distributed along the electric current so that the electric potential lowering along the
current, by linearly increasing theay they take every next time period because this accelerated
motion. The same thing happens on the atomic scale giving a dp impulse difference and a dx way
difference between the different part of the not point like particles.

Relativistic effect

Ancaher bridge between the classical and quantum mechanics in the realm of relativity is that the
charge distribution is lowering in the reference frame of the accelerating charges linearly: ds/dt =
at (time coordinate), but in the reference frame of the @nt it is parabolic: s = a/Z f{geometric
coordinate).



Heisenberg Uncertainty Relation

In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving
electron in the atom accelerating in the electric field of the prgtoausing a charge distribution on
delta x position difference and with a delta p momentum difference such a way that they product
is about the half Planck reduced constant. For the proton this delta x much less in the nucleon,
than in the orbit of the adctron in the atom, the delta p is much higher because of the greater
proton mass.

This means that the electron and proton are not point like particles, but has a real charge
distribution.

Wave z Particle Duality

The accelerating electrons explains the wag\ygarticle duality of the electrons and photons, since
the elementary charges are distributed on delta x position with delta p impulse and creating a
wave packet of the electron. The photon gives the electronetigrparticle of the mediating force
of the electrons electromagnetic field with the same distribution of wavelengths.

Atomic model

The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of
the proton and it's kietic and potential energy will be constant. Its energy will change only when it
is changing its way to another equipotential line with another value of potential energy or getting
free with enough kinetic energy. This means that the Rutheriotir atomiomodel is right and

only that changing acceleration of the electric charge causes radiation, not the steady acceleration.
The steady acceleration of the charges only creates a centric parabolic steady electric field around
the charge, the magnetic field. iBhgives the magnetic moment of the atoms, summing up the

proton and electron magnetic moments caused by their circular motions and spins.

The Relativistic Bridge

Commonly accepted idea that the relativistic effect on the particle physics it is tméofes' spin
another unresolved problem in the classical concepts. If the electric charges can move only with
accelerated motions in the self maintaining electromagnetic field, once upon a time they would
reach the velocity of the electromagnetic fieldheTresolution of this problem is the spinning
particle, constantly accelerating and not reaching the velocity of light because the acceleration is
radial. One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic
oscillators giving equal intensity for 2 different wavelengths on any temperature. Any of these two
wavelengths will give equal intensity diffraction patterns, building different asymmetric
constructions, for example protorelectron structures (atoms), moleculesceSince the particles
are centers of diffraction patterns they also have particigave duality as the electromagnetic
waves have. [2]



The weak interaction

The weak interaction transforms an electric charge in the diffraction pattern from one side to the
other side, causing an electric dipole momentum change, which violates the CP and time reversal
symmetry. The Electroweak Interaction shows that the Weadr#wtion is basically

electromagnetic in nature. The arrow of time shows the entropy grows by changing the
temperature dependent diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark chaitgésvor such that a linear
oscillation transforms into plane oscillation or vice versa, changing the charge value with. 1 or
This kind of change in the oscillation mode requires not only parity change, but also charge and
time changes (CPT symmetrgsulting a right handed antieutrino or a left handed neutrino.

The right handed amieutrino and the left handed neutrino exist only because changing back the
quark flavor could happen only in reverse, because they are different geometrical corsts,cti

the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It
needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spinseofveak interaction, for

example neutron decay to 2 fermions, every particle is fermions with %2 spin. The weak interaction
changes the entropy since more or less particles will give more or less freedom of movement. The
entropy change is a result of tem@gure change and breaks the equality of oscillator diffraction
intensity of the Maxwe{Boltzmann statistics. This way it changes the time coordinate measure
and

makes possible a different time dilation as of the special relativity.

The limit of the veloity of particles as the speed of light appropriate only for electrical charged
particles, since the accelerated charges are self maintaining locally the accelerating electric force.
The neutrinos are CP symmetry breaking particles compensated by tiine @RT symmetry, that

is the time coordinate not works as in the electromagnetic interactions, consequently the speed of
neutrinos is not limited by the speed of light.

The weak interaction-asymmetry is in conjunction with thedsymmetry of the seconldw of
thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes
the

weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional
oscllation by changing d to u quark and creating anti neutrino going back in time relative to the
proton and electron created from the neutron, it seems that the anti neutrino fastest then the
velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and thadCP

symmetry breaking!!! This flavor changing oscillation could prove that it could be also on higher
level such as atoms, molecules, probably big biological sigrifivalecules and responsible on the
aging of the life.



Important to mention that the weak interaction is always contains particles and antiparticles,

GKSNBE (GKS ySdziNAy2a oOFylGAySdziNAy2a0 LINBaSyid GKS
interpretation thatthese particles present the backward time and probably because this they seem

to move faster than the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with %2 spin creatinigiteild by
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light.

The General Weak Interaction

The Weak Interactions-dsymmetry is in conjunction with thedSymmetry of the Second Law of
Thermodynamis, meaning that locally lowering entropy (on extremely high temperature) causes
for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows
the increasing entropy and decreasing information by the Weak Interaction, chathging
temperature dependent diffraction patterns. A good example of this is the neutron decay, creating
more particles with less known information about them.

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipolgechan

and it is possible to any other temperature dependent entropy and information changing
diffraction pattern of atoms, molecules and even complicated biological living structures.

We can generalize the weak interaction on all of the decaying matter maigins, even on the
biological too. This gives the limited lifetime for the biological constructions also by the arrow of
time. There should be a new research space of the Quantum Information Science the 'general
neutrino oscillation' for the greater thresubatomic matter structures as an electric dipole change.
There is also connection between statistical physics and evolutionary biology, since the arrow of
time is working in the biological evolution also.

The Fluctuation Theorem says that there igabability that entropy will flow in a direction

opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is
growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two
directions, sarles for one direction is the Neutron decay, and Hydrogen fusion is the opposite
direction.

Fermions and Bosons
The fermions are the diffraction patterns of the bosons such a way that they are both sides of the
same thing.

Van Der Waals force

Named after the Dutch scientist Johannes Diderik van der VWaet® first proposed it in 1873 to
explain the behaviour of gasest is a very weak force that only becomes relevant when atoms

and molecules are very close together. Fluctuations in thereleic cloud of an atom mean that it

will have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the
result being an attractive dipotglipole interaction.
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