Twin Prime Conjecture

Toshiro Takami*
mm82889@yahoo.co.jp

Abstract

I proved the Twin Prime Conjecture.
All Twin Primes are executed in hexadecimal notation. It does not change in a huge number (forever huge number).
In a hexagonal diagram, [6m -1] and [6m+1], many are prime numbers.
Since the positive integers keep spinning around this hexagon forever, Twin Primes exist forever. All Twin Primes are consist in [6m -1] and [6m+1] (m is a positive integer).
All numbers are executed in hexadecimal notation. This does not change even in a huge number (forever huge number).
The larger the value, the more the number of twin primes that become.
That is because the number of rotations of the hexagon increases.
The number is infinite, and the number rotating inside the hexagon is also infinite.
That is, twin primes exist forever.

key words
Hexagonal circulation, Twin Prime, Infinite

Introduction

m is positive integer. and, The prime number is represented as (6m-1) or (6m+1).

Twin Prime are below.

Except for the pair (3, 5), above is
m=1,2,3,5,7,10,12,17,18,23,25,30,32,33,38,40,45,47,52,58,70,72,77,87,95,100,103.............

*47-8 kuyamadai, Isahaya-shi, Nagasaki-prefecture, 854-0067 Japan
All Twin Primes are combination of $[6m -1]$ and $[6m+1]$.
The only exception is $(3, 5)$.
That is, all Twin Primes are a combination of 5th angle and 1th angle.

(m is positive integer)

5th angle is $[6m -1]$.
1th angle is $[6m+1]$.
Discussion

If circlate hexagon, the set of prime combination \([6m-1] [6m+1]\) appear.

And, also a set of \([6m-1] [6m+1]\) that not a prime number appear.

\([6m-1]\) is 5th angle. \([6m+1]\) is 1th angle.

For example, 35, 65, 77, 95, 119, 125, 143, 155, 161, 185 etc. as the 5th angle and not prime numbers.

For example, 25, 49, 55, 85, 91, 115, 121, 133, 145, 169, 175, 187 etc. as 1st angle and not prime numbers.

Except for 2,3, all prime numbers exist in the 5th and 1st angles.

A prime number is an odd number such as 2, 3, 5, 7, 11, ... not a multiple of a prime number.

Prime numbers exist forever.
That is, prime numbers will continue to rotate in a hexagon forever.

The odd multiples of prime numbers increase as the number increases. That is, the room for new prime numbers is getting less and less.

However, the number will increase more than the space for new prime numbers will decrease.

This is because the number of rotations in the hexagon also increases.

Twin prime is a set in which both \((6n-1)\) and \((6n + 1)\) are prime numbers.

The number is infinite, and the number rotating inside the hexagon is also infinite.

It goes without saying that there are \((6m -1) (6m+1)\) combinations in any huge number.
The huge number is eternal huge, and it travels eternity in the hexagon.

At this time, when rotating in a hexagon forever, it is clear that twin primes exist forever.

It is known that prime numbers exist infinitely.

At that time, it will be needless to say that one day you will encounter twin primes with the \((6m -1) (6m+1)\) combination.

It is a super huge twin prime number.

It is an infinite number of turns in a hexagon, and is a twin prime number.
The number is eternal, and the size of its super huge twin prime is super huge, and its size is huge beyond human wisdom.

It is of infinite size.

That is, twin primes exist forever.

Proof end

References

