Twin Prime Conjecture

Toshiro Takami*

mmm82889@yahoo.co.jp

Abstract

I proved the Twin Prime Conjecture.
All Twin Primes are executed in hexadecimal notation. It does not change in a huge number (forever huge number).
In a hexagonal diagram, \[6m -1\] and \[6m+1\], many are prime numbers.
Since the positive integers keep spinning around this hexagon forever, Twin Primes exist forever. All Twin Primes are consist in \[6m -1\] and \[6m+1\] (m is a positive integer).
All numbers are executed in hexadecimal notation. This does not change even in a huge number (forever huge number).
The larger the value, the more the number of twin primes that become.
That is because the number of rotations of the hexagon increases.
The number is infinite, and the number rotating inside the hexagon is also infinite.

key words
Hexagonal circulation, Twin Prime, Infinite

Discussion

Twin Prime are below.

All Twin Primes are combination of \[6m -1\] and \[6m+1\].
The only exception is (3, 5).
That is, all Twin Primes are a combination of 5th angle and 1th angle.

(m is positive integer)

*854-0067 kuyamadai, Nagasaki-prefecture, Japan
5th is $[6m -1]$.
1th is $[6m+1]$.

Occasionally, things that are not prime numbers appear.

Each number are “multiple of prime number” such as 3, 5, 7, 11, 13, 17, 19, 23, etc.. This said not a prime number.
A set of $[6m -1]$ $[6m+1]$ which is not “multiple of prime number” appear too.
This said prime number.
It can only be divided by 1 and its number itself.

If circle the hexagon, the set of prime combination $[6m -1]$ $[6m+1]$ appear.

That is, a set of $[6m -1]$ $[6m+1]$ that escaped “multiple of prime number” always appear.

The larger the value, the more the number of twin primes that become.
This is because the number of rotations in the hexagon also increases.
The number is infinite, and the number rotating inside the hexagon is also infinite.

Proof end

References


[5] P. Sebar, Counting twin primes and Brun’s constant new computation, NMBRTHRY@listserv.nodak.edu mailing list, 2002.