Authors

Jesús Esteve Pérez. (Spain).
Taller de Acción Audiovisual, S.L.
editorial.eb@gmail.com

Jorge Enrique Martínez. (Argentina).

Abstract

We proof Goldbach's Conjecture. We use results obtained by Srinivāsa A. Rāmānujan (specifically in his paper A Proof of Bertrand's Postulate). A generalization of the conjecture is also proven for every natural not coprime with a natural $m > 1$ and greater or equal than $2m$.

Notation and observations

- Natural numbers

 \mathbb{N} denotes the set of natural numbers, and all of them are here greater than zero (positive integers).

- Primorial:

 It is denoted by $p#$ the primorial of the prime number p, meaning the product of all primes less or equal than p.

- Omission of subjects:

 To speed up the writing, we will omit sometimes the word number following others as prime, composite, even, odd, natural, coprime, since they are obvious here.

- In what follows, p_i denotes the i-th prime.
Preliminary

The Bertrand’s postulate also known as Bertrand-Chebyshev theorem, was proposed by Joseph Bertrand in 1845 [1] and proven by Pafnuti L. Chebyshëv in 1850 [2], [5], Srinivāsa A. Rāmānujan in 1919 [3] and Paul Erdős in 1932 [4].

Here we will use the following result, obtained by Ramanujan’s in [3], after his proof of Bertrand’s postulate:

Theorem 1. (Ramanujan)

Let \(\pi(x) \) denote the number of primes not exceeding \(x \). Then \(\pi(x) - \pi(x/2) \geq 1, 2, 3, 4, 5, \ldots \), if \(x \geq 2, 11, 17, 29, 41, \ldots \) respectively.

PROOF. See [3].

The Bertrand’s postulate follows from the first case: if \(x \geq 2 \), then \(\pi(x) - \pi(x/2) \geq 1 \). Assigning to \(x \) a natural number \(n > 1 \), we have that \(\pi(n) - \pi(n/2) \geq 1 \) and we can write:

For every natural \(n > 1 \) there exists at least one prime number \(p \) such that \(n/2 < p \leq n \).

We will use here the less restrictive statement:

\[
\text{For every } n > 1 \text{ there exists a prime number } p \text{ such that } n/2 \leq p \leq n \tag{01}
\]

Results

Lemma.

Let’s be \(i \geq 1 \) and \(\ell \geq 2 \), natural numbers.

If \(\ell \) is coprime with \(p_i\# \) and \(p_{i+1} \leq \ell < (p_{i+1})^2 \) then \(\ell \) is prime.

PROOF.

We prove that the smallest composite coprime with \(p_i\# \) greater than \(p_{i+1} \) is \((p_{i+1})^2 \).

Since \(p_{i+1} \) is the prime immediately after \(p_i \), \(p_{i+1} \) cannot be a divisor of \(p_i\# \). Likewise, none of the the powers of \(p_{i+1} \) share any divisors with \(p_i\# \). The smallest of this powers greater than \(p_{i+1} \) is \((p_{i+1})^2 \), consequently \((p_{i+1})^2 \) is a composite number actually being coprime with \(p_i\# \). Note that \((p_{i+1})^2 \) is coprime with \(p_i\# \) because \((p_{i+1})^2 = (p_{i+1}) (p_{i+1}) \) and \(p_i\# = p_1 p_2 \ldots p_i \); the only prime divisor of \((p_{i+1})^2 \) is \(p_{i+1} \), and as \(p_{i+1} > p_j \) for all \(j = 1, 2, \ldots, i \), the prime \(p_{i+1} \) cannot divide \(p_i\# \).

Any other coprime with \(p_i\# \) smaller than \((p_{i+1})^2 \) and greater or equal than \(p_{i+1} \) will necessarily be a prime, because if it were a composite, it would be divisible by one of the \(p_1, p_2, \ldots, p_i \), or by \(p_{i+1} \); in the first case, it would contradict that it is coprime with \(p_i\# \) and in the second case there is only the possibility of being \(p_{i+1} \), which is a prime and therefore contradicts the hypothesis of being composite.

QED
Theorem 2.

Given a natural \(n > 1 \), there exists two primes \(p, q \), such that \(2n = p + q \)

PROOF.

We will prove that for any natural \(n > 1 \), there exist one prime \(p \) such that \(2n - p \) is also prime. Writing then \(q = 2n - p \), the statement of the theorem is obtained.

- The theorem is verified for every natural \(n \leq 6 \), since it has been shown to be true for all numbers less than \(4 \times 10^{18} \) (Oliveira e Silva, 2013), see [6].

- For any natural \(n > 6 \), by application of (01), we have that there exists at least one prime \(p \) that verifies \(n/2 \leq p \leq n \).

Since \(-1 + (8n + 5)^{1/2} < n \) for all \(n > 6 \), we can say that for every natural \(n > 6 \), there exists at least one prime, be \(p_{i+1} \) for some natural \(i > 1 \), which verifies the inequalities:

\[
\frac{-1 + (8n + 5)^{1/2}}{2} \leq p_{i+1} \leq n, \quad (02)
\]

from where it follows, operating:

From the first inequality, \((8n + 5)^{1/2} \leq 2p_{i+1} + 1\); squaring, \(8n + 5 \leq 4(p_{i+1})^2 + 4p_{i+1} + 1\); rearranging, \(8n - 4p_{i+1} \leq 4(p_{i+1})^2 - 4\), and simplifying, \(2n - p_{i+1} \leq (p_{i+1})^2 - 1\).

From the second inequality, \(p_{i+1} \leq n\), then \(2p_{i+1} \leq 2n\) and \(p_{i+1} \leq 2n - p_{i+1}\), so we have:

\[
p_{i+1} \leq 2n - p_{i+1} \leq (p_{i+1})^2 - 1 \quad (03)
\]

Note that since \(p_{i+1} \leq n\), the maximum value for the index \(i \) must be \(\pi(n) - 1 \). Then we can write:

\[
\text{For every natural } n > 6, \text{ there exists a natural } i \text{ with } 1 < i < \pi(n), \text{ such that } p_{i+1} \leq 2n - p_{i+1} \leq (p_{i+1})^2 - 1, \quad (04)
\]

if \(2n - p_{i+1}\) is coprime with \(p_i\), by application of the previous lemma it will be necessary prime.

The proof concludes by demonstrating that:

\[
\text{For every natural } n > 6, \text{ there exists a natural } i \text{ with } 1 < i < \pi(n), \text{ such that } (2n - p_{i+1} \text{ is coprime with } p_i) \text{ and } (p_{i+1} \leq 2n - p_{i+1} \leq (p_{i+1})^2 - 1) \quad (05)
\]

Note that for all natural \(n > 6 \), always exists at least one prime \(p_{i+1} \), for some \(i > 1 \), verifying (03), as we showed before.

We proceed by reduction to absurdity. The reduction hypothesis consists in supposing that:

\[
\text{There exists a natural } n > 6, \text{ such that for all natural } i \text{ with } 1 < i < \pi(n), \text{ it's not true that: } (2n - p_{i+1} \text{ is coprime with } p_i) \text{ and } (p_{i+1} \leq 2n - p_{i+1} \leq (p_{i+1})^2 - 1) \quad (06)
\]
The statement \((2n - p_{i+1} \text{ is coprime with } p_i \#)\) in (06) implies \((p_{i+1} \leq 2n - p_{i+1})\), because if \(2n - p_{i+1} < p_{i+1}\), then the number \(2n - p_{i+1}\) is necessarily not coprime with \(p_i \#\), since in such a case, it must be a prime less or equal to \(p_i\) or to a number divisible by at least some of the primes \(p_j\) with \(1 < j \leq i\). Applying this to (06), we can write:

There exists a natural \(n > 6\), such that for all natural \(i\) with \(1 < i < \pi(n)\), it’s not true that:

\[
(2n - p_{i+1} \text{ is coprime with } p_i \#) \text{ and } (2n - p_{i+1} \leq (p_{i+1})^2 - 1)
\]

(07)

As by (04), for all natural \(n > 6\) there exists a natural \(i\) with \(1 < i < \pi(n)\), such that

\(2n - p_{i+1} \leq (p_{i+1})^2 - 1\); then, also applying the logic rule De Morgan’s law of negation of conjunction, the statement (07) can be written as:

There exists a natural \(n > 6\), such that for all natural \(i\) with \(1 < i < \pi(n)\),

\(2n - p_{i+1} \) is not coprime with \(p_i \#\)

(08)

If \(2n - p_{i+1} \) is not coprime with \(p_i \#\) for some natural \(i\) with \(1 < i < \pi(n)\), there exists a natural \(j\), with \(1 \leq j \leq i\), such that \(p_j \mid p_i \#\) and \(p_j \mid (2n - p_{i+1})\).

For \(i = 2\), be \(j\) a natural with \(1 \leq j \leq 2\). If \(p_j \mid 5\# = 30\). Then, \(j = 1\) or \(j = 2\), i.e., \(p_j = 2\) or \(p_j = 3\) and \(p_j \mid 30\) in both cases. We have that \(2 \mid (2n - 5)\) since \((2n - p_{i+1})\) is odd, thus \(3 \mid (2n - 5)\) and there exists a natural number \(k\) such that \(2n - 5 = 3k\), or, rearranging,

\[
2n = 5 + 3k
\]

(09)

For \(i = 3\), be \(j\) a natural with \(1 \leq j \leq 3\). Now \(j\) can take the values 1, 2 or 3. As we saw before, 2 cannot divide the odd number \((2n - 7)\), then \(j = 2\) or \(j = 3\). If \(j = 2\), reasoning in the same way as in obtaining (09), we have that there exists a natural \(\ell\) such that:

\[
2n = 7 + 3\ell
\]

(10)

Equating the expressions for \(2n\) (09) and (10), we have:

\[
3k - 3\ell = 2
\]

(11)

According to Bézout’s identity, the Diophantine equation (11) has an integer solution if and only if \(\gcd(3, -3)\) is a divisor of 2. As this does not happen, since \(\gcd(3, -3) = 3 \nmid 2\), therefore equation (11) has no natural solution.

If \(j = 3\), using the same process, we have that there exists a natural \(m\) such that:

\[
2n = 7 + 5m
\]

(12)

Equating the expressions for \(2n\) (09) and (12), we have:

\[
3k - 5m = 2
\]

(13)

According to Bézout’s identity, we also conclude that equation (13) has no solution.

A contradiction is reached, so that the reduction hypothesis leads to an absurdity and the starting proposition (05) is true.

QED
Theorem 3. Generalization of the Goldbach’s Theorem.

For \(m > 1 \), every not coprime with \(m \) greater or equal than \(2m \) can be written as the sum of \(m \) primes.

PROOF.

Let \(n \) be a natural not coprime with \(m \), with \(n \geq 2m \), for some \(m > 1 \).

For \(m = 2 \), the proposition is the Goldbach’s Conjecture, previously proven.

For \(m > 2 \):

- If \(n/m = p \in \mathbb{P} \), then \(n = mp \) and \(n \) is expressed as the sum of \(m \) primes \(p \).

- If \(n/m \not\in \mathbb{P} \), then we can write \(n = 2m + r \), for any natural \(r \).

 - If \(r \) is even, then \(r + 4 \) is also even and we can write: \(n = 2(m - 2) + (r + 4) \). Applying Theorem 2 to the even number \(r + 4 \), there exist two primes \(p, q \), such that \(r + 4 = p + q \). Therefore we can write \(n = 2(m - 2) + p + q \), which is the sum of \(m \) primes, since \(2(m - 2) \) is equal to \((m - 2) \) times the sum of the prime number 2.

 - If \(r \) is odd, then we write: \(n = 2(m - 3) + r + 6 = 2(m - 3) + 3 + (r + 3) \). Thus, being odd \(r \), the number \((r + 3) \) is even and applying Theorem 2 can be written as the sum of two primes, \(r + 3 = p + q \). Thus, \(n = 2(m - 3) + 3 + p + q \), which is, as above, the sum of \(m \) primes.

QED

Corollary 1.

Let \(m, n > 1 \) two natural numbers. Then \(m \times n \) can be written as the sum of \(m \) primes.

PROOF.

The natural number \(n \times m \) is greater than 1, is not coprime with \(m \) and is greater or equal than \(2m \). We apply the Theorem 3 to the numbers \(n \times m \) and \(m \).

QED

Corollary 2.

Let \(m, n > 1 \) two natural numbers. Then \(m^n \) can be written as the sum of \(m \) primes.

PROOF.

By applying the Theorem 3 to the numbers \(m^n \) and \(m \).

QED
References

