Original Article

Rasagiline hemitartrate: Synthesis, characterization and RP-HPLC validation for its estimation in bulk form

Muvvala S. Sudhira,c, Ratnakaram Venkata Nadhb,*

a Department of Chemistry, Sri Subbaraya and Narayana College, Narasaraopet 522 601, Andhra Pradesh, India
b School of Biotechnology, Vignan University, Guntur 522213, India

\textbf{Abstract}

Objectives: To develop a reverse phase high performance liquid chromatographic method for validation and quantitative estimation of the synthesized drug rasagiline hemitartrate in bulk form.

Methods: Rasagiline hemitartrate was synthesized and characterized by spectral (Infrared, Proton Nuclear Magnetic Resonance and Mass) as well as elemental analysis. Chromatographic separation was conducted on Agilent TC-C18 (250 × 4.6 mm, 5 μm) column at ambient temperature using mixture of 20 mM potassium dihydrogen orthophosphate buffer (pH 7.0): methanol and acetonitrile in the ratio (30:30:40 v/v) as a mobile phase and at a flow rate of 1.0 mL/min, while UV detection was performed at 285 nm. In addition to LOD and LOQ, other analytical parameters viz., linearity, precision, accuracy, ruggedness and robustness were detected by following the ICH (International Conference on Harmonization) guidelines.

Results: The retention time for rasagiline hemitartrate was found to be 4.30 ± 0.05 min. The method was found to be linear in the range of 10–50 μg/mL. The limit of detection and quantization for rasagiline hemitartrate are found to be 0.651 and 1.972 μg/mL respectively. Analytical recovery was 100.47%. The percentage RSD for precision and accuracy of the method was found to be less than 2%. Correlation coefficient was found to be 0.9952.

Conclusion: In this study, simple, sensitive, accurate and reliable RP-HPLC method was developed and validated as per the ICH guidelines for the determination of the synthesized drug rasagiline hemitartrate in bulk form.

Copyright © 2013, JPR Solutions; Published by Reed Elsevier India Pvt. Ltd. All rights reserved.

1. Introduction

R(+)N-propargyl-1-aminoindan (rasagiline) is a chiral compound with one asymmetric carbon atom in a five member ring with an absolute with R-configuration which is produced as single enantiomer.1 It is a propargylamine-based drug indicated for the treatment of idiopathic Parkinson’s disease.2 In addition to rasagiline base, its acid addition salts (viz., mesylate, maleate, fumarate, tartrate, hydrobromide, esylate, p-tolunesulfonate, benzoate, acetate, phosphate and sulfate) are pharmaceutically acceptable.3 Rasagline was generally well tolerated in clinical trials as both monotherapy and when
administered with other anti-parkinsonian drugs. Rasagiline mesylate is a highly potent, selective, irreversible, second-generation monoamine oxidase inhibitor with selectivity for type B of the enzyme (MAOB) which has been evaluated for the treatment of Parkinson’s disease. Preclinical studies have demonstrated that propargylamines can protect neurons from a variety of toxins in both in vitro and in vivo models.

Literature collection shows various assay methods for both rasagiline and its mesylate. For analysis of rasagiline mesylate in pharmaceutical dosage form, a thin-layer chromatographic method was established. Visible spectrophotometric methods were developed by using chromogens and by formation of colored ion–pair complexes in acidic medium. UV spectrophotometric method was developed for the estimation of rasagiline in bulk and pharmaceutical formulation. HPLC methods for the estimation of rasagiline in tablet dosage form were developed using different mobile phase mixtures. LC–MS/MS method was used for determination of rasagiline mesylate in human plasma of healthy Chinese volunteers.

Youdim et al. and Peskin et al. have patented the preparation of rasagiline salts which are pharmaceutically acceptable. Patent work of Stephen et al. shows the preparation and characterization of rasagiline derivative viz., rasagiline succinate, rasagiline N-hemitartrate, rasagiline hydrochloride and rasagiline besylate by the addition of concerned acid to rasagiline base. Out of the above salts, no further work was reported on rasagiline hemitartrate which is chemically (R)-N-2-Propynyl-1-indanamine hemitartrate and its chemical structure was shown in Fig. 1. It is a white crystalline powder with molecular formula of C_{12}H_{13}N·½C_{4}H_{6}O_{6}.

In view of lack of commercial supplier and non-development of assay method till the date for rasagiline hemitartrate, the present study was aimed at its synthesis and characterization followed by development of RP-HPLC method for its validation in bulk form by conducting systematic trails.

2. Materials and methods

Acetonitrile (HPLC grade) and potassium dihydrogen orthophosphate, ortho phosphoric acid, triethyl amine, methanol, isopropyl alcohol, l-tartaric acid (G.R.) used were products of Merck Pvt. Ltd., India. Milli-Q water was used for buffers and other reagents preparation. Buffer solutions were prepared according to US Pharmacopoeia.

2.1. Synthesis of rasagiline hemitartrate

About 1.71 g of rasagiline base (0.01 M) was dissolved in 12 mL of isopropyl alcohol and then 1.5 g of l-Tartaric acid (0.01 M) was added. At warm condition (40 °C), the mixture was stirred continuously for 1 h. The contents were cooled to the room temperature and stirring was continued for 24 h at room temperature. The obtained rasagiline hemitartrate was filtered, washed with isopropyl alcohol. Then the crude product was recrystallized from a mixture of methanol and isopropyl alcohol (1:1). The wet solid dried under vacuum. 1.2 g of dry solid product in the form of white crystalline powder was obtained. The current procedure was modification to that of Stephen et al.

The synthesized rasagiline hemitartrate was freely soluble in water, ethanol, methanol, and acetonitrile and sparingly soluble in isopropyl alcohol. Its melting point was 212 °C and characterized by spectral studies using Perkin Elmer 1600 series Fourier Transform-Infrared Spectrophotometer in KBr – Pellet method; Bruker 400 MHz NMR spectrometer (Bruker Bioscience, Billerica, MA, USA); Triple Quadrupole Mass Spectrometer (SHIMADZU, QMS – 8030) and CHNS analyzer (SDCH – 435, Hunan Sundy Science and Technology Development Co., Ltd.).

2.2. Instrument and conditions for HPLC determination

Agilent-1220 Infinity LC HPLC instrument (Japan) equipped with a Gradient pump was used to perform chromatography. A reverse phase Agilent TC–C18 (250 × 4.6 mm, 5 μm in particle size) column was used. The detection was achieved by SPD – 20A prominence UV–Visible detector (Japan). EZICHROM chromatographic software was used for data acquisition and processing. Sample was injected using a Rheodyne – 7725 injection valve via a 20 μL loop.

2.3. Method development

A number of parameters such as solvent, mobile phase composition and pH were varied in order to optimize the operating conditions for isocratic RP-HPLC detection of rasagiline hemitartrate by measuring the active ingredient at 285 nm. Two organic solvents (methanol and acetonitrile), water and KH₂PO₄ buffer were taken and their effects on the elution of rasagiline hemitartrate were investigated. Six trials were carried out with varying solvent/composition of mobile phase/pH of buffer (Water:Acetonitrile = 50:50 (v/v); Water:methanol:acetonitrile = 50:25:25 (v/v/v); 10 mM potassium dihydrogen orthophosphate:acetonitrile = 50:50 (v/v); 20 mM potassium dihydrogen orthophosphate:acetonitrile = 30:70 (v/v); 20 mM potassium dihydrogen orthophosphate (pH 6.5):methanol:acetonitrile = 30:30:40 (v/v/v) and 20 mM potassium dihydrogen orthophosphate (pH 7.0):methanol:acetonitrile = 30:30:40 (v/v/v)). The pH of the 20 mM potassium dihydrogen orthophosphate buffer was adjusted to 7.0 with diluted ortho phosphoric acid and 0.2% triethyl amine. A nylon membrane filter (0.45 μm) was used to filter the mobile phase and prior to use the mobile phase was degassed. The injection volume was 20 μL and from the solvent reservoir, the mobile phase was pumped to column at a flow rate of 1 mL/min.

Peaks with good shape and resolution were obtained by using a mixture of 20 mM potassium dihydrogen orthophosphate (pH 7.0), methanol and acetonitrile (30:30:40, v/v/v)
(Fig. 2). Hence, this mixture was used as mobile phase for the study and the retention time for rasagiline hemitartrate was 4.30 ± 0.05 min at UV detection point 285 nm.

2.4. System suitability studies

The standard solutions were injected under optimum chromatographic conditions. The chromatogram obtained was tested for its acceptance using below parameters (Table 1).

2.5. Method for the standard graph

Ten mg of rasagiline hemitartrate was weighed accurately and transferred into a 10 mL standard volumetric flask. Rasagiline hemitartrate was dissolved in HPLC grade acetonitrile by sonicating for about 30 min. One mL of this solution was diluted with 10 mL of acetonitrile to give a working standard solution containing of 100 μg/mL of rasagiline hemitartrate (stock solution-A). Different aliquots (1, 2, 3, 4 and 5 mL) of the above rasagiline hemitartrate standard stock-A solution were transferred into a series of 10 mM standard volumetric flasks. Then the solutions were diluted to the mark with mobile phase to get concentrations of 10, 20, 30, 40 and 50 μg/mL. The prepared standard solutions were filtered through 0.45 μm membrane filter. Prior to the injection of rasagiline hemitartrate solution, the mobile phase was flown through the system to equilibrate the column for at least 30–45 min. A steady base line was recorded under the optimized chromatographic conditions. All the standard solutions were injected separately using rheodyne injector after stabilization for 30 min and the chromatograms were recorded. The concentration of drug was taken on X-axis and peak area of drug on Y-axis to plot the standard graph.

3. Results

3.1. Instrumental analysis of rasagiline hemitartrate

Spectral (IR, 1H NMR and mass) as well as elemental analysis was carried out for characterization of the synthesized rasagiline hemitartrate.

Table 1 – System suitability parameters and chromatographic conditions.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention time (min)</td>
<td>4.30 ± 0.05</td>
</tr>
<tr>
<td>Flow rate (mL/min)</td>
<td>1.0</td>
</tr>
<tr>
<td>Theoretical plates/m</td>
<td>19,054.00</td>
</tr>
<tr>
<td>Capacity factor</td>
<td>20.3667</td>
</tr>
<tr>
<td>Asymmetry factor</td>
<td>2.01603</td>
</tr>
<tr>
<td>LOD (μg/mL)</td>
<td>0.651</td>
</tr>
<tr>
<td>LOQ (μg/mL)</td>
<td>1.972</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.9991</td>
</tr>
<tr>
<td>UV detection (nm)</td>
<td>285</td>
</tr>
</tbody>
</table>

3.2. Method for validation

According to the International Conference on Harmonization Q2 (R1) (2005) guidelines, the proposed method was validated.

3.2.1. Linearity

To assess the linearity, a standard curve for rasagiline hemitartrate was constructed by plotting concentrations (μg/mL) versus absolute area (mV s) and shows good linearity on the 0–50.0 μg/mL range (Table 2). Linear regression analysis was used to evaluate the linearity of the method. The representative linear equation was $y = 780371x$, where x is concentration and y is the peak absolute area. The correlation coefficient was $r^2 = 0.9952$, indicating good linearity.

3.2.2. Precision

Repeatability (intra-day) and intermediate precision (inter-day) determine the precision of the assay which was reported as % RSD. The peak area of drug solution containing 30 μg/mL and 40 μg/mL of rasagiline hemitartrate for intra and inter-day variation was calculated in terms of SD (Standard Deviation) and RSD (Relative Standard Deviation) (Table 3).

3.2.3. Accuracy

The presence of analyte recovered by assay from a known added amount represents accuracy. Accuracy of the RP-HPLC method was carried out by adding known amount of the drug (20 μg/mL rasagiline hemitartrate) to the known

![Fig. 2 – Chromatogram of rasagiline hemitartrate.](image-url)
concentrations of drug solution (50, 100 and 150%). All these solutions were prepared and analyzed in triplicate (Table 4).

3.2.4. Robustness and ruggedness
By carrying out small variations in the HPLC conditions such as change in the composition of mobile phase, change in pH of the buffer by ±0.1 units and change in flow rate by ±0.05 mL/min, robustness of the method was determined. Results were unaffected by small variations in these parameters. Over an acceptable working range of HPLC operational parameters, the method was found to be robust. By varying the instrument, column and analyst, ruggedness was determined. For different analysts and instruments % RSD of the obtained results was found to be less than 1.0. A number of statistical parameters such as peak asymmetry, theoretical plates and HETP were calculated for the observed readings in order to ascertain the system suitability for the proposed method. The results act in accordance with in specification limits.

3.2.5. Limit of detection (LOD) and limit of quantification (LOQ)
For determination of sensitivity of the proposed method LOD and LOQ were calculated. Based on the signal to noise ratio they were quantified. The lowest detectable concentration of the analyte by the method was LOD where as the minimum quantifiable concentration was LOQ. LOD and LOQ for rasagiline hemitartrate were calculated according to the ICH guidelines by using S (relative standard deviation of the response) and σ (slope of the calibration curve).

LOD = 3.3 × σ/S = 0.651 µg/mL and
LOQ = 10 × σ/S = 1.972 µg/mL

4. Discussion

4.1. Characterization of the synthesized rasagiline hemitartrate
The elemental analysis of the synthesized compound shows that the % of (calculated, experimental) values for C, H and N are (68.274, 67.99), (6.548, 6.274) and (5.687, 5.65) respectively, which confirms the molecular formula as C12H13N½C4H6O6.

For characterization of the synthesized rasagiline hemitartrate, IR, NMR and Mass Spectral analysis was carried out.

4.1.1. Interpretation of IR bands
IR (KBr, cm⁻¹): 3697.54 (O–H Str); 3396.64 (N–H Str), 3278.99 (C–H Str in acetylene), 3228.84 (OH Str in Alcohol), 3045.60 (C–H Str in Aromatic), 2968.45 (CH Str in Cyclic CH3), 2929.87 (CH Str in acyclic CH3), 2574.97 (b) (OH Str in COOH), 2349.30 (Asymmetrical stretching of COO⁻), 2127.48 (C=O Str), 1938.46 (Aromatic Ring substitution over tone), 1732.08 (Aromatic Ring substitution over tone), 1625.89 (C=O Str of Tartaric acid), 1558.48; 1519.91; 1462.04; 1440.83 (C=C Aromatic Str), 1400.83 (C–H scissoring and bending), 1367.53 (C–N Str), 1315.45 (C–O Str in COOH), 1118.71 (C–O Str in C–OH), 1056.99 (O–H in plane bending), 758.02 (C–C substituted aromatic ring, out of plane C–H bending) and 688.59 (C–H bend of alkynes).

4.1.2. Interpretation of ¹H NMR peaks
¹H NMR (DMSO-d₆, MeOD, δ ppm): Corresponding to rasagiline: 2.95 (1H, s, CH); 7.30–7.54 (4H, m, ArH); 3.07 (2H, s, Propargyl CH₃); 3.19 (1H, t, CH); 2.22 (2H, m, Indane CH₂ nearer to imine group); 2.51 (2H, m, Indane CH₂ attached to Ar) and 4.36 (1H, t, NH). Corresponding to tartrate: 4.79 (2H, s, OH) and 3.84 (2H, s, CH).

4.1.3. Interpretation of mass spectra peaks
The peaks values obtained from both negative and positive modes of mass spectra were interpreted (Table 5) by taking molecular weights of Rasagiline Hemitartrate (RT), Rasagiline (R) and Tartaric Acid (T) as 246.29, 171.24 and 150.09 respectively.

4.2. HPLC method for validation of rasagiline hemitartrate
The proposed HPLC method for validation of rasagiline hemitartrate is first of its kind and has equal and/or better chromatographic properties compared to rasagiline mesylate, the equivalent drug available in the market. For estimation of rasagiline hemitartrate, mobile phase used in this method was 20 mM potassium dihydrogen orthophosphate: methanol and acetonitrile (30:30:40 v/v), which was cost effective due to usage of lower volume ratio of acetonitrile compared to the acidic pH was...
maintained by Kullai Reddy et al.16 UV detection for rasagiline mesylate in other methods was performed mostly at 210 nm, where as in this method it was at higher wavelength, i.e., 285 nm which can be explained based on the higher polarity of the mobile phase. It is well known that in presence of a polar solvent, the more polar II* orbital will be more stabilized than the II orbital leading to a net decrease in the transition energy, which result in an increase in transition wavelength or a bathochromic shift/red shift.24

Retention time for rasagiline hemitartrate in this method was 4.3 ± 0.05 min whereas for rasagiline mesylate the retention time mostly ranges from 4.36 to 6 min. Though, the retention time in the method proposed by Kumar et al11 for rasagiline mesylate estimation was lower, its linearity range covers only upto 25 \(\mu\text{g/mL}\), but in this method, it ranges up to 50 \(\mu\text{g/mL}\). Better \% of analytical recovery was achieved in this method (100.47) compared to other methods, where it varies from 99.38 to 99.71\%. The percentages of RSD for precision and accuracy of the proposed method were found to be in the ranges 0.397–0.878 and 0.31–0.73 respectively, which were very much within the allowable limit25 of 2\%.

5. Conclusion

The developed RP-HPLC method for the synthesized rasagiline hemitartrate was precise, accurate and validated statistically. For routine estimation of rasagiline hemitartrate in bulk forms, this method can be applied in view of its simplicity, fastness and robust nature by employing a mobile phase comprising of potassium dihydrogen orthophosphate (20 mM) (pH 7.0), methanol and acetonitrile in the volume ratio of 30:30:40 with UV detection at 285 nm and flow rate of 1 mL/min.

Conflicts of interest

All authors have none to declare.

References

Table 4 – Recovery of rasagiline hemitartrate using the proposed RP-HPLC method.

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Level of recovery (%)</th>
<th>Nominal concentration used ((\mu\text{g/mL})) (a)</th>
<th>Amount of drug spiked ((\mu\text{g/mL})) (b)</th>
<th>Theoretical amount ((\mu\text{g/mL})) (a + b)</th>
<th>Amount of drug recovered ((\mu\text{g/mL})) (mean ± SD)</th>
<th>% Of recovery (mean ± SD)</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>30.19 ± 0.22</td>
<td>100.63 ± 0.74</td>
<td>0.73</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40.23 ± 0.13</td>
<td>100.57 ± 0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>50.24 ± 0.16</td>
<td>100.47 ± 0.31</td>
<td>0.31</td>
</tr>
</tbody>
</table>

a Average of three determinations.

Table 5 – Interpretation of fragmentation.

<table>
<thead>
<tr>
<th>m/z value</th>
<th>Interpretation</th>
<th>Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive mode</td>
<td>56.4</td>
<td>171.24</td>
</tr>
<tr>
<td></td>
<td>171.24</td>
<td>((-\text{CH}_2\text{CH}_2\text{CH}_2\text{NH})^+)</td>
</tr>
<tr>
<td></td>
<td>118.3</td>
<td>171.24 – 54</td>
</tr>
<tr>
<td></td>
<td>117.3</td>
<td>171.24 – 54</td>
</tr>
<tr>
<td></td>
<td>172.3</td>
<td>171.24 + 1</td>
</tr>
<tr>
<td>Negative mode</td>
<td>149.2</td>
<td>150.2 – 1</td>
</tr>
<tr>
<td></td>
<td>150.2</td>
<td>150.2</td>
</tr>
<tr>
<td></td>
<td>306.2</td>
<td>RT + 59.91</td>
</tr>
<tr>
<td></td>
<td>307.2</td>
<td>RT + 60.91</td>
</tr>
</tbody>
</table>

Mol. wt of rasagiline hemitartrate (RT) = 246.29; Mol. wt of rasagiline (R) = 171.24; Mol. wt of tartaric acid (T) = 150.09; \((-\text{CH}_2\text{OH–CH}_2\text{OH})^-\) = tartaric acid – 2COOH.

