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Abstract

As a high-school-level application of Geometric Algebra (GA), we show

how to solve a simple vector-triangle problem. Our method highlights the

use of outer products and inverses of bivectors.

1 Introduction

Solving simple vector-triangle problems efficiently is an important skill to be

developed at the pre-university level. The Geometric-Algebra (GA) concepts

that we use here are discussed in greater detail in Refs. [1] and [2].

2 Problem Statement

“Given â, b̂, and c in Fig. 1, find a and b.”

3 Solution

From Fig. 1,

a + b = c. (3.1)
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Figure 1: The vector triangle that we will solve.

We’ll start with a. Because we know â, we can find a as a = ‖a‖â. Thus, in

order to find ‖a‖, we’ll rewrite Eq. (3.1) as

‖a‖â + b = c.

Next, we’ll eliminate b by taking the outer product of both sides with b̂:

(‖a‖â + b) ∧ b̂ = c ∧ b̂

‖a‖â ∧ b̂ + b ∧ b̂︸ ︷︷ ︸
=0

= c ∧ b̂

‖a‖â ∧ b̂ = c ∧ b̂.

Finally, we multiply both sides by the inverse of â ∧ b̂:

‖a‖
(
â ∧ b̂

)(
â ∧ b̂

)−1

=
(
c ∧ b̂

)(
â ∧ b̂

)−1

‖a‖ =
(
c ∧ b̂

)(
â ∧ b̂

)−1

. (3.2)

To find b, we proceed similarly, by finding ‖b‖:

a + b = c

a + ‖b‖b̂ = c(
a + ‖b‖b̂

)
∧ â = c ∧ â

a ∧ â︸ ︷︷ ︸
=0

+‖b‖b̂ ∧ â = c ∧ â

‖b‖b̂ ∧ â = c ∧ â

‖b‖
(
b̂ ∧ â

)(
b̂ ∧ â

)−1

= (c ∧ â)
(
b̂ ∧ â

)−1

‖b‖ = (c ∧ â)
(
b̂ ∧ â

)−1

.
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4 Comments
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