Quanton based model for space fabric interactions

Ayman Kassem (a), (b)
(a) Aeronautical engineer, Cairo Egypt
(b) Contact address: Phyiscalmodel2017@Gmail.com

Abstract

The mechanism of the universe’s inflation is variation of energy in space and in time, the relationship between space and time varying energy fields is governed by energy constraining inside a Planck scale entity: the quanton as energy varies in space or in time, it creates associated fields and through their interactions, inflationary momentum and the fundamental forces are generated.

This model comes in three parts: energy constraining, the evolution of the quanton and its different transitions are discussed until the stable state is reached.

The second part, electromagnetic waves in terms of space and
time varying energy fields and role of Maxwell equations in the evolution of the quanton

the third part, energy fields and their interactions, while using basic physics concepts, it shows that the origin many of the physical phenomena can be traced back to the Planck scale world

Key words

space and time varying fields, energy degrees of freedom
Contents

1. Physical basis of this model 6

2. Definition of the model 8

3. Mathematical brief 10

4. Definition of various energy field parameters 12

5. Energy constraining 13

6. Bridging the gap between mathematics and physics in energy constraining 29

7. Energy degrees of freedom 33

8. Superposition principle inside quanton 38

9. Defining directional component of energy fields 41

10. Dimensional energy symmetry 44

11. Energy packet / field relationship 48

12. Energy constraining as a possible origin of the entropy 51
13. Space fabric expansion and the release of thermal energy 55
14. origin of cosmic microwave back ground (CMB) 59
15. Mechanism of quanton splitting and expansion 60
16. feedback mechanism through energy constraining 64
17. mathematics behind expansion / constraining inside the Quanton 66
18. wave like properties of space fabric 72
19. quanton evolution and its degrees of freedom 78
20. anti quanton evolution and its degrees of freedom 85
21. variation of quanton energy fields with time 90
22. why quanton does not achieve equilibrium 91
23. energy fields parameters 93
24. Dimensions of energy fields 100
25. Relative field variation with time 102
26. directional field subcomponents 104
27. wave model inside the quanton

28.a. electromagnetic waves as space and time varying fields

28.b. differences between quanton and electromagnetic waves

29. Maxwell equations of energy fields

30. role of Maxwell equations in the evolution of the quanton

31. Lorentz transformation of EM energy fields

32. some concepts behind space fabric

33. energy field interactions

34. bound and nonbinding energies

35. types energy field interactions

36. space fabric field interactions

37. how the space fabric binding interaction is generated

38. Dimensions of energy field interactions

39. Quanton energy division between various interactions
40. inverse relationship between wave length and energy-a possible explanation 171

41. quanton stable degrees of freedom 173

42. role of individual energy fields in the formation of space fabric 176

43. conclusions 178

44. references 178
1. The physical basis of this model

This model is based on the following two concepts

a-the relationship between energy field density and the energy packet is not only volumetric but based on energy degrees of freedom as well (defined in terms of wave parameters k, ω, or r_q (quanton radius))

b- the complex nature and behavior of energy packet throughout this model the following points will be discussed

1- as the energy packet varies its position in space or in time

It creates associated fields that vary also in space and in time, thus

Thus giving rise to wave like behavior

2- energy packet expresses the wave energy in a symmetric way

By variation in in space and in time

3- as energy expands by variation in space or in time, the relationship between those varying fields is governed by
2-Definition of the model
2.a Quantons

1-quantons are an accumulation of space and time varying energy fields, as they do so at a periodic rate, they possess wave-like behaviour, (it will be later discussed why those wave likes do not interact with electromagnetic waves, and when and how they leave the quanton)

Each quanton is composed of two different type of energy fields which interact to form a binding relationships

2-they exist in lattice form which constitutes the space fabric

3-quantons are spherical in shape due to dimensional energy symmetry but may vary in their energy content and in size with time

4-Quantons are held in a quasi equilibrium state under the effect
of Internal and external interactions of energy fields

5-due to the imbalance of these interactions the quantons expand, then split up into two to maintain dimensional energy symmetry, both quantons share up the original energy content

2.a.1 Quanton generation

quntons are generated due to

1- expansion of space varying energy fields

2-the splitting action of the quntons to maintain dimensional energy symmetry under condition of inflation

2.b.Anti quantons

anti quantons are similar to quantons but the dominant nature of their energy differs from that of the quanton

2.b.1 Anti quanton generation

anti quntons are generated as a result of
1- the expansion of the time varying energy in space

2-Splitting action of anti quantons as they expand in space

3. Mathematical brief

The following formulations concerns physics inside the quanton

(anti quanton) ,

\[E_{sf} = \frac{\partial E}{\partial s} : \text{free space varying energy} \] (1-3)

\[E_{tf} = \frac{\partial E}{\partial t} \quad (\text{free time varying energy}) \] (2-3)

\[E_{sc} = \int E \, ds \quad (\text{space varying constrained energy}) \] (3-3)

\[E_{tc} = \int E \, dt \quad (\text{time varying constrained energy}) \] (4-3)

\[E_s = E_{sf} \, E_{sc} , \quad E_t = E_{tf} \, E_{tc} \] (5,6-3)

Quanton and anti quanton energy equation is in the form of

\[E_q = E_{sf} \, E_{sc} \, E_{tf} \, E_{tc} \quad \text{and NEITHER in the form} \] (7-3)

\[E_q = \sqrt{E_{sf}^2 + E_{sc}^2 + E_{tf}^2 + E_{tc}^2} \quad \text{NOR the form} \]

\[E_q = E_{sf} + E_{sc} + E_{tf} + E_{tc} \]
(spatial energy fields are vector quantities which have
direction as well as magnitude)

An energy field like free space varying energy can be
defined as \(E_{sf} = K_{sf}D_{sf} \psi_{sf} \quad (8-3) \)

where \(D_{sf} \): energy field strength (degree of freedom) parameter,
\(K_{sf} \): field intensity parameter which is proportional to the quanton
total energy

and \(\psi_{sf} \) is reserved for wave parameter of space varying
energy

-the two types of quanton wave like energy fields \(E_{qf} = E_{sf}E_{tc} \)

and \(E_{qc} = E_{sc}E_{tf} \) can be expressed by the one-dimensional PDE

\((E_{qf})_{tt} = c^2 (E_{qf})_{xx} \quad \text{or} \quad (E_{qc})_{tt} = c^2 (E_{qc})_{xx} \)

\(-E = E_s E_t \) (an energy packet) which is generated by energy

constraining
-The following expansion is possible only in primordial time

\[
\frac{\partial}{\partial s} (E) = \frac{\partial E}{\partial s} \frac{\partial E}{\partial t} = E_{sf} E_{tf}
\]

(9-3)

4. Various energy field wave parameters

quanton (or anti quanton) energy equation defined as the multiplication of four functions for four types of energies and two opposing natures which takes the form

\[
E_q = (E_{sf} E_{tf}) (E_{sc} E_{tc})
\]

(1-4)

Every one of those four functions expresses the change of either space or time as follows,

1 - \(\psi_{sf} = e^{+jkr} \) which is the wave parameter that defines change of free energy in space

2 - \(\psi_{sc} = e^{-jkr} \) which is the wave parameter that defines change of constrained energy in space

3 - \(\psi_{tf} = e^{+j\omega t} \) : wave parameter that expresses variation of
free energy in time

\[4 - \psi_{tf} = e^{-jwt} \]: wave parameter that expresses variation of
constrained energy in time

5. Energy constraining

1-Energy constraining describes interaction of energy fields

Due to their wave like and field behaviour which is summarized as

a-the act of containment free energies \((E_{sf}, E_{tf})\) inside

quantons (or anti quantons) (this will be discussed in the
section: Maxwell equations role in the evolution of quantons)

b-the appearance of constrained energies \((E_{sc}, E_{sc})\)

c-the rearrangement of the energy degrees of freedom

(discussed in the section: quanton stable degrees of freedom)

d-energy expansion inside the quanton and its subsequent

splitting

e-the alteration of between field behaviour (varying in space and
in time and packet state (energy not varying in space or time)

2-as energy expands in space, it’s said to have free degrees of freedom, and it must express this degree of freedom in space in a symmetric way with respect to all spatial dimensions, and this is only possible inside a spherical structure, a quanton, so, dimensional energy symmetry (DES) is behind the act of energy containment and the formation of the quantons (anti quantons)

3-as energy is released, it must expand, not only by variation in space but by variation in time as well, hence the appearance of energy fields E_{sf}, E_{tf} (free energy that varies in space and free Energy that varies in time)

4-energy fields cannot vary in space and time simultaneously, so no energy field is in the form $E_{s,t} = fn (s, t)$, but rather $E = E_{sf} (x, y, z) E_{tf} (t)$
and this is because the relationship between the expansion of
space varying and time varying energies is diametric, the time
varying field (curls) the free expansion of space varying field

hence energy constraining takes place (this point will be further
explained in the section Maxwell equations of energy fields)

5-Energy fields can either be free in space varying

\[(E_{sf} = \frac{\partial E}{\partial s}) \] or free in time varying field \((E_{tf} = \frac{\partial E}{\partial t}) \)

or constrained in space \((E_{sc} = \int E_s \, ds) \) or constrained in
time \((E_{tc} = \int E \, dt) \), while unconstrained energy in the form

\((E_s \, E_t) \) can be defined as an energy packet: energy that does not
change in space or in time

6-the appearance of constrained energy fields inside the
quanton (anti quanton), is due to the fact that free energies

\((E_{sf} \, E_{tf}) \) seek to form a more stable binding interactions with
these newly appeared constrained energies \((E_{sc} \, E_{tc}) \) under
inflationary conditions rather than the less stable repulsive self

Interactions (discussed in detail in the section: space fabric field interactions and why space fabric generates binding interactions)

7-as energy expands by space varying field \(E_{sf} \), it must have a constrained time varying field \(E_{tc} \) such that

\[E_q = E_{sf}E_{tc}, \] so quantons are originated from a predominantly Free space varying energy field \(E_{sf} \)

8-as time varying energy expands \(E_{tf} \), it must be constrained in part to form a space varying constrained energy field \(E_{sc} \) such that \(E_{aq} = E_{sc}E_{tf} \), hence, anti quantons are originated from a predominantly free time varying energy field \(E_{tf} \)

9-inside quanton (anti quanton) energy cannot expand by free variation in space and in time without having a part of this energy
being constrained and vice versa, so no energy is in the form

\[E_q = E_{sf} E_{tf} \text{ or of the form } E_q = E_{sc} E_{tc} \text{ alone} \]

10-as free space varying and the constrained time varying

Energy fields \(E_{sf} E_{tc} \) expand in the quanton,

a-recalling point (3), free energy must expand by variation

in time as well as in space, so part of constrained time

varying energy \(E_{tc} \) becomes a free time varying energy \(E_{tf} \)

b-constrained energy must be varied in space as well as in time, as a result, part of the free energy in space \(E_{sf} \) has to be

constrained and becomes \(E_{sc} \) the new type of energy becomes

\[E_q = (E_{sf} E_{tc}) (E_{sc} E_{tf}) = E_{qf} E_{qc} \quad (1-5) \]

This quanton energy equation represents two wave-likes with

wave like behaviour, (discussed in the section: wave

propagation inside the quanton)

one of them is free energy dominated or \(E_{qf} = (E_{sf} E_{tc}) \), and the
other is constrained energy dominated \[E_{qc} = (E_{sc}E_{tf}) \] (2-5)

and \(E_q \) represents the instantaneous value of the quanton field energy density

11-for the anti quanton, as free time varying, constrained space varying energy fields \(E_{sc} \) \(E_{tf} \) expand,

a-free energy must expand by variation in space, as a result part of the space constrained field \(E_{sc} \) must become free space varying energy, hence energy field \(E_{sf} \) appears

b-constrained energy must vary in time as well as in space, as a so part of the free time varying energy becomes constrained and the new the energy field \(E_{tc} \) appears

the new type of energy equation for the anti quanton becomes

\[E_{aq} = (E_{sf}E_{tc}) (E_{sc}E_{tf}) = E_{aqf}E_{aqc} \]

which is the anti quanton’s energy equation, this is the same
energy equation as quanton’s, but energy levels (i.e. degrees of freedom) are different for each energy field in both cases as it will be discussed later in the sections: quanton and anti quanton

energy degrees of freedom

12- energy expansion inside the quanton is more or less a process of differentiating two variables

13- as differentiation is the mathematical expression of free energy expansion by variation in space or time, integration is the corresponding mathematical expression of energy constraining in space or time

14- Full expansion in space \(\frac{\partial}{\partial x} \frac{\partial y}{\partial y} \frac{\partial}{\partial z} (E) \) can be expressed as

\(\frac{\partial E}{\partial s} \), while constraining takes the form \(\iiint E \ dx \ dy \ dz = \int E \ ds \)

15- as we have pointed out previously, the main energy fields, that space fabric evolved from are free space varying and free time
varying energies which evolved as follows

\[\frac{\partial}{\partial s} (E) = \frac{\partial E}{\partial s} \frac{\partial E}{\partial t} = E_{sf} E_{tf} \]

16-as expansion of energy fields by variation in space or time follows differentiation of two variables rules

\[\frac{\partial}{\partial x} (f(x) \cdot g(x)) = \frac{\partial f}{\partial x} g(x) + \frac{\partial g}{\partial x} f(x) \]

product of an energy expansion process =

expansion of the first term * constraining of the second +

constraining of the first term * expansion of the first term

let's consider the case of expansion of \(E_{sf} \) inside the quanton

or \(\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) = \frac{\partial E}{\partial s} \int E \ dt = E_{sf} E_{tc} \)

as energy fields \((E_{sf} \ E_{tc})\) expands in space, part of it must be constrained or

\[E_{q} = \frac{\partial}{\partial s} \left(\int E \ dt \right) = \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) = E_{sf} E_{tc} \left(E_{sc} E_{tf} \right) \]

(this step will be further elaborated in the chapters: quanton)
degrees of freedom and the role of Maxwell equations in the
evolution of the quanton where a slightly modified scenario will be
offered

17-similarly for the case of anti quanton

\[\frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \frac{\partial E}{\partial t} \int E \, ds = E_{sc} \, E_{tf} \]

as energy fields \(E_{sc} \, E_{tf} \) expand or constrained, part of it must
be constrained or expands

\[E_{aq} = \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial t} \int E \, ds \right) = \left(\frac{\partial E}{\partial s} \int E \, dt \right) \left(\int E \, ds \frac{\partial E}{\partial t} \right) = (E_{sf} \, E_{tc}) (E_{sc} \, E_{tf}) \]

again the same energy equation Like that of the quanton’s but
with different energy DoFs

18-all stable energy systems are of complex nature (part free – part
constrained) , and can be defined as quanton energy = free energy

* constrained energy or \(E_q = E_{sf} \, E_{tf} \, E_{sc} \, E_{tc} \)

19- any quanton system has four degrees freedom which is the
sum of free energy fields degree of freedom plus the constrained
energy fields degrees of freedom or

\[\text{Dof}_q = \text{Dof}_{sf} + \text{Dof}_{sc} + \text{Dof}_{tf} + \text{Dof}_{tc} = 4 \]

20- it is understood that the space varying energy fields (free and
constrained) have three degrees of freedom or

\[\text{Dof}_{sf} + \text{Dof}_{sc} = 3 \]

while time varying energy fields (free and constrained) have one
degree of freedom or \(\text{Dof}_{tf} + \text{Dof}_{tc} = \text{one} \)

21 –energy fields \(E_{sf}, E_{tf}, E_{sc}, E_{tc} \) do not have the
dimensions of energy, but their product \((E_q) \) does have the
dimensions of energy density which is defined as energy divided
by three dimensional volume \((E_q) = \frac{\text{energy}}{\text{volume}} = M L^{-1} T^{-2} \)

(later, it will be shown that this energy density is in fact 4
dimensional that expands in 3 D space)

22-Expansion of an already expanded energy field gives
the same results so, \(\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) = \frac{\partial E}{\partial s} + \int \frac{\partial E}{\partial s} \, ds \) or

\[
\frac{\partial}{\partial s} \left(E_{sf} \right) = \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) = \frac{\partial E}{\partial s} + \text{constraining term}
\]

and \(\frac{\partial}{\partial t} \left(E_{tf} \right) = \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \frac{\partial E}{\partial t} + \int \frac{\partial E}{\partial t} \, dt \) or

\[
\frac{\partial}{\partial t} \left(E_{tf} \right) = \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \frac{\partial E}{\partial t} + \text{constraining term}
\]

and so on for higher order derivatives, and this process represents

the expansion of the free energy by variation in space or time

which must be accompanied by constraining while inside the quanton

23-constraining of an already constrained energy field gives

the same constrained energy field in addition to expansion

products : \(\int (\int E \, ds) \, ds = \int E \, ds + \frac{\partial}{\partial s} (\int E \, ds) \) or

\[
\int (\int E \, ds) \, ds = (\int E_{sc} \, ds) \, ds = \int E \, ds + \text{expansion term}, \text{ and}
\]

\[
\int (\int E \, dt) \, dt = (\int E_{tc} \, dt) \, dt = \int E \, dt + \frac{\partial}{\partial t} (\int E \, dt) \quad \text{or}
\]
\[
\int (\int E \ dt) \ dt = (\int E_{tc} \ dt) \ dt = \int E \ dt + \text{expansion term ,}
\]

this means that constraining of constrained energy fields

(which expresses their expansion inside the quanton) must be

accompanied by expansion of those constrained energy fields

24-expansion of constrained energy field will give unconstrained

energy in space and in time

\[
\frac{\partial}{\partial s} (\int E \ ds) = E_s E_t + \ldots \ \text{and} \ \frac{\partial}{\partial t} (\int E \ dt) = E_s E_t + \ldots .
\]

25- constraining of free energy field will give the unconstrained

energy in space and in time

\[
\int (\frac{\partial E}{\partial s}) \ ds = E_s E_t + \ldots , \ \text{and} \ \int (\frac{\partial E}{\partial t}) \ dt = E_s E_t + \ldots
\]

26- when energy is released from an expansion of constrained

energy field or constraining of a free energy field as shown in (23)

and (24) , it is released in the packet energy state
\(E = E_s E_t \) in other words, released energy cannot take the form of \(E_s \) or \(E_t \) as either of those forms of energy do not exist independently.

27- A cycle of expansion and constraining is not a reversible process due to losses and effect of entropy (irreversible process)

(Will be further clarified in the section energy constraining and the origin of entropy)

28- Energy degree of freedom / constraining conditions in space must be identical in spatial dimensions for \((E_{sx}, E_{sy}, E_{sz}) \)

otherwise energy field is deemed to be unstable

29- In an energy expansion process gives the original type of energy after expansion plus energy constraining products, so it is expected that the total energy content of the quanton (or anti quanton) to decrease during the process of expansion (this point discussed in the section: energy)
constraining and origin of entropy)

30- total energy of the quanton -as a quantum energy entity- is governed by solely the Planck -Einstein relationship so, energy field’s share of the total energy of the quanton is determined by its wave parameters (k, \(\omega \)), while the energy degree of freedom, as it will be discussed later, is just a mechanism of division of energy between the various space and time varying fields.

31- recalling point (7), energy of the following forms do not exist independently

\[a - \frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \] (energy can not expand in space and in time Simultaneously without being constrained in space and in time)

\[b - (\int E \, ds \int E \, dt) \] (energy cannot be constrained in space and in time simultaneously without having an free expansion component)
32- energy of the following forms do not exist in a stable form

\[a - E_q = (\int E \ ds \ \frac{\partial E}{\partial t}) \ (E_s \ E_t) \]

\[b - E_q = (\frac{\partial E}{\partial s} \int E \ dt) \ (E_s E_t) \]

those types of energy reflect a transient type of energy and do not exist in a stable form since a stable energy field must be part free / part constrained with respect to space and time which represent wave variation of the type

\[E_q = (\frac{\partial E}{\partial s} \int E \ dt) \ (\int E \ ds \ \frac{\partial E}{\partial t}) \]

which is the stable quanton (anti quanton) energy form

33- though quanton includes both energy types (free and constrained) energies, but there will be a dominant type of energy based on which type has the majority of Dof’s

34- for the quanton system, the free energy is the dominant while for anti quanton, the constrained type of energy is the dominant type of energy
35 – it will be shown that free space varying energy \(E_{sf} \) is capable through energy constraining, of generating both types of constrained energies \(E_{sc}, E_{tc} \) and free time varying energy \(E_{tf} \) is also capable of generating both types of constrained energies \(E_{sc}, E_{tc} \) as well.

36- \(E_{qf}, E_{qc} \) are not true waves as they do not possess four degrees of freedom individually, so it will be referred to them as Wave-likes.

37- the energy packet in this model assumes two roles

a-The total energy of the quanton which is defined as

\[
E_p = \frac{h}{2\pi} \omega = \int_{V_q} E_q \, dV
\]

b- packet state which is the result from constraining process and defined as \(E = E_s \, E_t \) (energy that does not vary in space or in time)
6. Bridging the gap between mathematics physics of energy constraining

1-While differentiation of two functions involves differentiating only one at a time and maintaining the other constant, in real world this is not possible since energy must vary either in space or in time

2-constraining through integration is the physical equivalent to mathematically maintaining one function as a constant

3-expansion of two energy fields of the form

\[
\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) = \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right)(\int E \, ds \int E \, dt)
\]

Could not be in the form \(\left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) + (\int E \, ds \int E \, dt) \)

Since the energy fields \(\left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) \) are unstable in this form as the quanton is in the process of formation and constrained energies could not be generated independently

4-The quanton equation \(E_q = \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right)(\int E \, ds \int E \, dt) \)
Expresses two physical entities

\[
\left(\text{free energies : } \left(\frac{\partial E}{\partial s}, \frac{\partial E}{\partial t} \right) \right) \text{ and constrained energies}
\]

\[
\left(\int E \, ds \int E \, dt \right)
\]

and each of these energies behave as single physical entity (ie single variable), so four different energy fields, are in fact, representing only two variables instead of four (energy field interactions will be based on this particular point).

5-after expansion and as a product there will be 8 energy components, which represent four physical entities, two expansion products, one of them is the original type of energy.

6-recalling points (13), (14) from previous section, for complex energies (free/constrained)

\[
E_q = E_{sf} E_{sc} E_{tf} E_{tc} \] energy constraining which happens through expansion of energy in space is defined as

\[
\frac{\partial}{\partial s} (E_q) = \frac{\partial}{\partial s} ((E_{sf} E_{tc})(E_{sc} E_{tf}))
\]
(\frac{\partial E_{sf}}{\partial s} \int E_{tc} \, dt)(\int E_{sc} \, ds \frac{\partial E_{tf}}{\partial t}) + (\int E_{sf} \, ds \frac{\partial E_{tc}}{\partial t})(\frac{\partial E_{sc}}{\partial s} \int E_{tf} \, dt) = (E_{sf} E_{tc} E_{sc} E_{tf}) + E_s E_t

7- the differentiation / integration procedure is a stable one for assessing the results of expansion / constraining inside the quanton, and this method is not affected by how energy components fields are arranged neither by the order of differentiation / integration according to which process is performed

8- we suggest to use the following convention when dealing with Energy expansion / constraining:

a-expansion term: differentiating free energies * integration of constrained energies

b-constraining term: integrating free energies * differentiating constrained energies
9- for energy expansion of terms like

\[\frac{\partial}{\partial s} \left(\int E \, dt \right) (E_s \, E_t) , \frac{\partial}{\partial t} \left(\int E \, ds \, \frac{\partial E}{\partial t} \right) (E_s \, E_t) \]

which express transient energy behaviour, the unconstrained energy of the type \((E_s \, E_t)\) must be subjected to the opposite operation (differentiation/integration) of the free/constrained energy component so as to reach the final stable energy of the form \((E_q) = \left(\int E \, dt \right) \left(\int E \, ds \, \frac{\partial E}{\partial t} \right)\) (this point will be clarified in the section: quanton evolution and its Dof)

10- energy expansion process inside the quanton, involves both free and constrained energies, so to avoid confusion while using the gradient operator \((\nabla)\) for both cases of expansion, the use of the differential/integral operators will be continued

\[\frac{\partial}{\partial s} \text{ for expansion of free energy fields and } \int \text{ for the expansion of constrained energy fields inside the quanton} \]
11- when dealing with energy expansion we will use the

wave like form $E_q = (E_{sf} E_{tc})(E_{sc}E_{tf})$

while when dealing with fields and energy interactions

the form $E_q = (E_{sf} E_{tf})(E_{sc}E_{tc})$ will be used

7. Energy Degrees of freedom

1-as energy is allowed to vary in every dimension in space or in
time , it is said to have an energy degree of freedom

2- the quanton energy density is defined in terms of the degrees
of freedom of its wave parameters (ω, k, r_q) , later

3-E_q will be shown to be directly proportional to ω^4, k^4 or $\frac{1}{r_q^4}$

4- while the energy density of the quanton is defined in terms of

ω^4, k^4 or $\frac{1}{r_q^4}$, however the energy fields are defined in terms of

Field strength or in terms of the constant (c) in the form of

$D_{sf} = c^{Dof_{sf}}$, Dof_{sf} : degrees of freedom of free space varying
field (transformation from degrees of freedom in terms of wave parameters, to degrees of freedom in terms of \(c \))

5-For space varying and time varying energy fields, where the resultant energy density is in the form

\[
E_q = (E_{sf} E_{tc})(E_{sc}E_{tf}) \text{ and not in the square root form}
\]

\[
E_q = \sqrt{E_{sf}^2 + E_{sc}^2 + E_{tf}^2 + E_{tc}^2}
\]

this multiplier form of resultant, allowed \(c \) to become an energy degree of freedom, where energy is divided up symmetrically in all dimensions, between the space and time varying fields

6-the constant \(c \) plays a bigger role than being the speed of light or the speed of transmission of the fundamental forces, as it plays the role of ratio of variation between space and time varying fields, this is based on the following

a- the constant \(c \) represents the relationship between energy
expansion by variation in space and in time,

the relationship between variation of wave parameters

\[\psi_{tc}, \psi_{sf} \text{ where } \psi_{tc} = e^{-j\omega t}, \psi_{sf} = e^{jk(x+y+z)} \]

\[\psi = \psi_{tc} \psi_{sf} \]

\[\frac{\partial \psi_{tc}}{\partial t} = j\omega \psi_{tc}, \quad \frac{\partial \psi_{sf}}{\partial x} = jk \psi_{sf} \]

\[\left(\frac{\partial \psi}{\partial t} \right) = \frac{\partial}{\partial t} \left(\psi_{sf} \psi_{tc} \right) = \psi_{sf} \frac{\partial \psi_{tc}}{\partial t} = -j\omega \psi_{sf} \psi_{tc} \]

\[\left(\frac{\partial \psi}{\partial x} \right) = \frac{\partial}{\partial x} \left(\psi_{sf} \psi_{tc} \right) = \psi_{sf} \psi_{tc} = jk \psi_{sf} \psi_{tc} \]

\[-\frac{\left(\frac{\partial \psi}{\partial t} \right)}{\left(\frac{\partial \psi}{\partial x} \right)} = \frac{j\omega}{jk} \frac{\psi_{sf} \psi_{tc}}{\psi_{sf} \psi_{tc}} \]

\[\frac{\omega}{k} = c \quad (1-7) \]

which is the relationship between rate of energy wave parameter variation in time and in space

b- recalling the Lagrangian \((L)\) of an action as \(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i} - \frac{\partial L}{\partial x^i} = 0\)

given that momentum \(P = \frac{\partial L}{\partial \dot{x}^i}\)

we get \(\frac{\partial P}{\partial t} = \frac{\partial L}{\partial \dot{x}}\) or alternatively \(\frac{\partial L}{\partial P} = \frac{\partial x}{\partial t} = c\)
an energy degree of freedom: the rate of change of the total energy of the system with respect to its momentum

c-the same result can be obtained directly from the energy momentum relationship $E^2 = P^2 c^2 + m_o^2 c^4$

Differentiating both sides $2 E \, dE = 2 P \, dP$

$$\frac{dE}{dP} = \left(\frac{P}{E} \right) c \quad \text{and} \quad \frac{dE}{dP} = c$$

where for space fabric case ($m_o =$ zero), $E = P \, c$

which is an alternative definition of the energy degree of freedom

6-both results of (a) and (c) are equivalent, given that

$$\psi = \psi_{sf} \, \psi_{tc}$$

c-Using the Schrödinger equation, for time derivative

$$-\frac{\partial \psi}{\partial t} = -\frac{jE}{2\pi\hbar} \psi$$

$$\nabla \psi = \frac{jp}{2\pi\hbar} \psi$$

$$\frac{\partial \psi}{\partial t} = \frac{E}{p} = c \quad \text{(2-7)}$$

Quantum based model of space fabric interactions
Based on the above points, the division of energy between space and time varying fields can be done where strength of space and time varying energy fields (Dof) can be expressed in terms of the constant (c) that defines the relationship between them.

It is worth noting that:

1-energy field degrees of freedom (field strength) is not related to the total energy of the quanton, as it is only a mechanism for the division of the quanton energy between the various energy space and time varying energy fields, and what differs any quanton from another is ONLY the rate of variation of energy with time and space according to Planck-Einstein relationship $E_p = \frac{h}{2\pi} \omega$.

2- the energy degrees of freedom can be classified as follows:

a- active (actual degrees of freedom) that belong to the energy fields (energy components) active $Dof's = (3)+(1)$
b- kinetic degrees of freedom which expresses the propagation of energy (outside the quanton in the form of electromagnetic waves) in one direction, this kinetic degree of freedom is subtracted from the available four degrees of energy freedom for space and time variation (discussed in the section: electromagnetic waves out of quanton), where active Dof’s = (2)+1 instead of (3)+(1)

c- constrained degrees of freedom: when energy fields are restricted from variation in one dimension in space or in time this constrained degree of freedom is added to the existing free and constrained energy fields to obtain the usual four degrees of freedom (discussed in the section: normal mater quantons)

8. The superposition principle inside the quanton

1-we make the distinction between the linear superposition of Energy fields which still applies inside the quanton with a product
that would be a resultant field that would be equal to the addition of
their individual field intensities on condition that

a-those fields must be of the same type (free / constrained) and

b- have the same degree of freedom

\[E_{sfi} + E_{sfj} = K_{sfi}D_{sf} + K_{sfj}D_{sf} \]
\[= (K_{sfi} + K_{sfj})D_{sf} \quad (1-8) \]

\[E_{sfi}E_{tci} + E_{sfj}E_{tcj} = K_{sfi}D_{sf}K_{tci}D_{tc} + K_{sfj}D_{sf}K_{tcj}D_{tc} \]
\[= (K_{sfi} + K_{sfj})(K_{tci} + K_{tcj})(D_{sf} + D_{tc}) \quad (2-8) \]

while the superposition of field energies between fields of different
nature (free / constrained) or fields that do have different energy
Dof’s where the addition is done by adding their field strength (ie
exponential degree of freedom) and multiplying their intensities

2- according to superposition principle which states that when
two fields of the same kind meet at a point in space, the resultant
amplitude at that point is the vector sum of the amplitudes of the two fields separately at that point.

this is the superposition principle in its linear form, while the exponential form of superposition applies, as energy fields are defined in terms of energy degree of freedom (D_{of}), which is expressed as the exponent of $e^{D_{of}}$.

the resulting superposition inside the quanton will not be a linear one instead, it is an exponential superposition where

$$E_{sfi} + E_{scj} = K_{sfi}D_{sf} + K_{scj}D_{sc}$$

$$= (K_{sfi} + K_{scj}) (D_{sf} + D_{sc})$$ \hspace{1cm} (3-8)

$$E_{sfi} + E_{tcj} = K_{sfi}D_{sf} + K_{tcj}D_{tc}$$

$$= (K_{sfi} + K_{tcj}) (D_{sf} + D_{tc})$$ \hspace{1cm} (4-8)

and for the quanton as a whole

$$E_q = (E_{sf}E_{tc})(E_{sc}E_{tf}) = (K_{sf}D_{sf})(K_{tc}D_{tc})((K_{sf}D_{sf})(K_{tc}D_{tc}))$$

$$= (D_{sf}D_{tc}D_{sc}D_{tf})(K_{sf}K_{tc}K_{sc}K_{tf})$$
\[(K_{sf} K_{tc} K_{sc} K_{tf}) c^{Dof_{sf}+Dof_{tc}+Dof_{sc}+Dof_{tf}} = (K_{sf} K_{tc} K_{sc} K_{tf}) c^A\] (5-8)

b- instead of the addition of the same type of energy, while inside the quanton, the addition can be between two different types of energies (space and time varying energies) and of two different natures (free / constrained) to give a complex energy field.

The main reason behind this is that free and constrained fields cannot be considered as an independent energy entity individually, since either of them does not possess four degrees of energy freedom and hence their Dof's must be added exponentially to obtain either a complex field or the total energy density of the quanton if the addition is for all four energy fields.

9. Definition of directional energy components in various dimensions

For a quanton energy equation of the form \(E_q = (E_{sf} E_{tc})(E_{sc} E_{tf})\)
Where E_{sf}, E_{sc} are space varying energies (constrained and free) and E_{tf}, E_{tc} are time varying energies (constrained and free) and the total energy of a quanton is the product of the dimensional energy components.

We have to stress again that $E_{sf}, E_{sc}, E_{tf}, E_{tc}$ do not have the dimensions of energy but their product has the dimension of energy divided by three dimensional volume

$$E_{sf} = \sqrt{E_{sf x}^2 + E_{sf y}^2 + E_{sf z}^2} \quad (1-9)$$

and constrained energy in space components

$$E_{sc} = \sqrt{E_{sc x}^2 + E_{sc y}^2 + E_{sc z}^2} \quad (2-9)$$

for spatial energy dimensional components

$$E_{sx} = E_{sf x} E_{sc x}, \quad E_{sy} = E_{sf y} E_{sc y} \quad (3-9)$$

$$E_{sz} = E_{sf z} E_{sc z} \quad (4-9)$$
And for time varying energy components,

\[E_t = E_{tf} E_{tc} \quad (5-9) \]

Those are 8 energy components, 6 that vary in space and 2 that vary in time.

3 are constrained in space and one is constrained in time.

and 3 are free in space and one is free in time.

It is worth noting that

1- there is no direct interdependence between spatial dimensions

i.e. no energy component of the form \(E_{sf_{xy}} , E_{sf_{xz}} \), does exist

where \(E_{sf_{xy}} = f(n, x, y) \), \(E_{sf_{xz}} = f(x, z) \)

, since if there were such energy components the variation with time of such components \(\frac{\partial}{\partial t} (E_{sxi_j}) = 0 \), which means that the such an energy component would be time invariant, while other energy components are supposed to change with time to reflect an inflationary scenario, which against the fundamental
cosmological principle of homogeneity and uniformity of space fabric

2- spatial and time energy fields cannot exist independently from each other, as discussed in energy constraining section

10. Dimensional energy symmetry (DES)

Dimensional energy symmetry is the mechanism which ensures the uniformity and homogeneity of energy under inflationary conditions inside the quanton.

The basis of this symmetry lies in the fact the packet / field energy density relationship is not only volumetric but based on the energy degrees of freedom as well.

Given that \(E_q = (E_{sI}E_{tc})(E_{sc}E_{tf}) \)

Energy as it expands in along the x-axis

\(\frac{\partial}{\partial x} (E_q) \) will not only give as the result of the expansion...
\[\left(\frac{\partial E_{sf}}{\partial x} \int E_{tc} \, dt \right) (\int E_{sc} \, dx \, \frac{\partial E_{tf}}{\partial t}) + \]

\[(\int E_{sf} \, dx \, \frac{\partial E_{tc}}{\partial t}) \left(\frac{\partial E_{sc}}{\partial x} \int E_{tf} \, dt \right) \text{, but it will be of the form} \]

\[\frac{\partial}{\partial x} (E_q) = \frac{\partial}{\partial x} (E_{sf} E_{tc} E_{sc} E_{tf}) = \]

\[\frac{\partial}{\partial x} (E_{sf} E_{scx}) \frac{\partial t}{\partial x} \frac{\partial y}{\partial t} (E_{sfy} E_{scy}) \frac{\partial t}{\partial x} \frac{\partial z}{\partial t} (E_{sfz} E_{scz}) \frac{\partial t}{\partial x} \frac{\partial}{\partial t} (E_{tf} E_{tc}) \]

\[= (\frac{\partial}{\partial x} \left(\frac{\partial t}{\partial x} \frac{\partial y}{\partial t} \left(\frac{\partial t}{\partial x} \frac{\partial z}{\partial t} \right) \right)) (E_{sf}) \int (E_{tc}) \, dt \]}

\[\left(\int \int \int (E_{sc}) \, dx \, dy \, \left(\frac{dt}{dy} \frac{dx}{dt} \right) \, dz \left(\frac{dt}{dz} \frac{dx}{dt} \right) \left(\frac{\partial}{\partial t} \right) (E_{tf}) \right) + \]

\[\left(\int \int \int (E_{sf}) \, dx \, dy \, \left(\frac{dt}{dy} \frac{dx}{dt} \right) \, dz \left(\frac{dt}{dz} \frac{dx}{dt} \right) \left(\frac{\partial}{\partial t} \right) (E_{tc}) \right) \]

\[\left(\frac{\partial}{\partial x} \left(\frac{\partial t}{\partial x} \frac{\partial y}{\partial y} \left(\frac{\partial t}{\partial x} \frac{\partial z}{\partial y} \right) \right) (E_{sc}) \int (E_{tf}) \, dt \left(\frac{\partial x}{\partial t} \right) \right) \]

\text{Given that} \frac{\partial x}{\partial t} = \frac{\partial y}{\partial t} = \frac{\partial z}{\partial t} = c \]

\[\frac{\partial}{\partial x} (E_q) = \left(\frac{\partial E_{sf}}{\partial s} \int E_{tc} \, ds \right) (\int E_{sc} \, ds \, \frac{\partial E_{tf}}{\partial t}) + \]

\[(\int E_{sf} \, ds \, \frac{\partial E_{tc}}{\partial t}) \left(\frac{\partial E_{sc}}{\partial s} \int E_{tc} \, ds \right) = \frac{\partial}{\partial s} (E_q) \quad \text{(1-10)} \]

\text{Note: we applied the chain rule for differentiation and integration by change of variables}
We can clearly see as energy expands along one axis, it must not only expand along other spatial and temporal axes but be constrained along the spatial and temporal axes as well, we conclude that

1-Events in one direction are immediately reflected in the other spatial and temporal directions, and by the same magnitude, so as to ensure the dimensional energy symmetry (DES)

2-The uniformity and the homogeneity of space fabric is ensured through the role time plays as the link between all the three spatial axis (and via the constant (c))

3-to satisfy dimensional energy symmetry for quanton energy system that has degrees of freedom, the degrees of freedom must be symmetric with respect space and time varying energy fields

Define the Dof_q, D_q (in terms of c)
Where the degree of freedom parameter

\[
D_{ofq} = D_{ofsf} + D_{oft} + D_{ofsc} + D_{oftc} = 4
\]

(2-10)

Energy field strength parameter \(D_q = D_{sf} D_{tf} D_{sc} D_{tc} = c^4 \)

(3-10)

\[
D_s = c^3, \quad D_{sf} = c^{D_{ofsf}}, \quad D_{sc} = c^{D_{ofsc}} = c^{3-D_{ofsf}} \]

(4,5,6,7-10)

\[
D_t = c, \quad D_{tf} = c^{D_{oftf}}, \quad D_{tc} = c^{D_{oftc}} = c^{1-D_{oftf}} \]

(8,9,10-10)

\[
D_{ofsf_x} = D_{ofsf_y} = D_{ofsf_z} \]

(11-10)

4-the degree of freedom of constrained energy components must be identical for spatial time varying component

\[
D_{ofscx} = D_{ofscy} = D_{ofscz} \]

(12-10)

5-the degree of freedom of time varying energy components must be identical free and constrained energies, namely

\[
D_{oftf} = D_{oftc} \]

(13-10)

in other words for free and constrained energies the degree of freedom must be expressed in a symmetric way across all spatial
varying energies and time varying energies

\[E_q = K_q^4 c^4 \]

\[E_p = \frac{h}{2\pi} \omega \]

Fig (1) Role of dimensional energy symmetry in ensuring the uniformity of energy distribution inside the quanton

11. Energy packet / field relationship

the quanton shape is sinusoidally varying as it is composed of wave likes, however its volume is constant and can be represented by 3 dimensional sphere shape

Given the minuscule dimensions of the quanton, and dimensional

Quanton based model of space fabric interactions
energy symmetry which allow for the following relation as an approximation

\[E_p = \int_{V_q} E_q \, dV = E_q \, V_q = \frac{\hbar}{2\pi} \omega \] \hspace{1cm} (1-11)

where \(E_q \) is the average energy field density inside the quanton, \(E_p \) : packet energy, based on energy symmetry inside the quanton, \(V_q = \frac{4}{3} \pi r_q^3 \)

given that \(\omega = \kappa c \), \(\kappa \) later will be defined as equal to \(\frac{\pi}{r_q} \)

\[V_q = \frac{4}{3} \pi r_q^3 = \frac{4}{3} \frac{\pi^4}{k^3} = \frac{4}{3} \frac{\pi^4 c^3}{\omega^3} \] \hspace{1cm} (2-11)

This shows that the quanton volume can be defined in terms of the parameters \(k, \omega \), this indicates that the relationship

\[E_p = \int_{V_q} E_q \, dV = E_q \, V_q \] is not only a volumetric relationship but

An energy degree of freedom as well

for \(E_p = \hbar \omega \), which can be written alternatively as
\[E_p = \frac{h}{2\pi \omega^3} \quad \omega = \frac{h}{2\pi \omega^3} \quad k^4 \quad c^4 \]

While \(\omega = kc \), \((k) = \frac{\pi}{r_q} \), then

\[E_p = \frac{h}{2\pi k^3 c^3} \quad k^4 \quad c^4 = \frac{h}{2\pi (\pi)^3 c^3} \quad k^4 \quad c^4 = \frac{h}{2 \pi^4 \left(\frac{4}{3}\pi\right)c^3} \quad k^4 \quad c^4 \]

\[E_p = \frac{h}{2\pi^5 c^3} \quad k^4 \quad c^4 = \frac{3h}{8\pi^5 c^3} \quad \frac{V_q}{r_q^4} \quad c^4 \quad (3-11) \]

\[E_q = \frac{E_p}{V_q} = \frac{3h}{8\pi^5 c^3} \quad k^4 \quad c^4 = \frac{3h}{8\pi^5 c^3} \quad \omega^4 = \frac{3h}{8\pi^5 c^3} \quad \frac{c^4}{r_q^4} \quad (4-11) \]

And this is a very important relationship since the term

\[\frac{3h}{8\pi^5 c^3} \quad \text{or} \quad \frac{3h}{8\pi c^3} = \text{constant} \quad \text{in other words} \]

Field energy density inside the quanton is linearly proportional to

the four degrees of freedom as expressed by either \((\omega^4, k^4 \text{ or } \frac{1}{r_q^4}) \),

define \(h_q = \frac{3h}{8\pi^5 c^3} \quad (5-11) \)

\[E_q = h_q \quad \omega^4 \quad = \quad h_q \quad k^4 \quad c^4 \quad = \quad \pi^4 \quad h_q \quad \frac{c^4}{r_q^4} \quad (6-11) \]

substituting \(E_p = E_q \quad V_q = h_q \quad V_q \quad \omega^4 \)
let S_p to be an arbitrary variable such that $S_p = h_q V_q$

or $E_p = S_p \omega^4 = h_q V_q \omega^4 = \frac{h}{2\pi} \omega$

$$\frac{h_q}{h} = \frac{\omega}{2\pi} \frac{1}{V_q \omega^4} = \frac{3}{4 \pi^4 c^3}$$

(7-11)

$$\frac{1}{V_q \omega^3} = \frac{3}{2\pi c^3} \quad \text{or} \quad V_q = \frac{2 \pi^3 c^3}{3 \omega^3}$$

(8-11)

$$\frac{V_{q2}}{V_{q1}} = \left(\frac{r_{q2}}{r_{q1}}\right)^3 = \frac{\omega_1}{\omega_2^3} \quad \text{and} \quad \frac{r_{q2}}{r_{q1}} = \frac{\omega_1}{\omega_2}$$

(9-11)

Which expresses the inverse relation between energy and wave length given that $k = \frac{\pi}{r_q} = \frac{2\pi}{\lambda}$

12 - Energy constraining and the origin of entropy - a possible explanation

1-as the quantons expand, energy constraining takes place

2-Energy constraining is the mechanism of ensuring dimensional energy symmetry (DES) under inflationary conditions

3-Energy constraining during quanton inflation as follows
a-Expansion of free energy components \((E_{sf}E_{tf})\) must be accompanied by constraining of part - of the expanding energy component

b-constraining of an energy fields \((E_{sc}E_{tc})\) must be accompanied by an expansion of part of the constrained energy field

c-In both cases , the result will be the release of the unconstrained energy (: energy packet) of the form \(E = E_s E_t\)

for the free type of energy as it expands

\[
\frac{\partial}{\partial s} (E_{sf} E_{tf}) = \left(\frac{\partial E_{sf}}{\partial s} \frac{\partial E_{tf}}{\partial t} \right) \left(\int E_{sf} \, ds \right) \left(\int E_{tf} \, dt \right)
\]

\[
= (E_{sf} E_{tf}) (E_s E_t)
\]

where \(\frac{\partial E_{sf}}{\partial s} = E_{sf}, \quad \frac{\partial E_{tf}}{\partial t} = E_{tf}\)

\[
\int E_{sf} \, ds = E (= E_s E_t) \quad \text{and} \quad \int E_{tf} \, dt = E_s E_t
\]

and in detail

\[
\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) = \left(\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) \right) \left(\int \frac{\partial E}{\partial s} \, ds \right) \left(\int \frac{\partial E}{\partial t} \, dt \right)
\]
\[
\left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) (E_s E_t)
\]

while the first term : \(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \) equals the original free energy which expands through variation of energy in space and in time ,

The second term \(E_s E_t \) : represents the release of energy packet which is due to due to the constraining of part of the free energy field for the constrained energy

\[
\int (E_{sc} E_{tc}) \, ds = (\int E_{sc} \, ds \, \int E_{tc} \, dt) \left(\frac{\partial E_{sc}}{\partial s} \frac{\partial E_{tc}}{\partial t} \right)
\]

\[
= (E_{sc} E_{tc})(E_s E_t) \quad , \text{and in details}
\]

\[
\int (\int E \, ds \int E \, dt) = \left(\int \int E \, ds \, ds \int \int E \, dt \, dt \right)(\frac{\partial E}{\partial s} \int E \, ds \frac{\partial E}{\partial t} \int E \, dt)
\]

\[
= (\int E \, ds \int E \, dt) (E_s E_t)
\]

first term: the original constrained energy term

the second term : unconstrained energy , as it is released due to the expansion of constrained energy
for complex energy systems \(E_q = (E_{sf} E_{tc}) (E_{tf} E_{tf}) \)

\[
\frac{\partial E_q}{\partial s} = (\frac{\partial}{\partial s} (E_{sf}) \int (E_{tc}) \, dt) \left(\int (E_{sc}) \, ds \frac{\partial}{\partial t} (E_{tf}) \right)
\]

\[+ (\int (E_{sf}) \, ds \frac{\partial}{\partial t} (E_{tc}) \left(\frac{\partial}{\partial s} (E_{sc}) \int (E_{tf}) \, dt \right) \]

and given that \(\frac{\partial}{\partial s} E_{sf} = E_{sf} \), \(\int E_{sc} \, ds = E_{sc} \),

\[
\frac{\partial}{\partial t} E_{tf} = E_{tf} \, , \int E_{tc} \, dt = E_{tc}
\]

\[
\frac{\partial E_q}{\partial s} = E_{sf} E_{tf} E_{sc} E_{tc} + E_s E_t \quad \text{and in details}
\]

\[
\frac{\partial E_q}{\partial s} = \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \int E \, dt \right) \left(\int E \, ds \frac{\partial E}{\partial t} \right)
\]

\[= \left(\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) \int \left(\int E \, dt \right) \, dt \right) \left(\int \left(\int E \, ds \right) \, ds \frac{\partial E}{\partial t} \right) \]

\[+ \left(\int \left(\frac{\partial E}{\partial s} \right) \, ds \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) \left(\frac{\partial}{\partial s} \left(\int E \, ds \right) \left(\int \left(\frac{\partial E}{\partial t} \right) \, dt \right) \right)
\]

\[= \left(\frac{\partial E}{\partial s} \int E \, dt \right) \left(\int E \, ds \frac{\partial E}{\partial t} \right) + E_s E_t
\]

The first term represents the original quanton energy \(E_q \) after

expansion , while the second term represents the generation of

packet energy , we conclude that
1-expansion of free energy fields always is accompanied by
part-constraining of free energy varying in space and time

2-constraining of constrained energy fields is accompanied by
part-expansion of the constrained energy

3-whether due to constraining of a free energy or expansion of a
constrained energy, in both cases packet energy is generated

as a result of the expansion process, later, it will be shown how
a part of this energy packet is released from the quanton as it
expands which is at the origin of increasing disorder

accompanying the inflationary process

13.Space fabric expansion and the release of thermal energy

Inflation of the universe (expansion of space fabric) is a free
expansion process and is accompanied by the release of thermal
energy, the idea that a free expansion process gives off heat is
rather odd, since expansion is closely related to reduction in
temperature, in fact any release of thermal energy is more than offset by the effects of inflation, so the net result would be a net reduction in temperature (observed as thermal degradation of CMB photons).

Inflation of the universe is a free expansion process, which according to the second law of thermodynamics, is an irreversible process, this irreversibility is due to losses in the form of space fabric giving off heat during expansion process.

The origin of this release of thermal energy: is energy constraining to show the source of this released energy we consider the case of quanton as it expands (discussed in the following section) from a volume \(V_{q1} \) to \(V_{q2} \)

1-the quanton radius \(r_q \) changes in the following manner

\[
\frac{V_{q2}}{V_{q1}} = \left(\frac{r_{q2}}{r_{q1}} \right)^3
\]
2- quanton energy fields change periodically with time

, this variation at the rate of $\omega \text{ rad/sec}$, and vary in space at

the rate of $k = \frac{\pi}{r_q}$

the total energy of the quanton (as a quantum entity) is governed

by Planck Einstein relationship (function only in its wave parameters), namely $E_p = h\nu = \frac{hc}{2\pi} = \frac{hc}{r_q}$

The relationship between quantons of different energy content can

be put in the form $\frac{E_{p2}}{E_{p1}} = \frac{\omega_2}{\omega_1} = \frac{k_2}{k_1} = \frac{\lambda_1}{\lambda_2} = \frac{r_{q1}}{r_{q2}}$

Which means that the quanton radius (and the wave length

of its characteristic wave behaviour are inversely proportional

to its total (packet) energy content

3-recalling here the first concept upon which this model is based

namely the Dof relationship between energy density inside the

quanton and its total (packet) energy content
total (packet) energy density inside the quanton can be assessed as

\[E_p = E_q V_q \quad \text{or} \quad E_q = \frac{E_p}{V_q} \]

\[\frac{E_{q^2}}{E_{q_1}} = \left(\frac{E_{p_2}}{E_{p_1}} \right) \left(\frac{V_{q_1}}{V_{q_2}} \right) \]

Substituting for \(\left(\frac{E_{p_2}}{E_{p_1}} \right) = \left(\frac{r_{q_1}}{r_{q_2}} \right) \), and \(\left(\frac{V_{q_1}}{V_{q_2}} \right) = \left(\frac{r_{q_1}}{r_{q_2}} \right)^3 \)

We get \(\frac{E_{q^2}}{E_{q_1}} = \left(\frac{r_{q_1}}{r_{q_2}} \right)^4 \) \(\text{(1-13)} \)

Which deviates from what we would expect in a classical volume/density relationship of the form \(\frac{q_2}{q_1} = \frac{V_1}{V_2} = \left(\frac{r_1}{r_2} \right)^3 \)

and this is due to the fact that energy density inside the quanton is proportional to \(r_q^4 \) and not to \(r_q^3 \)

this previous relationship can be obtained directly from the equation (6-11), namely \(E_q = \pi^4 h_q \frac{c^4}{r_q^4} \) or

\[E_q = \left(\frac{\text{constant}}{r_q^4} \right) \]
Hence, as quantons expand, free energy is being constrained and constrained energy is being expanded, as a result of this process, thermal energy is being released from the quanton as it expands to allow for energy density variation to the fourth order with the quanton diameter or $E_q \propto \left(\frac{1}{r_q}\right)^4$

14. Origin of cosmic microwave background (CMB)

Based on the previous results, we can conclude that the CMB is due—at least in part—to the release of thermal energy during Free expansion of the space fabric itself, the extraordinarily high degree of CMB homogeneity with variation of the order of (10^{-5}), reflects the high degree of homogeneity of space fabric itself as it releases radiation during the free expansion process, and, in fact, energy constraining inside the quantons is behind that release of radiation energy.
15. Mechanism of quanton splitting

There are two mechanisms that can cause the quantons to expand, namely

a-Splitting action of the quantons due dimensional energy asymmetry

b-The sole release of energy from the quantons

as for the first mechanism

1-Stage (1-2): expansion under the effect of unbound repulsive field

While there are two types of energies inside the quanton (free and constrained), they interact, creating a binding relationship but since the energy levels (field strength which is in terms of Dof’s) of both types are not the same, the fields of the dominant type of energy self-interact creating a repulsive interaction that causes the quantons to expand under this self-interaction of nonbinding energy fields (E_{sfn}) for quantons and (E_{scn}) for anti quantons.
(will be discussed in the section bound and nonbinding energies)

, the expanding quanton radius can be defined as

\[r_{q2} = (x r_{q1}, (1 < x < \sqrt{2/4}) \]

no change in the quanton wave parameters (\(\omega, k\)) since

there is no energy release from the quantons at this stage

2-Stage (2-3) dimensional energy asymmetry occurs and quanton splits

Since the quanton parameters (\(\omega, k\)) do not reflect the change

in \(r_q\), \((r_{q1}/r_{q2})\) must equal \(E_{p2}/E_{p1} = \omega_2/\omega_1 = k_2/k_1\) while \(r_{q2} > r_{q1}\) and

\(E_{qp2}\) still equals \(E_{qp1}\) and \(\omega_2 = \omega_1\), this conflict of wave parameters causes

a-dimensional energy asymmetry to develop and

b-quanton splits as a mechanism to restore (DES) such that

\(r_{q3} = (r_{q2}/2)\), \(E_{p3} = E_{p2}/2 = E_{p1}/2\)
3-Stage (3-4) quanton expands

as \(E_{p3} \) drops following quanton splitting, wave parameters

\((\omega, k) \) also must change such that \(\frac{\omega}{k} = c = \text{constant} \)

So quanton expand to the stage (4) to satisfy the relationship

\[
\frac{E_{p4}}{E_{p2}} = \frac{\omega_4}{\omega_2} = \frac{k_4}{k_2} = \frac{r_{q4}^2}{r_{q4}} = \frac{1}{2}
\]

as the quantons expand, they release thermal energy in the form

of CMB energy packets, to maintain the relationship

\[
\frac{E_{q2}}{E_{q1}} = (\frac{r_{q1}}{r_{q2}})^4 \quad \text{and to arrive at the final pseudo stable state}
\]

<table>
<thead>
<tr>
<th>stage</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total quanton energy: (E_p)</td>
<td>(E_{p1})</td>
<td>(E_{p1})</td>
<td>(\frac{E_{p1}}{2})</td>
<td>< (\frac{E_{p1}}{2})</td>
</tr>
<tr>
<td>Wave parameters (\omega, k)</td>
<td>(\omega_1) (k_1)</td>
<td>(\omega_1) (k_1)</td>
<td>(\omega_1, k_1)</td>
<td>< (\frac{\omega_1}{2}), < (\frac{k_1}{2})</td>
</tr>
<tr>
<td>Field energy density: (E_q)</td>
<td>(E_{q1}) (x^3)</td>
<td>(\frac{E_{q1}}{x^3})</td>
<td>< (\frac{E_{q1}}{16})</td>
<td></td>
</tr>
<tr>
<td>Quanton radius (r_q)</td>
<td>(r_{q1}) (x r_{q1})</td>
<td>(3 \sqrt{\frac{1}{2}} x r_{q1})</td>
<td>> 2 (r_{q1})</td>
<td></td>
</tr>
<tr>
<td>Quanton volume (V_q)</td>
<td>(V_{q1}) (x^3V_{q1})</td>
<td>(\frac{x^3}{2}V_{q1})</td>
<td>> 8 (V_{q1})</td>
<td></td>
</tr>
<tr>
<td>Number of quantons</td>
<td>one</td>
<td>one</td>
<td>two</td>
<td>two</td>
</tr>
</tbody>
</table>

Summary of the stages of the quanton splitting and expansion
The second method is the pure release of thermal energy which is followed up by a subsequent quanton expansion. This mechanism is such an inefficient one in comparison to the fore described method of quanton splitting and subsequent expansion, given the high efficiency of previous process as a mechanism to manage the expansion of the quanton through both inflation and multiplication while on the other hand minimizing the thermal energy release, it is clear that such quanton splitting and

Fig (2) cycle of quanton splitting and subsequent inflation

Quanton splitting → Reduction in r_q → Reduction in E_q → Quanton inflation under self interaction of nonbinding energy fields → Quanton temporary stability → quantum inflation → Release of thermal energy

Quanton based model of space fabric interactions
subsequent expansion is the actual mechanism of space fabric expansion

16. Quanaton feedback mechanism through energy constraining

1-as quanoton expands $\frac{\partial E_d}{\partial s}$, the process results in two main products

a- The energy expansion

the expansion term is $(\frac{\partial E_{sf}}{\partial s} \int E_{tc} \ dt) (\int E_{sc} \ ds \ \frac{\partial E_{tf}}{\partial t})$

and gives energy components $(E_{sf} E_{tc})(E_{sc} E_{tf})$ which are exactly the same product as the original unexpanded energy

(though with lesser total energy content)

b-constraining or Feedback term, defined as

$(\int E_{sf} \ ds \ \frac{\partial E_{tc}}{\partial t} \) (\int E_{tf} \ dt) = E_s E_t$

The destiny of this feedback term is dependent on the dimensional energy symmetry, if satisfied this term will be recycled in the form of further full expansion
If (DES) is not satisfied, this term can still be either

a- Partially released from the quanton to allow for further expansion of the quanton as we have discussed in the previous chapter

b- Partial expansion to re-establish (DES)

The expansion term represents 75% of the quanton field energy, while the feedback term represents the remaining 25%, the origin of this division lies in the fact that expansion of the quanton in 3 dimensional space corresponds to 3 degrees of freedom out of four while the constraining term represents the equivalent to the fourth degree of freedom and as the quanton expands, it has to release energy packets which correspond to this fourth degree of freedom (or 25% of its total energy, to maintain the energy relationship

\[
\frac{E_{q2}}{E_{q1}} = \left(\frac{r_{q1}}{r_{q2}}\right)^4
\]

expansion of feedback term inside the quanton
\[
\frac{\partial}{\partial s} (E_s E_t) = E_{sf} E_{tc} \quad \text{then} \quad (E_{sf} E_{tc}) (E_{sc} E_{tf})
\]

While for anti quanton

\[
\frac{\partial}{\partial s} (E_s E_t) = (E_{sc} E_{tf}) \quad \text{then} \quad (E_{sf} E_{tc}) (E_{sc} E_{tf})
\]

Fig (2). feedback mechanism through energy constraining to achieve uniform and homogeneous expansion inside the quanton

17. mathematics behind constraining term

1- Constraining process changes the nature of the energy (from free dominated to constrained dominated and vice versa in order
to maintain dimensional energy symmetry under inflationary conditions

2- to perform such an operation energy must transit through a packet state (energy that does not change in space or in time)

3- the constraining operation (integration / differentiation) takes place at an exponential level, so the exponent of wave behaviour parameter which is operated upon and not the parameter itself

4- The concept of energy degree of freedom transition between different space and time varying energy fields to satisfy dimensional energy symmetry (Des) has its routes in the exponential degree of freedom inside the quanton, as those energy degrees of freedom are in an exponential form (c^{Dof}), so we can expect the constraining action (differentiation / integration) to take place at an exponential level.
of the wave parameters too

For an expansion of the free space varying energy

\[
a - \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) = \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) \left(\int \left(\frac{\partial E}{\partial s} \right) \, ds \right) = \left(\frac{\partial E}{\partial s} \right) \left(E_s \, E_t \right)
\]

\[
= \frac{\partial}{\partial s} \left(K_{sf} \, D_{sf} \, \psi_{sf} \right) = K_{sf} \, D_{sf} \, \frac{\partial}{\partial s} \left(\psi_{sf} \right)
\]

\[
= K_{sf} \, D_{sf} \, \frac{\partial}{\partial s} \left(e^{jks} \left(e^{\frac{\partial s}{\partial s}(jks)} \right) \right) \tag{1-17}
\]

\[
= K_{sf} \, D_{sf} \, \frac{\partial}{\partial s} \left(e^{jks} \left(K_s \, D_s \, K_t \, D_t \, e^{(jk)} \right) \right)
\]

\[
= \frac{\partial E}{\partial s} \left(K_s \, D_s \, K_t \, D_t \, e^{(jk)} \right) = \left(\frac{\partial E}{\partial s} \right) \left(E_s \, E_t \right)
\]

\[
b - \frac{\partial}{\partial s} \left(\left(\frac{\partial E}{\partial s} \right) \left(E_s \, E_t \right) \right) = \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) \int \left(E \right) \, dt = \left(\frac{\partial E}{\partial s} \right) \left(\int E \, dt \right)
\]

\[
\frac{\partial}{\partial s} \left(\left(\frac{\partial E}{\partial s} \right) \left(E_s \, E_t \right) \right) = \frac{\partial E}{\partial s} \left(K_s \, D_s \, K_t \, D_t \, e^{-\int(jk) \, ds} \right) \tag{2-17}
\]

\[
= K_{sf} \, D_{sf} \, \frac{\partial}{\partial s} \left(e^{jks} \left(K_s \, D_s \, K_t \, D_t \, e^{-\int(jk) \, ds} \right) \right)
\]

We perform the following change of the integration parameters

\[
K = \frac{\omega}{c}, \quad ds = \, dx \, dy \, dz, \, dx, \, dy, \, dz = c \, dt
\]

\[
\frac{\partial}{\partial s} \left(\left(\frac{\partial E}{\partial s} \right) \left(E_s \, E_t \right) \right) = K_{sf} \, D_{sf} \, \frac{\partial}{\partial s} \left(e^{jks} \left(K_{tc} \, D_{tc} \, e^{-\int\frac{\omega}{c} \, c \, dt} \right) \right)
\]
= K_{sf} D_{sf} \frac{\partial}{\partial s} \left(e^{iks} \right) (K_{tc} D_{tc} e^{-j\omega dt}) \quad (3-17)

\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) = \frac{\partial E}{\partial s} \int E \, dt

For the case of expansion of free time varying energy

a - \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \left(\frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right) \left(\int \frac{\partial E}{\partial t} \, dt \right) = (\frac{\partial E}{\partial t}) (E_s E_t)

= \frac{\partial}{\partial t} \left(K_{tf} D_{tf} \psi_{tf} \right) = K_{tf} D_{tf} \frac{\partial}{\partial t} (\psi_{tf})

= K_{tf} D_{tf} \frac{\partial}{\partial t} \left(e^{j\omega t} \right) \left(e^{\frac{\partial}{\partial t} (j\omega t)} \right) \quad (4-17)

= K_{tf} D_{tf} \frac{\partial}{\partial t} \left(e^{j\omega t} \right) (K_s D_s K_t D_t e^{(j\omega)})

= \frac{\partial E}{\partial t} \left(K_s D_s K_t D_t e^{(j\omega)} \right) = \left(\frac{\partial E}{\partial t} \right) (E_s E_t)

b - \frac{\partial}{\partial t} \left((\frac{\partial E}{\partial t}) (E_s E_t) \right) = \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \int (E) \, ds = (\frac{\partial E}{\partial t}) (\int E \, ds)

= \frac{\partial}{\partial t} \left((\frac{\partial E}{\partial t}) (E_s E_t) \right) = \frac{\partial E}{\partial t} \left(K_s D_s K_t D_t e^{-\int (j\omega) \, dt} \right) \quad (5-17)

= K_{tf} D_{tf} \frac{\partial}{\partial t} \left(e^{j\omega t} \right) (K_s D_s K_t D_t e^{-\int (j\omega) \, dt})

Again, we perform the change of the integration parameters

\omega = kc \quad , \quad dt = \frac{dx}{c} = \frac{dy}{c} = \frac{dz}{c}, \quad ds = dx \, dy \, dz
\[= K_{tf} D_{tf} \frac{\partial}{\partial t} \left(e^{j\omega t} \right) (K_{sc} D_{sc} e^{-\int \frac{ds}{c}}) \]
\[= (K_{tf} D_{tf} \frac{\partial}{\partial t} \left(e^{j\omega t} \right)) (K_{sc} D_{sc} e^{-jks}) \]
\[= \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \frac{\partial E}{\partial t} \int E \, ds \]

a-Expansion part

As mentioned earlier, the expansion of constrained energies is handled by integration process:

\[\frac{\partial}{\partial s} (E_q) = \frac{\partial}{\partial s} \left((E_{sf} E_{tc}) (E_{sc} E_{tf}) \right) \]
\[= K_{sf} K_{tc} D_{sf} D_{tc} \frac{\partial}{\partial x} \psi_{sf} \int \psi_{tc} dt (K_{sc} K_{tf} D_{sc} D_{tf} \int \psi_{sc} dx \frac{\partial}{\partial t} \psi_{tf}) \]
\[= K_{sf} K_{tc} D_{sf} D_{tc} \left(\frac{jk}{-j\omega} \psi_{sf} \psi_{tc} \right) (K_{sc} K_{tf} D_{sc} D_{tf}) \left(\frac{j\omega}{-jk} \psi_{sc} \psi_{tf} \right) \]
\[= K_{sf} \psi_{sf} D_{sf} (K_{tc} D_{tc} \psi_{tc}) \left((K_{sc} D_{sc} \psi_{sc}) (K_{tf} D_{tf} \psi_{tf}) \right) \]
\[= (E_{sf} E_{tc}) (E_{sc} E_{tf}) = E_q \]

b- Constraining term

\[(\int E_{sf} ds \frac{\partial E_{tc}}{\partial t}) (\frac{\partial E_{sc}}{\partial s} \int E_{tf} dt) \]
$$= K_{sf} K_{tc} \ D_{sf} \ D_{tc} \ \frac{\partial}{\partial x} \ \ e^{\frac{\partial}{\partial x}(jks)} \ e^{\frac{\partial}{\partial t}(-j\omega t)} \) \ (K_{sc} \ K_{tf} \ D_{sc} \ D_{tf} \ e^{\frac{\partial}{\partial x}(-jks)} \ dx \ e^{\frac{\partial}{\partial t}(j\omega t)})$$

$$= K_{sf} K_{tc} \ D_{sf} \ D_{tc} \ e^{(jk)} \ e^{(-j\omega)} \ (K_{sc} \ K_{tf} \ D_{sc} \ D_{tf} \ e^{(-jk)} \ e^{(j\omega)})$$

$$=(K_{sf} \ K_{tc} \ D_{sf} \ D_{tc}e^{(jk)} \ e^{(-j\omega)} \) (K_{sc} \ K_{tf} \ D_{sc} \ D_{tf} \ e^{(-jk)} \ e^{(j\omega)})$$

$$= K_{s} \ D_{s} \ K_{t} \ D_{t} = E_{s} E_{t}$$

To summarize, the exponential differentiation / integration would be applied in either of the following cases

1- Change of the nature of the energy field (free / constrained)

or (space varying / time varying) and vice versa

2- change in the degrees of freedom of any energy field (Dof rearrangement between fields)
18. Wave-like properties of space fabric

Energy which varies in time and varies in space has wave-like properties as it changes at periodic rate that equals

\[\omega \text{ rad /sec} \quad (= \, 2\pi f) \] and the space varying energy, does vary at the rate of \(k \quad (= \, \frac{2\pi}{\lambda}) \), such that \(\frac{\omega}{k} \) = constant = \(c \)

In fact the quanton (or anti quanton) is represented by two (wave like) equations, while a true wave must possess four
degrees of energy freedom neither free dominated E_{qf} nor constrained dominated E_{qf} possess those four degrees of freedom individually, so we cannot call them waves, but as they expand they (and due to their interaction) they possess those four Dof’s to show how the wave equations would look like for the energy fields of the free and constrained wave-likes, first remembering that $\psi_{sf} = e^{j\alpha x}$, $\psi_{tc} = e^{-j\omega t}$, $\psi_{sc} = e^{-j\beta x}$, $\psi_{tf} = e^{j\omega t}$

the free energy dominated wave parameters

$\psi_{qf} = (\psi_{sf} \psi_{tc})$ differentiating both sides w.r.t time

$$\frac{\partial \psi_{af}}{\partial t} = \frac{\partial \psi_{tc}}{\partial t} \psi_{sf} = -j\omega \psi_{sf} \psi_{tc}$$

$$\frac{\partial^2 \psi_{af}}{\partial t^2} = \frac{\partial^2 \psi_{tc}}{\partial t^2} \psi_{sf} = j\omega^2 \psi_{sf} \psi_{tc}$$

while differentiating w.r.t (x)

$$\frac{\partial \psi_{af}}{\partial x} = \frac{\partial \psi_{sf}}{\partial x} \psi_{tc}$$

$$\frac{\partial^2 \psi_{af}}{\partial x^2} = \frac{\partial^2 \psi_{sf}}{\partial x^2} \psi_{tc} = jk^2 \psi_{sf} \psi_{tc}$$

Quanton based model of space fabric interactions
For a wave equation \[\frac{\partial^2 \psi_{af}}{\partial t^2} = c^2 \frac{\partial^2 \psi_{af}}{\partial x^2} \] to be satisfied

\[\frac{\partial^2 \psi_{tc}}{\partial t^2} = c^2 \left(\frac{\partial^2 \psi_{sf}}{\partial x^2} \frac{\psi_{tc}}{\psi_{sf}} \right) \quad \text{or} \quad (E_{qf})_{tt} = c^2 (E_{qf})_{xx} \quad \text{as before} \quad (1-18) \]

Which is the PDE forth free energy dominated wave

similarly, for the constrained energy dominated wave

\[\psi_{qc} = \left(\psi_{sc} \psi_{tf} \right) \quad \text{differentiating both sides w.r.t time} \]

\[\frac{\partial \psi_{qc}}{\partial t} = \frac{\partial \psi_{tf}}{\partial t} \psi_{sc} \]

\[\frac{\partial^2 \psi_{qc}}{\partial t^2} = \frac{\partial^2 \psi_{tf}}{\partial t^2} \psi_{sc} \quad \text{, while differentiating w.r.t } x \]

\[\frac{\partial \psi_{qc}}{\partial x} = \frac{\partial \psi_{sc}}{\partial x} \psi_{tf} \]

\[\frac{\partial^2 \psi_{qc}}{\partial x^2} = \frac{\partial^2 \psi_{sc}}{\partial x^2} \psi_{tf} \]

for a wave equation \[\frac{\partial^2 \psi_{qc}}{\partial t^2} = c^2 \frac{\partial^2 \psi_{qc}}{\partial x^2} \] to be satisfied

\[\frac{\partial^2 \psi_{tf}}{\partial t^2} = c^2 \left(\frac{\partial^2 \psi_{sc}}{\partial x^2} \frac{\psi_{tf}}{\psi_{sc}} \right) \quad \text{or} \quad (E_{qc})_{tt} = c^2 (E_{qc})_{xx} \quad (2-18) \]

Which is the PDE for the constrained energy dominated wave,
this shows how a quanton energy equation for space and time

varying functions would look like as a wave equation, but does the

quanton energy equation in its differential/integral form really

represent two wave equations?

a-For the free energy dominated term \(\frac{\partial E}{\partial s} \int E \, dt \)

Differentiating with respect to time \(\frac{\partial}{\partial t} \left(\frac{\partial E}{\partial s} \int E \, dt \right) = \)

\[
\left(\frac{\partial x}{\partial t} \frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial E}{\partial s} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right)
\]

\[
= \left(c \frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial E}{\partial s} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right)
\]

Differentiating again with respect to time

\[
\frac{\partial}{\partial t} \left(\left(c \frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial E}{\partial s} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) \right)
\]

\[
= \left(c \frac{\partial}{\partial x} \left(\frac{\partial^2 E}{\partial s \partial t} \right) \int E \, dt \right) + \left(c \frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \frac{\partial}{\partial t} \left(\int E \, dt \right) \right)
\]

\[
+ \left(\frac{\partial x}{\partial t} \frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) + \left(\frac{\partial E}{\partial s} \frac{\partial^2}{\partial t^2} \left(\int E \, dt \right) \right) = \]

\[
\left(c^2 \frac{\partial^2}{\partial x^2} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + 2 \left(c \frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) + \left(\frac{\partial E}{\partial s} \frac{\partial^2}{\partial t^2} \left(\int E \, dt \right) \right)
\]
For the same energy type differentiating with respect to \(x \)

\[
\frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \int E \, dt \right) = \left(\frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial E}{\partial s} \frac{1}{c} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right)
\]

\[
= \left(\frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial E}{\partial s} \frac{1}{c} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right)
\]

differentiating again with respect to \(x \)

\[
\frac{\partial}{\partial x} \left(\left(\frac{\partial}{\partial x} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial E}{\partial s} \frac{1}{c} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) \right)
\]

\[
= \left(\frac{\partial^2}{\partial x^2} \left(\frac{\partial E}{\partial s} \right) \int E \, dt \right) + \left(\frac{\partial^2}{\partial x \partial s} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) + \left(\frac{\partial^2}{\partial x^2} \frac{1}{c} \frac{\partial E}{\partial s} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) + \left(\frac{\partial^2}{\partial x^2} \frac{\partial E}{\partial s} \frac{1}{c} \frac{\partial}{\partial t^2} \left(\int E \, dt \right) \right) + \left(\frac{\partial^2}{\partial x \partial s} \frac{\partial E}{\partial s} \frac{1}{c} \frac{\partial}{\partial t} \left(\int E \, dt \right) \right) + \left(\frac{\partial^2}{\partial x \partial s} \frac{\partial^2}{\partial t^2} \left(\int E \, dt \right) \right)
\]

by comparing the results of both double differentiation

\[
\frac{\partial^2}{\partial t^2} \left(\frac{\partial E}{\partial s} \int E \, dt \right) = c^2 \frac{\partial^2}{\partial x^2} \left(\frac{\partial E}{\partial s} \int E \, dt \right)
\]

which is customary form of for a wave relation

b- For the constrained energy dominated wave
$$E_{qc} = \int E \ ds \ \frac{\partial E}{\partial t}, \text{ expanding in } x \text{ direction}$$

$$\frac{\partial}{\partial x} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) = \left(\frac{\partial}{\partial x} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) + \left(\int E \ ds \ \frac{1}{\partial x} \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right)$$

$$= \left(\frac{\partial}{\partial x} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) + \left(\frac{1}{c} \int E \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right)$$

Differentiating again with respect to x-axis

$$\frac{\partial}{\partial x} \left(\left(\frac{\partial}{\partial x} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) + \left(\frac{1}{c} \int E \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right) \right)$$

$$= \left(\frac{\partial^2}{\partial x^2} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) + \left(\frac{1}{c} \int E \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right) + \left(\frac{1}{c} \int E \ ds \ \frac{1}{\partial x} \frac{\partial^2}{\partial t^2} \left(\frac{\partial E}{\partial t} \right) \right)$$

$$= \left(\frac{\partial^2}{\partial x^2} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) + 2 \left(\frac{1}{c} \int E \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right) + \left(\frac{1}{c} \int E \ ds \ \frac{2}{\partial x} \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right)$$

when differentiating with respect to time

$$\frac{\partial}{\partial t} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) = \left(\frac{\partial}{\partial t} \left(\frac{\partial}{\partial x} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) \right) + \left(\int E \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right)$$

$$= \left(\frac{\partial}{\partial t} \left(\frac{\partial}{\partial x} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right) \right) + \left(\int E \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right)$$
Differentiating again with respect to time

\[
\frac{\partial}{\partial t} \left(c \frac{\partial}{\partial x} \left(\int E \, ds \right) \frac{\partial E}{\partial t} \right) + \left(\int E \, ds \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right)
\]

\[
= \left(c \frac{\partial x}{\partial t} \frac{\partial^2}{\partial x^2} \left(\int E \, ds \right) \frac{\partial E}{\partial t} \right) + \left(c \frac{\partial}{\partial x} \left(\int E \, ds \right) \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right) + \left(\int E \, ds \frac{\partial^2}{\partial t^2} \left(\frac{\partial E}{\partial t} \right) \right)
\]

by comparing the results of both double differentiations

\[
\frac{\partial^2}{\partial t^2} \left(\int E \, ds \frac{\partial E}{\partial t} \right) = c^2 \frac{\partial^2}{\partial x^2} \left(\int E \, ds \frac{\partial E}{\partial t} \right)
\]

again, which is the usual form of the wave equation

19. quanton evolution and degrees of freedom

In this section the quanton evolution will be discussed and

before free/ constrained energy field interaction, the quanton (or anti quanton) achieves partial Dof stability and after free/

constrained energy interaction the quanton achieves the stable state (w.r.t) energy degrees of freedom of space and time varying
fields which will be discussed in detail in the (section : the quanton stable Dof’s)

a-Quantons evolution

1-through energy constraining, the free energy \(E_{sf} \) is capable of generating both types of constrained energy \(E_{sc}, E_{tc} \)

but only after being constrained inside the quanton

2-as the quantons evolved from mainly free space varying energy \(E_{sf} \), there are two mechanisms for such an evolution

a-Independent of free time varying energy

b-coevolution of both \(E_{sf} \) and \(E_{tf} \), which is discussed in the section : role of Maxwell equations in the evolution of quantons

3-For (case (a)) As free energy expands by variation in space

It has to have a time varying field, a constrained one

\[
a - \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) = \left(\frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) \right) \left(\int \left(\frac{\partial E}{\partial s} \right) \, ds \right) = \left(\frac{\partial E}{\partial s} \right) \left(E_s \, E_t \right) \quad (1-19)
\]
Knowing that \(E = E_s E_t \), expanding again in space

\[
b - \frac{\partial}{\partial s} \left(\left(\frac{\partial E}{\partial s} \right) (E_s E_t) \right) = \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) \int (E) \ dt = \left(\frac{\partial E}{\partial s} \right) (\int E \ dt) \]

(2-19)

expanding again in space \(\frac{\partial}{\partial s} \left(\int E \ dt \right) = \)

\[
\left(\frac{\partial}{\partial s} \right) \left(\int E \ dt \right) \left(\frac{\partial E}{\partial s} \right) \left(\int E \ dt \right) = \left(\frac{\partial E_s}{\partial s} \right) \int E_t \ dt \right)(E_s E_t) \]

(3-19)

which is unstable energy (due to the term \(E_s E_t \)), as it expands again, following the differentiation of two variables as mentioned

before \(\frac{\partial}{\partial s} \left(\left(\frac{\partial E}{\partial s} \right) (E_s E_t) \right) = \)

\[
\left(\frac{\partial}{\partial s} \right) \left(\int E \ dt \right) \left(\frac{\partial E}{\partial s} \right) \left(\int E \ dt \right) + \left(\int \left(\frac{\partial E}{\partial s} \right) \left(\frac{\partial E}{\partial t} \right) \left(\int E \ dt \right) \right) \left(\frac{\partial}{\partial s} \right) \left(\int E \ dt \right) = \]

\[
= \left(\frac{\partial E}{\partial s} \right) \int E \ dt \left(\int E \ ds \left(\frac{\partial}{\partial t} \right) \right) \left(\frac{\partial E}{\partial s} \right) \left(\int E \ dt \right) \]

(4-19)

The first term is the quanton energy equation (energy expansion term), while the second represents the original unstable energy (constraining term), the ratio between the two terms is three : one, so this is a recursive energy relation that would
continue until exhausting this type of unstable energy:

\[
\left(\frac{\partial E}{\partial s} \int E \, dt \right)(E_s E_t)
\]

now the stable quanton energy equation becomes

\[
E_q = \left(\frac{\partial E}{\partial s} \int E \, dt \right) \left(\int E \, ds \frac{\partial E}{\partial t} \right) = (E_{sf} E_{tc})(E_{sc} E_{tf}) = E_{qf} E_{qc}
\]

(5-19)

which expresses two apparently separate (but otherwise linked) wave-like equations, \(E_q \) can be put as

\[
E_q = \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) \left(\int E \, ds \int E \, dt \right)
\]

The term \(\left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) \) expresses free energy fields.

The term \(\left(\int E \, ds \int E \, dt \right) \) expresses constrained energy fields.

4-for space constrained energy field \(E_{sc} \), its energy DoF equals one third of the corresponding free energy field \(E_{sf} \).

5-for free time varying energy field \(E_{tf} \), its energy degree of freedom equals one third of the corresponding time constrained...
energy field E_{tc}

6-the number of Free (nonbinding) energy degrees of freedom inside quaton is equivalent to the number of free energy degrees of freedom (space plus time varying) minus the energy constrained degrees of freedom (space and time varying)

7- Free (nonbinding) energy is manifested in the form of quanton inflation, the previous discussion can be summarized in the following 4 simultaneous equations by solving them we obtain the quanton transitional Dof for the four energy fields

$$\text{Dof}_{sf} = 3 \text{Dof}_{sc}$$ \hspace{1cm} $$\text{Dof}_{tc} = 3 \text{Dof}_{tf}$$

$$\text{Dof}_{sf} + \text{Dof}_{sc} = 3$$ \hspace{1cm} $$\text{Dof}_{tf} + \text{Dof}_{tc} = 1$$

which gives the following results

$$\text{Dof}_{sf} = 2.25$$ \hspace{1cm} $$\text{Dof}_{sc} = 0.75$$

$$\text{Dof}_{tf} = 0.25$$ \hspace{1cm} $$\text{Dof}_{tc} = 0.75$$
Fig(4). Tree diagram for the evolution and the degrees of freedom of quanton energy fields (a slightly modified version will be offered in the section Maxwell roll in the evolution of quantons)

8- as free and constrained energy fields create corresponding field binding interaction inside the quanton, the result of such this interaction would be a rearrangement of the degrees of freedom in such a way that maximizes its stability this can be ensured by creating a symmetry of free and constrained degrees of freedom (discussed in the section: quanton stable Dof)
the stable energy Dof (after rearrangement)

\[
D_{sf} = 2, \quad D_{tf} = 0.5
\]

\[
D_{sc} = 1, \quad D_{tc} = 0.5
\]

9-for the quanton system despite having an constrained energy fields, it is dominated by the free energy field of the form \(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \) since this energy term represents 2.5 degrees of freedom while the constrained type \(\int E \ ds \int E \ dt \) constitutes 1.5 degrees of freedom of energy out of four

\[
D_{sfn} D_{tn} \ (\text{nonbinding})(\text{in magnitude}) = \frac{(D_{sf} D_{tf})}{(D_{sc} D_{tc})} = \frac{c^2 e^{0.5}}{c e^{0.5}} = c \quad (6-19)
\]

Net (nonbinding) free Dof = \(\sum(\text{free Dof}) - \sum(\text{constrained Dof}) = \)

\[
= (D_{sf}) + (D_{tf}) - (D_{sc}) - (D_{tc}) = (2.5-1.5) = +1
\]

10-for the quanton case the free energies \(E_{sf} E_{tf} \) are said to have inflationary properties while constrained energies \(E_{sc} E_{tc} \) are said to be inertial in nature (since they resist inflationary effects
20. Anti quanton evolution and its degrees of freedom

The anti quanton had evolved from free time varying energy \((E_{tf}) \),

which was in part constrained in space and gave rise to the

constrained energy of the type \(\int E \ ds \)

1-as the time varying energy expands in space, a part of it had to

be constrained in the form of space varying energy field

\[
a - \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \frac{\partial}{\partial t} \left(\int \frac{\partial E}{\partial t} \ dt \right) = \left(\frac{\partial E}{\partial t} \right) (E_s E_t) \quad (1-20)
\]

Expanding w.r.t time

\[
b - \frac{\partial}{\partial t} \left(\left(\frac{\partial E}{\partial t} \right) (E_s E_t) \right) = \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \int (E) \ ds = \left(\frac{\partial E}{\partial t} \right) \int E \ ds \quad (2-20)
\]

Expanding further, a part of this energy had to be constrained by

variation in time while the space constrained field has to expand,

thus \(\int (\int E \ ds \frac{\partial E}{\partial t}) \ ds = \)

\[
(\int (\int E \ ds \frac{\partial E}{\partial t}) \ dt) \left(\frac{\partial E}{\partial t} \right) dt = \left(\int E \ ds \frac{\partial E}{\partial t} \right) (E_s E_t) \quad (3-20)
\]

then expanding again \(\int (\int E \ ds \frac{\partial E}{\partial t}) (E_s E_t) \) \ ds =
\[
\left(\int (E \ ds) \ ds \ \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \right) \frac{\partial}{\partial s} (E) \ \int (E) \ dt \\
+ \left(\frac{\partial}{\partial s} \left(\int E \ ds \right) \ \int \left(\frac{\partial E}{\partial t} \right) \ dt \right) \left(\int (E) \ ds \ \frac{\partial}{\partial t} (E) \right) = \\
\left(\int E_s \ ds \ \frac{\partial E}{\partial t} \right) \left(\frac{\partial E}{\partial s} \ \int E_t \ dt \right) + \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) (E_s E_t) \\
\right) \\
(4-20)
\]

The first term is the anti quanton energy equation while the second term is the original unstable energy, this is a recursive relationship that will continue until the exhausting of the unstable energy term.

For the energy degrees of freedom inside anti quanton

4 simultaneous equations for four energy fields are

\[\text{Dof}_{sc} = 3 \ \text{Dof}_{sf} \ , \quad \text{Dof}_{tf} = 3 \ \text{Dof}_{tc} \]

\[\text{Dof}_{sf} + \text{Dof}_{sc} = 3 \ , \quad \text{Dof}_{tf} + \text{Dof}_{tc} = 1 \]

By solving we get

\[\text{Dof}_{sc} = 2.25 \ , \quad \text{Dof}_{sf} = 0.75 \]

\[\text{Dof}_{tf} = 0.75 \ , \quad \text{Dof}_{tc} = 0.25 \]

Quanton based model of space fabric interactions
as free and constrained energies inside the anti quanton create energy fields create binding interaction, a rearrangement of the Dof’s in such a way that would ensure stability of this interaction by creating a symmetry between free and constrained space and time varying energy fields, the stable anti quanton Dof’s are

\[
\text{Dof}_{sc} = 2.0, \quad \text{Dof}_{sf} = 1.0
\]

\[
\text{Dof}_{tf} = 0.50, \quad \text{Dof}_{tc} = 0.50
\]
5-the dominant energy of the anti quanton system is constrained

\[D_{net} \text{ (nonbinding) (in magnitude) } = \frac{\text{constrained energy components}}{\text{free energy components}} \]

\[D_{scn} \quad D_{tcn} \text{ (nonbinding) (in magnitude) } = \frac{(D_{tc}D_{sc})}{(D_{sf}D_{tf})} = \frac{c^2 c^{0.5}}{c^{0.5}} = c \]

(nonbinding) constrained \(Dof = (\sum \text{(constrained Dof)} \)

\[- \sum \text{(free Dof)} = (Dof_{sc}) + (Dof_{tc}) - (Dof_{sf}) - (Dof_{tf}) \]

= (2.5-1.5) = +1

6-for the anti quanton the constrained energies \((E_{sc} \quad E_{tc}) \) are said to have inflationary properties while free energies \((E_{sf} \quad E_{tf}) \) are said to be inertial in nature, which is the opposite to the case of the quanton

So the inflationary, and inertial nature of the energy fields is subject to the parent structure which they exist in and which energy type is the dominant one

the anti quanton is a stable part of the space fabric with a ratio of 25% (as it is originated from the expansion of the free
time varying energy \((E_{tf}) \), and this conclusion is based on the following points which we will discuss later

1- its role in the electromagnetic wave generation

(will be discussed in electromagnetic section)

2- its role in the formation of the negatively charged particles

(electrons, down quarks)

3- anti quanton is stable under expansion conditions

(no degeneration)

4- the interactions generated by anti quanton energy fields are symmetric to those of the quanton, hence, it can not affect the space fabric homogeneity and integrity
21. Variation of quanton energy fields with time

Not only the nonbinding energy field $E_{sf n} E_{snf}$ of the quanton
(or $E_{scn} E_{scn}$ for anti quanton) which change with time as the quanton (or anti quanton) expands, but rather all the other energy fields, and this is so, to ensure the dimensional energy symmetry with respect to all axes.

a- Variation of space varying energy with time

$$\frac{\partial E_{sf}}{\partial t} = \frac{\partial E_{sf}}{\partial x} \frac{\partial x}{\partial t} = c \frac{\partial E_{sf}}{\partial x}$$

$$\frac{\partial E_{sf}}{\partial x} = j k E_{sf}$$

$$\frac{\partial E_{sf}}{\partial t} = j k c E_{sf}$$

b- Variation time varying energy field with time

$$\frac{\partial E_{tf}}{\partial t} = j w E_{tf}$$

c- Relative rate of Variation between different energy fields

$$\frac{\partial E_{sf}}{\partial E_{sf}} = \frac{\partial E_{sf}}{\partial t} \frac{1}{\frac{\partial E_{sf}}{\partial t}} = (j k c E_{sf}) \left(\frac{1}{j w E_{tf}} \right) = \frac{E_{sf}}{E_{tf}} = \frac{D_{sf}}{D_{tf}}$$

(1-21)
and this means that the rate of change between any two energy fields is constant with time and equals the ratio between their degrees of freedom and this is due to dimensional energy symmetry inside the quanton.

22. Why quanton does not achieve equilibrium

an alternative method of expressing dimensional energy symmetry

Is to look at the relative parameter variation between energy fields, for wave behaviour terms

\[
\frac{\partial \psi_{tf}}{\partial \psi_{sf}} = \left(\frac{\partial \psi_{tf}}{\partial t} \right) \left(\frac{1}{\partial x} \right) \left(\frac{1}{\partial \psi_{sf}} \right) \quad (1-22)
\]

given that \(\psi_{tf} = e^{j\omega t} \), \(\frac{\partial \psi_{tf}}{\partial t} = j\omega \psi_{tf} \)

\(\psi_{sf} = e^{jk(x+y+z)} \), \(\frac{\partial \psi_{sf}}{\partial x} = jk \psi_{sf} \)

\[
\frac{\partial \psi_{tf}}{\partial \psi_{sf}} = \frac{1}{\frac{\omega}{c}} = \frac{\omega}{c} = \text{constant} \quad (2-22)
\]

While from before \(\frac{\partial E_{tf}}{\partial t} = j\omega E_{tf} \), \(\frac{\partial E_{sf}}{\partial x} = jk E_{sf} \)

Quanton based model of space fabric interactions
\[
\frac{\partial E_{tf}}{\partial E_{sf}} = \frac{1}{c} \omega \frac{E_{sf}}{E_{fs}} = \frac{E_{tf}}{E_{sf}} = \frac{D_{tf}}{D_{sf}},
\]
which means that (3-22)

1-the rate of variation of energy fields wave parameters with respect to each other = 1 = constant (same rate of variation for all energy fields)

2-relative rate of variation of energy fields is equal to the ratio between their degrees of freedom

The action of the dimensional energy symmetry is to try to rearrange the quanton Dof to satisfy the condition of the stability of field interactions such that

\[
D_{of_{tf}} = D_{of_{tc}} = 0.5
\]

\[
D_{of_{sf}} = D_{of_{sc}} = 1.5, \quad D_{of_{sf}} D_{of_{tf}} = D_{of_{sc}} D_{of_{tc}} = 2
\]

Under such conditions the quanton is in equilibrium, no nonbinding energies to cause inflation or splitting,

But this will not happen since the energy constraining mechanism manages only 25% of the quanton energy, while the remaining
75% of the quanton’s energy is involved in the expansion process.

to achieve actual equilibrium the constraining term must deal with

50 % or of the quanton total energy, which is only possible in

2 D space and (DES) has to work within the limits of inflationary scenario in 3 dimensional space

once the quanton achieves the stable form \(E_q = E_{sf} E_{tf} E_{sc} E_{tc} \)

There is no way of interchange of degrees of freedom between Free and constrained energies

Instead, a rearrangement happens due to field interaction between free and constrained energies which must reflect the symmetry between bound free and constrained energy fields

23. Energy field parameters

while the energy degrees of freedom of the quanton \(E_q \) are in terms of the wave parameters (\(k, \omega, r_q \)), the energy degrees of
freedom for the energy fields are in terms of the constant \((c) \)

as pointed out earlier, this is because the constant \((c) \) is what determines the relationship between variation of energy in time and in space

The relationship between energy wave/packet behaviours can be summarized as follows

1 – quanton wave-like behaviour is a reflection of the periodic behaviour of energy packet inside the quanton (variation in position and orientation)

2-Energy packet expresses its energy in the form of energy Fields and which symmetric in space and in time

3-this symmetry of packet energy expression reflects a deeper symmetry within the packet itself, which can be regarded as composed of spatial and temporal parts
as energy expands in the form of energy fields,

In three dimensional space, the instantaneous field energy can be expressed as

packet energy $E_p = E_q \times quanton\ \text{volume} = E_p = \int E_q\ \text{d}v$

And given minuscule volume of the quanton which allows us to assume energy density uniformity inside the quanton

$$E_q = \frac{E_p}{V_q} \quad (V_q = \frac{4}{3} \pi r_q^3),$$

the relationship between (λ) and r_q (and subsequently V_q) is dependent on the nature of the quanton wave-like

the proposed model for such a wave suggests a relationship of the type

$$r_q = \frac{\pi}{k}$$

$$V_q = \frac{4}{3} \pi (r_q)^3 = \frac{4}{3} \pi \left(\frac{\pi}{k}\right)^3 = \frac{4 \pi^4}{3 (k)^3}$$

$$E_q = \frac{E_p}{V_q} = \frac{\hbar \omega}{2\pi} \frac{1}{\frac{4\pi}{3} \pi r_q^3} = \frac{3}{8\pi^2} \frac{\hbar \omega}{r_q^3}$$
\[
\frac{\pi^2}{r_q^3} = k^3 = \frac{\omega^3}{c^3}, \text{ then } \frac{E_q}{\omega^4} = \frac{3\,h}{8\,\pi^5\,c^3} \omega^4 \text{ alternatively, } (1-23)
\]

\[
\frac{E_q}{\omega^4} = \frac{3\,h}{8\,\pi^5\,c^3} = \text{constant, }
\]

\[
E_q = h_q \omega^4 = \text{constant} \times \omega^4 \quad (2-23)
\]

While in terms of the wave parameter \((k)\), the quanton energy density takes the form

\[
E_q = \left(\frac{3\,h}{8\,\pi^5\,c^3}\right) k^4 \, c^4 = \text{constant} \times k^4 \, c^4 \quad (3-23)
\]

ie, energy as it expands by variation in space and time, has four degrees of freedom, which can be used to define the various energy fields

\[
E_q = \frac{3\,h}{8\,\pi^5\,c^3} k^4 \, c^4 = \text{constant} \times \left(\frac{\pi}{\lambda}\right)^4 \, c^4 = \frac{\text{constant}}{4\,D\,\text{volume}} \times c^4 \quad (4-23)
\]

This relationship does not only expresses a volumetric relationship of energy density as it expands into a 4 D volume, but it expresses an energy density – degree of freedom relationship as it is in terms of the wave parameters \((k, \omega, \frac{1}{r_q})\)
the energy degrees of freedom which can be put as

\[D_q = c^4 = D_{sf} D_{sc} D_{tf} D_{tc} \]

where \(D_{sf} = c^{D_{of_{sf}}} \), \(D_{sc} = c^{D_{of_{sc}}} \)

\[D_{tf} = c^{D_{of_{tf}}} \], \(D_{tc} = c^{D_{of_{tc}}} \)

also, the quantity \(K_q^4 = \left(\frac{3h}{8 \pi^5 c^3} k^4 \right) \) where

\[E_q = \frac{3h}{8 \pi^5 c^3} k^4 c^4 = K_q^4 c^4 \]

can be put as \(K_q^4 = h_q k^4 = K_{sf} K_{sc} K_{tf} K_{tc} \) : energy field intensity parameters,

where \(K_{sf} = K_q = \sqrt[4]{\frac{3h}{8 \pi^5 c^3}} k \)

\[K_{sc} = K_q = \sqrt[4]{\frac{3h}{8 \pi^5 c^3}} k \), \(K_{tf} = K_{tc} = K_q = \sqrt[4]{\left(\frac{3h}{8 \pi^5 c^3} \right) \omega c} \)

it must be noted that while \(\frac{E_q}{\omega^4} = \left(\frac{3h}{8 \pi^5 c^3} \right) = h_q = \text{constant} \),

however, \(\sqrt[4]{\frac{E_q}{\omega^4}} \neq \text{constant} \), and \(\sqrt[4]{\frac{E_q}{k^4}} \neq \text{constant} \)
the division of the field intensity parameter does not follow the
energy degree of freedom but follows the division of energy types
(free dominated and constrained dominated types) otherwise the

Energy fields \(E_{sf} \), \(E_{tc} \) or \(E_{sc} \), \(E_{tf} \) could exist independently

one can be drawn to think that the division of \(K_q^4 \) between

various energy fields such that \(K_{sf} = K_{q}^{Dof_{sf}} = K_q^2 \), or

\(K_{tf} = K_{q}^{Dof_{tf}} \), but since there are no wave parameters in nature of

The type \(k^2 \) or \(\omega^{0.5} \) due to the symmetry of the wave behavior

Which is previously defined as \(\frac{\partial \psi_{tf}}{\partial \psi_{sf}} = \frac{1}{c} \frac{\omega}{k} = 1 = \text{constant} \)

and \(\frac{\partial E_{tf}}{\partial E_{sf}} = \frac{1}{c} \frac{\omega}{k} \frac{E_{tf}}{E_{sf}} = \frac{E_{tf}}{E_{sf}} \frac{D_{tf}}{D_{sf}} \)

Which leads to the result that \(K_{sf} = K_{sc} = K_{tf} = K_{tc} = K_q \)

Finally, we can write the energy fields themselves as

\[
E_{sf} = E_{sfo} \psi_{sf} = K_q D_{q}^{Dof_{sf}} \psi_{sf} = \frac{4}{\sqrt{\frac{3}{8} \pi^5 c^3}} k e^2 \psi_{sf} = \frac{4}{\sqrt{\frac{3}{8} \pi^3 c^3 r_q}} \psi_{sf}
\]

\[(5-23) \]
\begin{align}
E_{sc} &= E_{sco} \psi_{sc} = K_q D_q^{Dof_{sc}} \psi_{sc} = \sqrt[4]{\frac{3 \hbar}{8 \pi^5 c^3}} k_c \psi_{sc} = \sqrt[4]{\frac{3 \hbar}{8 \pi^5 c^3}} \frac{c}{r_q} \psi_{sf} \\
E_{tf} &= E_{tfo} \psi_{tf} = K_q D_q^{Dof_{tf}} \psi_{tf} = \sqrt[4]{\frac{3 \hbar}{8 \pi^5 c^3}} \frac{\omega}{c} \sqrt{c} \psi_{tf} = \sqrt[4]{\frac{3 \hbar}{8 \pi^5 c^3}} \frac{\sqrt{c}}{r_q} \psi_{tf} \\
E_{tc} &= E_{tco} \psi_{sc} = K_q D_q^{Dof_{tc}} \psi_{tc} = \sqrt[4]{\frac{3 \hbar}{8 \pi^5 c^3}} \frac{\omega}{c} \sqrt{c} \psi_{tc} = \sqrt[4]{\frac{3 \hbar}{8 \pi^5 c^3}} \frac{\sqrt{c}}{r_q} \psi_{tc} \\
\frac{E_{tc}}{E_{sf}} &= \frac{K_q D_q^{Dof_{tc}} \psi_{tc}}{K_q D_q^{Dof_{sf}} \psi_{sf}} = \frac{D_q^{Dof_{tc}} \psi_{tc}}{D_q^{Dof_{sf}} \psi_{sf}} = c^{1.5} \frac{\psi_{tc}}{\psi_{sf}}
\end{align}

So, through a constant value \(K_q \) for all energy fields which ensures that the relationship between the magnitudes of different fields depends only on the degrees of freedom of such fields and not on the intensity of such fields in general a field energy can be seen as the product of two terms field energy = field intensity (defined in terms of \(K_q \) and wave parameters) * field strength (\(D_q \) expressed in terms of energy degrees of freedom)
24. Dimensions of vector energy fields

While being a scalar quantity, energy as it expands in space, it becomes a vector quantity

individual energy field densities for each component in the form

\[
\left(\frac{\text{energy}}{\text{volume}} \right)
\]
do not exist, and that is due to the fact that quanton energy fields are inextricably linked to the quanton volume in a dependence relationship, that does not make it possible to determine the individual energy field densities inside the quanton and so, the energy fields must be defined in terms of the quanton dimensions, in addition to energy dimensions and degrees of freedom for each energy field

the quanton radius \(r_q \) and, its volume \(V_q \) are not constant but rather inversely proportional to its packet energy content, and consequently its energy fields

\[
V_q = \text{fn}(r_q^3) = \text{fn}(\lambda^3) = \text{fn}\left(\frac{1}{\omega^3}\right)
\]
and \(E_q = E_{sf} E_{sc} E_{tf} E_{tc} = \left(\frac{3 \hbar}{8 \pi^2 c^3}\right) \omega^4 = \text{constant} * \omega^4 \)

hence \(V_q = \text{fn} \left(\frac{\omega}{E_{sf} E_{sc} E_{tf} E_{tc}} \right) \) ie quanton volume is dependent on the product of four energy field densities

product of individual energy field densities of the form

\[E_{sf} = \frac{\text{dof} \sqrt{E_p}}{V_q} \] does not represent quanton energy density \(E_q \), since, under such form \(E_q \) would be equal to \(\frac{E_p}{(V_q)^4} \)

while if we consider the total energy density \(E_q \) to be the summation of four energy field densities, this would be a contradiction with the definition proposed for of the total energy density to be the product of energy field densities, the only remaining alternative is to define the individual energy fields in terms of parameters (or alternatively quanton dimensions under such conditions fractional dimensions of individual energy

Quanton based model of space fabric interactions
fields are expected as follows

\[(E_{sf}) = \left[\frac{4}{(\frac{3h}{8\pi^5c^3}) k c^2 \psi_{sf}} \right] \]

\[[E_{sf}] = M^{2.5} L^{5.75-1+2} T^{-2.5+0.75-2} = M^{2.5} L^{0.75} T^{-1.5} \quad (10-23) \]

\[[E_{sc}] = \left[\frac{4}{(\frac{3h}{8\pi^5c^3}) k c} \psi_{sc} \right] = M^{2.5} L^{-0.25} T^{-0.5} \quad , \quad (11-23) \]

\[[E_{tf}] = [E_{tf}] = \left[\frac{4}{(\frac{3h}{8\pi^5c^3}) \frac{w}{c} \sqrt{c}} \psi_{tc} \right] = M^{2.5} L^{0.75} T^{0.00} \quad (12-23) \]

25. relative field variation with time

The idea of exponential degrees of freedom had been discussed previously, and it had been stressed that those energy degree of freedom in terms of the constant (c) is mechanism of the division of energy between various fields and not related directly to actual energy levels while the energy degree of freedom is the mechanism the division of energy density between the space and time varying energy fields, so as to maintain a constant ratio between them, it does not determine the percentage share of
each energy field with respect to the total quanton energy

for space varying energies value (in magnitude)

\[E_s = E_{sf}E_{sc} = (K_q\ c^2)(K_q\ c) = K_q^2\ c^3 = \left(\frac{3h}{8\pi^5}\right) k^2 \]

for time varying energies

\[E_t = E_{tf}E_{tc} = (K_q\ c^{0.5})(K_q\ c^{0.5}) = K_q^2\ c = \left(\frac{3h}{8\pi^5}\right) k^2 \]

While the relative ratio between space and time varying energies

\[\frac{E_{sf}E_{sc}}{E_{tf}E_{tc}} = \text{constant} = c^2 \], the percentage distribution of the space and time energies does vary as the wave parameters change

very high values of \((k, \omega)\) (corresponding to primordial time)

the percentage share of the time varying energies was very high as the universe expands, this percentage drops while the percentage of the space varying energies increases comparatively

Quanton based model of space fabric interactions
26. Directional sub-components

1-as free and constrained dominated energy fields vary in space and time, they generate free and constrained energy dominated wave-likes $E_{qf} = E_{sj}E_{tc}$, $E_{qc} = E_{sc}E_{tf}$ respectively.

2- the quanton wave vector instead of representing a traveling Wave along a certain direction (along x-axis for example) as it is the case of electromagnetic waves, here in the case of quanton, it represents variation of energy in space and time, as the energy fields are contained inside the quanton.

3- energy varies in space (along x-axis for example) and in time at the rate of $\omega = \frac{2\pi}{T}$, while variation of energy in space (along the quanton’s diameter) where $k = \frac{\pi}{r_q}$.

4-the quanton energy field is orthogonal to its wave vector (it is two dimensional, for example: in the (y-z) Plane as packets spin...
around the quanton while varying in magnitude along x-direction (quaton diameter)

5- quanton energy fields must be symmetrically expressed in three dimensional space, under this condition of dimensional energy symmetry, it is suggested that there are in fact three directional orthogonal (free energy dominated E_{qf}) waves and three orthogonal directional (constrained energy dominated E_{qc}) waves in (x, y, z) directions and not just one wave of each type

(since one three dimensional wave of each type will not satisfy the dimensional energy symmetry)

the free energy dominated wave which varies along x axis is

represented by $E_{qf}(x) = E_{qfo}(x) e^{i\left(\frac{nx}{r_q} - \omega t\right)} = \frac{E_{qfo} e^{i\left(\frac{nx}{r_q} - \omega t\right)}}{\sqrt{3}}$ (1-26)

where $E_{qfo} = \sqrt{(E_{qfo}(x))^2 + (E_{qfo}(y))^2 + (E_{qfo}(z))^2}$ (2-26)
\(E_{qf}(x) \) represents variation of free dominated energy orthogonal to the travel direction of the wave (in the y-z plane), which represents variation of energy in space and time \(k_x x = \frac{\pi x}{r_q} \), the variation of field along x-axis and the subsequent variation of the orthogonal field in the (y-z plane) representing \(E_{qf}(x) \).

Define the directional sub components for the wave \(E_{qf}(x) \) which are equivalent to the vector length in each direction

\[
E_{qf}(x) = E_{sfyz} \ E_{tc} \text{ (sub component energies in y,z plane while propagating along x-direction)}
\]

\[
E_{sfy}(x) \ E_{tc} = \frac{(K_q D_{sf})(K_q D_{tc})}{\sqrt{2} \sqrt{3}} e^{j\left(\frac{\pi x}{r_q}\right)} \sin (-\omega t) \quad (3-26)
\]

\[
E_{sfz}(x) \ E_{tc} = \frac{(K_q D_{sf})(K_q D_{tc})}{\sqrt{2} \sqrt{3}} e^{j\left(\frac{\pi x}{r_q}\right)} \cos (-\omega t) \ , \quad (4-26)
\]

\[
E_{sfyz} (x) = \sqrt{E_{sfy}^2 (x) + E_{sfz}^2 (x)} \quad (5-26)
\]

\[
E_{qf}(x) = E_{qfo}(x) e^{j\left(\frac{\pi x}{r_q}\right)} e^{-j \omega t} = \frac{(K_q D_{sf})(K_q D_{tc})}{\sqrt{3}} e^{j\left(\frac{\pi x}{r_q}\right)-\omega t} \quad (6-26)
\]
where $\Phi = \omega t$, the variation of the field in the $(y-z)$ plane can be seen as the source of the time varying behaviour.

The variation of energy in space is linked to variation of energy in time by the relations $k_x = \frac{2 \pi}{\lambda} = \frac{\pi}{r_q}$, $\omega = \frac{2 \pi}{T}$, $k_x \lambda = 2 \pi = \omega T$,

$$\frac{\omega}{k_x} = \frac{\lambda}{T} = c \quad , \quad \lambda = 2 r_q$$

as this wave like is stationary, it has no kinetic degrees of freedom since when viewed from the point of reference (chosen to be the centre of the quanton),

the sub components for the free space varying energy fields

$$E_{sfx} = E_{sfx}(y) + E_{sfx}(z) \quad , \quad E_{sfy} = E_{sfy}(x) + E_{sfy}(z) \quad (7,8-26)$$

$$E_{sfz} = E_{sfz}(x) + E_{sfz}(y) \quad , \quad E_{sf} = \sqrt{E_{sfx}^2 + E_{sfy}^2 + E_{sfz}^2} \quad (9,10-26)$$

$$E_{tc} = K_{tc} D_{tc} = K_q D_{tc} \quad (11-26)$$

$$E_{qf}(x) = E_{qfo}(x) e^{j\frac{\pi x}{r_q}} e^{-j\omega t} = \frac{K_q^2 D_{sf} D_{tc}}{\sqrt{3}} e^{j\frac{\pi x}{r_q - \omega t}} \quad (12-26)$$

Quanton based model of space fabric interactions
and along the y direction

\[E_{qf}(y) = E_{qfo}(y) e^{j\left(\frac{ny}{r_q}\right) - \omega t} = \frac{1}{\sqrt{3}} (K_q^2 D_{sf} D_{tc}) e^{j\left(\frac{ny}{r_q}\right) - \omega t} \]

And along the z direction

\[E_{qf}(z) = E_{qfo}(z) e^{j\left(\frac{nz}{r_q}\right) - \omega t} = \frac{1}{\sqrt{3}} (K_q^2 D_{sf} D_{tc}) e^{j\left(\frac{nz}{r_q}\right) - \omega t} \]

\[E_{qfo} = \sqrt{E_{qfo}(x)^2 + E_{qfo}(y)^2 + E_{qfo}(z)^2} = K_q^2 D_q^{2.5} \]

\[= \frac{2}{\sqrt{3}} \left(\frac{3 h}{8 \pi^5 c^3}\right) k^2 c^{2.5} = \frac{2}{\sqrt{3}} \left(\frac{3 h}{8 \pi^5 c^3}\right) c^{2.5} \frac{c^2}{r_q^2} \]

(13-26)

for the constrained energy dominated waves, we can follow the similar approach to determine their sub components

\[E_{qc}(x) = E_{qco}(x) e^{-j\left(\frac{nx}{r_q}\right) - \omega t} = \frac{(K_q D_{sc})(K_q D_{tf})}{\sqrt{3}} e^{-j\left(\frac{nx}{r_q}\right) - \omega t} \]

(14-26)

\[E_{qc}(x) = E_{scyz}(x) E_{tf} \]

(15-26)

\[E_{sCy}(x) E_{tf} = \frac{(K_q D_{sc})(K_q D_{tf})}{\sqrt{2} \sqrt{3}} e^{-j\left(\frac{nx}{r_q}\right)} \sin(\omega t) \]

(16-26)
\[E_{scz}(x) E_{tf} = \frac{(K_q D_{sc}) (K_q D_{tf})}{\sqrt{2} \sqrt{3}} e^{-j\left(\frac{nx}{r_q}\right)} \cos(\omega t), \quad (17-26) \]

\[E_{scyz}(x) = \sqrt{E_{scy}(x)^2 + E_{scz}(x)^2} \quad (18-26) \]

\[E_{sc} = \sqrt{E_{sc}(x)^2 + E_{sc}(y)^2 + E_{sc}(z)^2} = K_q D_{sc} \quad (19-26) \]

\[E_{scx} = E_{scx}(y) + E_{scx}(z), \quad E_{scy} = E_{scy}(x) + E_{scy}(z) \quad (20, 21-26) \]

\[E_{scz} = E_{scz}(x) + E_{scz}(y), \quad E_{tf} = K_{tf} D_{tf} = K_q D_{tf} \quad (21, 22-26) \]

\[E_{qc}(x) = E_{qco}(x) e^{-j\left(\frac{nx}{r_q}\right) - \omega t} = \frac{K_q^2 D_{sc} D_{tf}}{\sqrt{3}} e^{-j\left(\frac{nx}{r_q}\right)} e^{-j\left(\frac{ny}{r_q}\right) - \omega t} \quad (23-26) \]

and along the y direction

\[E_{qc}(y) = E_{qco}(y) e^{-j\left(\frac{ny}{r_q}\right) - \omega t} = \frac{1}{\sqrt{3}} \left(K_q^2 D_{sc} D_{tf} \right) e^{-j\left(\frac{ny}{r_q}\right) - \omega t} \]

And along the z direction

\[E_{qc}(z) = E_{qco}(z) e^{-j\left(\frac{nz}{r_q}\right) - \omega t} = \frac{1}{\sqrt{3}} \left(K_q^2 D_{sc} D_{tf} \right) e^{-j\left(\frac{nz}{r_q}\right) - \omega t} \]

\[E_{qco} = \sqrt{E_{qco}(x)^2 + E_{qco}(y)^2 + E_{qco}(z)^2} = K_q^2 D_{sc} D_{tf} \quad (24-26) \]

\[= \frac{2}{\sqrt{8 \pi^5 c^3}} k^2 c^{1.5} = \frac{2}{\sqrt{8 \pi^5 c^3}} \frac{c^{1.5}}{r_q^2} \]

Quanton based model of space fabric interactions
to note that 1-each free / constrained directional wave pair

behaves as sub quanton with Dof= 4 , while the overall quanton

energy content follows the square root rule of the three pairs

26.b. why quanton waves do not leave the quanton?

1-Free and constrained energy dominated waves E_{qf} and E_{qc}

are interacting through a- energy constraining

b- free / constrained energy fields interaction

this interaction creates a binding relationship that maintains

the integrity of the quanton

2- any energy that leaves the quanton must be have four

degrees of energy freedom (transmission of energy through space

can only take place while varying energy in space and time)

under such a condition , no individual wave like can leave the

quantton independently , instead , both waves can leave the
quanton conjointly in the form of electromagnetic waves

27. wave model inside the quanton

a model for the energy fields interaction inside the quanton takes the form

\[E_{wf} = \frac{1}{2} (E_{qf} + c\, E_{qc}) \quad E_{wc} = \frac{1}{2} (E_{qc} + \frac{1}{c} E_{qf}) \] (1-27)

\[E_{wf} = \frac{1}{2} (D_{sf} D_{tc} + c\, D_{sc} D_{tf}) = \frac{1}{2} K_q^2 c^{2.5} \cos\left(\frac{\pi x}{r_q}\right) - \omega t \] (2-27)

\[E_{wc} = \frac{1}{2} (D_{sc} D_{tf} + \frac{1}{c} D_{sf} D_{tc}) = \frac{1}{2} K_q^2 c^{1.5} \cos\left(\frac{\pi x}{r_q}\right) - \omega t \] (3-27)

and for anti quanton

\[E_{wc} = \frac{1}{2} (E_{qc} + c\, E_{qf}) \quad E_{wf} = \frac{1}{2} (E_{qf} + \frac{1}{c} E_{qc}) \] (4-27)

\[E_{wc} = \frac{1}{2} (D_{sc} D_{tf} + c\, D_{sf} D_{tc}) = \frac{1}{2} c^{2.5} K_q^2 \cos\left(\frac{\pi x}{r_q}\right) - \omega t \] (5-27)

\[E_{wf} = \frac{1}{2} (D_{sf} D_{tc} + \frac{1}{c} D_{sc} D_{tf}) = c^{1.5} K_q^2 \cos\left(\frac{\pi x}{r_q}\right) - \omega t \] (6-27)

At first look \((E_{wf})_{\text{quanton}} = (E_{wc})_{\text{anti quanton}}\) and \((E_{wc})_{\text{quanton}} = (E_{wf})_{\text{anti quanton}}\), so the quanton and might be seen to be identical however, they behave differently due to the difference in interaction between free and constrained energy as
will be discussed in the section: space fabric interactions

28. Electromagnetic waves as space and time energy fields

The difference between quanton electromagnetic waves lie in the fact that electromagnetic waves propagate in linear directions, and consequently, one degree of space varying energy degrees freedom becomes a (kinetic degree of freedom) and as a result the free and the constrained waves have one half of Dof less each for the case of electromagnetic waves in comparison to quanton waves thermal (electromagnetic) energy is released from the quanton in the following 3 dimensional form

1-Propagation of electromagnetic energy long the x-direction

The formulation of electromagnetic waves in terms of energy fields depends on the system of units

Under the (Esu) system, U (volumetric electromagnetic energy density) = $E^2 = c^2 B^2$
(ε)= 1 , μ = 1/c^2 , under such system

electric and the magnetic fields are defined as follows

\[E_f(x) = \frac{E_{qf}(x)}{\sqrt{c}} = \frac{E_{sfyz}(x)}{\sqrt{c}} E_{tc}, \quad B_c(x) = \frac{E_{qc}(x)}{\sqrt{c}} = \frac{E_{scyz}(x)}{\sqrt{c}} E_{tf} \] (1-28)

where \(E_f(x) \) is the electric field due to the free energy dominated wave , \(B_c(x) \) is the magnetic field due to the constrained energy dominated wave which propagate along x- axis

given that \(\cos(kx-\omega t) = \frac{1}{2} (e^{j(kx-\omega t)} + e^{-j(kx-\omega t)}) \)

define the electromagnetic (sinusoidal waves) as \(E(x) , B(x) \)

\[E(x) = \frac{1}{2} (E_f(x) + c B_c(x)) = \frac{1}{2} \left(\frac{E_{sfyz}(x)}{\sqrt{c}} E_{tc} + \sqrt{c} E_{scyz}(x) E_{tf} \right) \] (2-28)

\[B(x) = \frac{1}{2} (B_c(x) + \frac{1}{c} E_f(x)) = \frac{1}{2} \left(\frac{E_{scyz}(x)}{\sqrt{c}} E_{tf} + \frac{1}{c} \frac{E_{sfyz}(x)}{\sqrt{c}} E_{tc} \right) \] (3-28)

while for the case the circularly polarized electromagnetic wave

\[e^{j(kx-\omega t)} = \frac{1}{2} (\cos(kx-\omega t) + \sin(kx-\omega t)) \] (4-28)

\[\sin(kx-\omega t) = \cos(kx-\omega t + \frac{\pi}{2}) \] (5-28)
while for the (si) system of units

\[U = \frac{1}{2} \varepsilon_0 E^2 = \frac{1}{2} \frac{1}{\mu_0} B^2 \]

\[E_f(x) = \frac{E_{qf}(x)}{\sqrt{c}} = \frac{E_{sfyz}(x)}{\sqrt{c}} E_{tc} \quad , \quad B_c(x) = \frac{E_{qc}(x)}{\sqrt{c}} = \frac{E_{scyz}(x)}{\sqrt{c}} E_{tf} \]

(6-28)

define the electromagnetic (sinusoidal waves) as \(E(x), B(x) \)

\[E(x) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (E_f(x) + c B_c(x)) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (\frac{E_{sfyz}(x)}{\sqrt{c}} E_{tc} + \sqrt{c} E_{scyz}(x) E_{tf}) \]

(7-28)

\[E(x) = \frac{1}{2} \left(\frac{E_{qf}(x)}{\sqrt{\varepsilon_0} \sqrt{c}} + \frac{\sqrt{c} E_{qc}(x)}{\sqrt{\varepsilon_0}} \right) \]

(8-28)

\[B(x) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (B_c(x) + \frac{1}{c} E_f(x)) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{scyz}(x)}{\sqrt{c}} E_{tf} + \frac{1}{c} \frac{E_{sfyz}(x)}{\sqrt{c}} E_{tc} \right) \]

(9-28)

\[B(x) = \frac{1}{2} \left(\frac{E_{qc}(x)}{\sqrt{\varepsilon_0} \sqrt{c}} + \frac{\sqrt{\varepsilon_0}}{\sqrt{\mu_0}} \frac{E_{qf}(x)}{\sqrt{c}} \right) \]

(10-28)

And as a magnitude, \(E_o(x) = (\sqrt{\frac{3h}{8 \pi^5 c^3}}) (k^2 c^2) \) (Dof = 2) \((11-28) \)

\[B_o(x) = (\sqrt{\frac{3h}{8 \pi^5 c^3}}) (k^2 c) \) (Dof = one) \((12-28) \)

2-Along the y-direction

\[E_f(y) = \frac{E_{qf}(y)}{\sqrt{c}} = \frac{E_{sfyz}(y)}{\sqrt{c}} E_{tc} \quad , \quad B_c(y) = \frac{E_{qc}(y)}{\sqrt{c}} = \frac{E_{scyz}(y)}{\sqrt{c}} E_{tf} \]
\[E(y) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(E_f(y) + c B_c(y) \right) = \frac{1}{2} \left(\frac{E_{qf}(y)}{\sqrt{\varepsilon_0 c}} + \sqrt{c} \frac{E_{qc}(y)}{\sqrt{\varepsilon_0}} \right) \]

\[B(y) = \frac{1}{2} \left(B_c(y) + \frac{1}{c} E_f(y) \right) = \frac{1}{2} \left(\frac{E_{qc}(y)}{\sqrt{\varepsilon_0 c}} + \sqrt{\mu_0} \frac{E_{af}(y)}{\sqrt{c}} \right) \]

3-Along the z- direction

\[E_f(z) = \frac{E_{qf}(z)}{\sqrt{c}} = \frac{E_{sxy}(z)}{\sqrt{c}} E_{tc} \quad , \quad B_c(z) = \frac{E_{qc}(z)}{\sqrt{c}} = \frac{E_{sxy}(z)}{\sqrt{c}} E_{tf} \]

\[E(z) = \frac{1}{2} \left(E_f(z) + c B_c(z) \right) = \frac{1}{2} \left(\frac{E_{qf}(z)}{\sqrt{\varepsilon_0 c}} + \sqrt{c} \frac{E_{qc}(z)}{\sqrt{\varepsilon_0}} \right) \]

\[B(z) = \frac{1}{2} \left(B_c(z) + \frac{1}{c} E_f(z) \right) = \frac{1}{2} \left(\frac{E_{qc}(z)}{\sqrt{\varepsilon_0 c}} + \sqrt{\mu_0} \frac{E_{af}(z)}{\sqrt{c}} \right) \]

For release of electromagnetic radiation from anti quanton

1-Along the x- direction

\[E_c(x) = \frac{E_{qc}(x)}{\sqrt{c}} = \frac{E_{sxy}(x)}{\sqrt{c}} E_{tc} \quad , \quad B_f(x) = \frac{E_{qf}(x)}{\sqrt{\varepsilon_0 c}} = \frac{E_{sxy}(x)}{\sqrt{c}} E_{tf} \quad (13-28) \]

Electromagnetic \(E(x) \), \(B(x) \) is defined as

\[E(x) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(E_c(x) + c B_f(x) \right) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sxy}(x)}{\sqrt{c}} E_{tf} + \sqrt{c} E_{sxy}(x) E_{tc} \right) \]
Quantum based model of space fabric interactions

\[
E(x) = \frac{1}{2} \left(\frac{E_{qc}(x)}{\sqrt{\varepsilon_o \sqrt{c}}} + \sqrt{c} \frac{E_{qf}(x)}{\sqrt{\varepsilon_o}} \right)
\]

\[
B(x) = \frac{1}{2} \left(\frac{1}{\sqrt{\varepsilon_o}} (B_f(x) + \frac{1}{c} E_c(x)) \right) = \frac{1}{2} \left(\frac{E_{sfyz}(x) E_{tc}}{\sqrt{c}} + \frac{1}{c} \frac{E_{scyz}(x) E_{tf}}{\sqrt{c}} \right)
\]

\[
B(x) = \frac{1}{2} \left(\frac{E_{qf}(x)}{\sqrt{\varepsilon_o \sqrt{c}}} + \sqrt{\mu_o} \frac{E_{qc}(x)}{\sqrt{c}} \right)
\]

2-Along the y- direction

\[
E_c(y) = \frac{E_{qc}(y)}{\sqrt{c}} = \frac{E_{scxy}(y) E_{tf}}{\sqrt{c}} \quad , \quad B_f(y) = \frac{E_{qf}(y)}{\sqrt{c}} = \frac{E_{sfxy}(y) E_{tc}}{\sqrt{c}}
\]

\[
E(y) = \frac{1}{2} \left(E_c(y) + c B_f(y) \right) = \frac{1}{2} \left(\frac{E_{qc}(y)}{\sqrt{\varepsilon_o \sqrt{c}}} + \sqrt{c} \frac{E_{qf}(y)}{\sqrt{\varepsilon_o}} \right)
\]

\[
B(y) = \frac{1}{2} \left(B_f(y) + \frac{1}{c} E_c(y) \right) = \frac{1}{2} \left(\frac{E_{qf}(y)}{\sqrt{\varepsilon_o \sqrt{c}}} + \sqrt{\mu_o} \frac{E_{qc}(y)}{\sqrt{c}} \right)
\]

3-Along the z- direction

\[
E_c(z) = \frac{E_{qc}(z)}{\sqrt{c}} = \frac{E_{scxy}(z) E_{tc}}{\sqrt{c}} \quad , \quad B_f(z) = \frac{E_{qf}(z)}{\sqrt{c}} = \frac{E_{sfxy}(z) E_{tc}}{\sqrt{c}}
\]

\[
E(z) = \frac{1}{2} \left(E_c(z) + c B_f(z) \right) = \frac{1}{2} \left(\frac{E_{qc}(z)}{\sqrt{\varepsilon_o \sqrt{c}}} + \sqrt{c} \frac{E_{qf}(z)}{\sqrt{\varepsilon_o}} \right)
\]

\[
B(z) = \frac{1}{2} \left(B_f(z) + \frac{1}{c} E_c(z) \right) = \frac{1}{2} \left(\frac{E_{qf}(z)}{\sqrt{\varepsilon_o \sqrt{c}}} + \sqrt{\mu_o} \frac{E_{qc}(z)}{\sqrt{c}} \right)
\]
To note that

1-as space and time varying energy leaves the quanton in the form of electromagnetic (radiation) energy, and since there is no energy field along the direction of the wave propagation, which translates into a kinetic degree of freedom which is subtracted from the free and constrained dominated wave DoF’s, in other words:

\[D_{\text{electric field}} + D_{\text{magnetic field}} + D_{\text{kinetic}} = 3+1 = 4 \]

2-energy leaves the quanton in the form of an energy packet

\[E = E_s E_t, \] and the expansion of this energy packet in space is different from that inside the quanton

While energy expansion inside the quanton is in the form

\[\frac{\partial}{\partial s} (E_s E_t) = E_q = E_{sf} E_{tf} E_{sc} E_{tc}, \text{ while outside the quanton it takes the form} \]

\[E_q = \frac{\partial}{\partial s} (E_s E_t) = c \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) = c (E \ B) \]

this means that as one degree of energy freedom became a kinetic
degree of freedom, and so the quanton instead of being stationary becomes relativistic quanton

4-electromagnetic waves leave quanton under two constraints

a-Integrity of the energy is maintained (no dispersion or 3 dimensional wave forms)

b-free and constrained energies (E_{qf}, E_{qc}) cannot leave the quanton independently as the electromagnetic waves are the mechanism of transmission of energy through 3D space, they must be transmitted through space by having energy fields varying in space and time whose energy Dof = 4 (one of them a kinetic Dof)

this is achieved by cross linking free and constrained energies of the form for sinusoidal waves

$$E(x) = (E_f + cB_c), \quad B(x) = (B_c + \frac{1}{c}E_f)$$

5- electromagnetic waves in the form
\[E_q = \frac{1}{2} ((E_{sf} E_{tc})(E_{sc} E_{tf})) = \frac{1}{2} c \varepsilon_o (E \ B) \] can be seen as a relativistic

Two dimensional quanton, where one energy degree of freedom is replaced by a kinetic energy degree of freedom as the waves are formed,

6-by definition \(E_q = \frac{1}{2} \varepsilon_o c E B \) and given that

\[E = \frac{1}{2} (E_f + c B_c) = \frac{1}{2} \left(\frac{E_{qf}}{\varepsilon_o \sqrt{c}} + \sqrt{c} E_{qc} \right) \]

\[B = \frac{1}{2} (B_c + \frac{1}{c} E_f) = \frac{1}{2} \left(\frac{E_{qc}}{\varepsilon_o \sqrt{c}} + \frac{\mu_o}{\sqrt{c}} \frac{E_{qf}}{\varepsilon_o} \right), \] substituting for \(E_q \)

\[E_q = \frac{1}{2} \varepsilon_o c E B = c \frac{1}{2} \left(\frac{E_{qf}}{\varepsilon_o \sqrt{c}} + \sqrt{c} \frac{E_{qc}}{\varepsilon_o} \right) \frac{1}{2} \left(\frac{E_{qc}}{\varepsilon_o \sqrt{c}} + \sqrt{c} \frac{E_{qf}}{\varepsilon_o} \right)

\[= c \varepsilon_o \frac{1}{2} \left(2 \frac{E_{sf} E_{tc}}{\varepsilon_o \sqrt{c}} \frac{E_{sc} E_{tf}}{\sqrt{c}} \right) = \frac{1}{2} E_{sf} E_{tc} E_{sc} E_{tf} = E_q \]

As it will be discussed later that free and constrained

\((E_{qf} E_{qc})\) energy fields Interact to create a binding interaction,

while similar fields (free/ free) or (constrained / constrained)

create a repulsive interaction, it will be shown see that for the case

Quanton based model of space fabric interactions
of electromagnetic waves that both the binding and the repulsive interactions are present at the same time

this repulsive interaction for the case of electromagnetic waves takes the form of thermal degradation and the following red shift

both energy constraining and (free /constrained) energy field interaction are present for the case of electromagnetic waves , so we should expect (according to the second law of thermodynamics) energy loss in the form of thermal degradation as the two dimensional quanton which has 3 Dof’s expands (2+1 D space and time varying fields) and as a result the wave length of the traveling wave suffers a red shift (in addition to galactic recessional speeds)

dimensional analysis, based on free and constrained energy field dimensions , we can arrive at the dimensions of

the electric field \([E] = M^{+5} L^{-5} T^{-1}\)
and the magnetic field \([B] = M^{+5} \ L^{+1.5} \ T^{0.0} \)

\[[U] = \text{electromagnetic energy density} = \left[\frac{E}{V} \right] = \left[\frac{1}{2} \ \epsilon \ E^2 \right] = M \ L^{-1} \ T^{-2} \]

(\(\epsilon : \text{can be chosen according to a system of units to be} = 1 \))

\[\frac{1}{2} \ (E_f + c \ B_c)^2 = \frac{1}{2} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} + \sqrt{c} \ E_{sc} E_{tf} \right)^2 \]

\[[U] = \frac{1}{2} \left(\sqrt{\frac{3 \ h}{8 \ \pi^5 \ c^3}} \right)^2 (k^2 \ c^2))^2 = \left(\frac{3 \ hkc}{8 \ \pi^5} \right) k^3 \Rightarrow \left[\frac{E}{V} \right] = M \ L^{-1} \ T^{-2} \]

For magnetic field

\[\left[\frac{E}{V} \right] = \frac{1}{2} \ \frac{B^2}{\mu} = M \ L^{-1} \ T^{-2} \]

\[[U] = \frac{1}{2} \ c^2 \ (B_c + \frac{1}{c} \ E_f)^2 = \frac{1}{2} \ c^2 \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} + \frac{1}{c} \ \frac{E_{sf} E_{tc}}{\sqrt{c}} \right)^2 \]

(\(\mu : \text{chosen according to a system of units to be} = \frac{1}{c^2} \))

\[\frac{1}{2} \ c^2 \left(\sqrt{\frac{3 \ h}{8 \ \pi^5 \ c^3}} \right)^2 (k^2 \ c))^2 = \frac{3 \ hkc}{8 \ \pi^5} \ k^3 \Rightarrow \left[\frac{E}{V} \right] = M \ L^{-1} \ T^{-2} \]
How degrees of freedom are shared among the different energy fields for the case of electromagnetic waves

28.b. Differences between quanton and electromagnetic waves

<table>
<thead>
<tr>
<th>Kinetic degrees of freedom</th>
<th>Quanton waves</th>
<th>Electromagnetic waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave nature</td>
<td>represented by three pairs of free and constrained dominated orthogonal wave-likes</td>
<td>One pair of free and constrained energy dominated energy wave-likes</td>
</tr>
<tr>
<td>Dof<sub>sf</sub>, Dof<sub>sc</sub></td>
<td>2, 1</td>
<td>1.5, 0.5</td>
</tr>
<tr>
<td>Energy field dimensions</td>
<td>Three dimensional (3 pairs of two dimensional fields)</td>
<td>One pair of two dimensional fields (excluding propagation direction)</td>
</tr>
<tr>
<td>Energy field density</td>
<td>4-Dimensional</td>
<td>3D+relativistic Dof</td>
</tr>
<tr>
<td>Wave vector propagation</td>
<td>periodic only</td>
<td>Periodic + one directional translation</td>
</tr>
<tr>
<td>Viewed as</td>
<td>Static quanton</td>
<td>Relativistic two dimensional quanton</td>
</tr>
</tbody>
</table>

Comparison between quanton (free / constrained) waves and electromagnetic waves

29. Maxwell equations of energy fields

As energy variations in space and time creates dynamic fields, so
we can relate the four Maxwell equations for electromagnetism to

their original form for energy fields

we have defined the electromagnetic waves as the relativistic

expansion of an energy quantons / anti quantons that are

travelling through space at velocity (c) in the form

\[E = \frac{1}{2} \left(\left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 \sqrt{c}}} \right)_q + \left(\frac{\sqrt{c} E_{sc} E_{tf}}{\sqrt{\varepsilon_0}} \right)_q \right) \text{ or} \]

\[E = \frac{1}{2} \left(\left(\frac{E_{sc} E_{tf}}{\sqrt{\varepsilon_0 \sqrt{c}}} \right)_aq + \left(\frac{\sqrt{c} E_{sf} E_{tc}}{\sqrt{\varepsilon_0}} \right)_aq \right) \]

\[B = \frac{1}{2} \left(\left(\frac{E_{sc} E_{tf}}{\sqrt{\varepsilon_0 \sqrt{c}}} \right)_q + \left(\frac{\sqrt{\mu_0} E_{sf} E_{tc}}{\sqrt{c}} \right)_q \right) \text{ or} \]

\[B = \frac{1}{2} \left(\left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 \sqrt{c}}} \right)_aq + \left(\frac{\sqrt{\mu_0} E_{sc} E_{tf}}{\sqrt{c}} \right)_aq \right) \]

substituting in the four Maxwell equations with the constituent

energy fields corresponding to the electric and magnetic

fields

1-Gauss law of electric field
\[\nabla \cdot E = \frac{\rho_c}{\varepsilon_0} \]

\(\rho_c \): charge density

a-For quantons

\[\nabla \cdot E = \nabla \cdot \left(\frac{1}{2} \left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0} \sqrt{c}} \right) + \left(\frac{\sqrt{\varepsilon} E_{sc} E_{tf}}{\sqrt{\varepsilon_0}} \right) \right) = 2 \left(\frac{\rho_c}{\varepsilon_0} \right) \] \(1-29\)

\[E_{tc} \nabla \cdot E_{sf} + c E_{tf} \nabla \cdot E_{sc} = 0 \] (for electromagnetic waves and space fabric case)

Where \(\nabla \cdot E_{tf} = 0 \), \(\nabla \cdot E_{tc} = 0 \) (\(E_{tf}, E_{tc} \) are function of time only)

| Or \(\nabla \cdot E_{sf} = -c \frac{E_{tf}}{E_{tc}} \nabla \cdot E_{sc} \) \(2-29\) |

b-For anti quantons

\[\frac{E_{tf}}{\sqrt{c}} \nabla \cdot E_{sc} + \sqrt{c} E_{tc} \nabla \cdot E_{sf} = 0 \] \(3-29\)

| Or \(\nabla \cdot E_{sc} = -c \frac{E_{tc}}{E_{tf}} \nabla \cdot E_{sf} \) \(4-29\) |

2-Gauss law of magnetic field

\(\nabla \cdot B = 0 \)

a-For quantons

Quanton based model of space fabric interactions
\[
\frac{E_{\text{tf}}}{\sqrt{\varepsilon_0 \varepsilon_r}} \nabla \cdot E_{\text{sc}} + \frac{\sqrt{\mu_0} E_{\text{tc}}}{\sqrt{c}} \nabla \cdot E_{\text{sf}} = 0 \quad \text{(for electromagnetic waves)}
\]

(5-29)

\[
\nabla \cdot E_{\text{sf}} = - \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \frac{E_{\text{tf}}}{E_{\text{tc}}} \nabla \cdot E_{\text{sc}} = - c \frac{E_{\text{tf}}}{E_{\text{tc}}} \nabla \cdot E_{\text{sc}}
\]

(6-29)

(same as Gauss law for electric field)

b-anti quantons

\[
\frac{E_{\text{tc}}}{\sqrt{c} \sqrt{\varepsilon_0}} \nabla \cdot E_{\text{sf}} + \frac{\sqrt{\mu_0} E_{\text{tf}}}{\sqrt{c}} \nabla \cdot E_{\text{sc}} = 0 \quad \text{(for electromagnetic waves)}
\]

(7-29)

\[
\nabla \cdot E_{\text{sc}} = - \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \frac{E_{\text{tc}}}{E_{\text{tf}}} \nabla \cdot E_{\text{sf}} \quad \text{(again same as Gauss law for electric field)}
\]

(8-29)

3-faraday’s law for electric field

\[
\nabla \times E = -\frac{\partial B}{\partial t}
\]

a-For quantons

\[
\nabla \times E = \nabla \times \left(E_{\text{sf}} \frac{E_{\text{tc}}}{\sqrt{\varepsilon_0 \sqrt{c}}} \right) q + \nabla \times \left(E_{\text{sc}} \frac{\sqrt{c}}{\sqrt{\varepsilon_0}} E_{\text{tf}} \right)
\]

(9-29)

\[
= \left(\nabla \times E_{\text{sf}} \right) \frac{E_{\text{tc}}}{\sqrt{\varepsilon_0 \sqrt{c}}} + \frac{\sqrt{c}}{\sqrt{\varepsilon_0}} E_{\text{tf}} \left(\nabla \times E_{\text{sc}} \right)
\]

(10-29)

\[
\frac{\partial B}{\partial t} = - \frac{\partial}{\partial t} \left(E_{\text{sc}} \frac{E_{\text{tf}}}{\sqrt{\varepsilon_0 \sqrt{c}}} \right) q = \frac{\partial}{\partial t} \left(E_{\text{sf}} \frac{\sqrt{\mu_0 E_{\text{tc}}}}{\sqrt{c}} \right)
\]

(14-29)

\[
= - \frac{E_{\text{sc}}}{\sqrt{\varepsilon_0 \sqrt{c}}} \frac{\partial E_{\text{tf}}}{\partial t} - \frac{\sqrt{\mu_0 E_{\text{sf}} \partial E_{\text{tc}}}}{\sqrt{c} \partial t}
\]

Quanton based model of space fabric interactions
We get \(E_{tc} \nabla x E_{sf} = -\sqrt{\varepsilon_0 \mu_0} E_{sf} \frac{\partial E_{tc}}{\partial t} \) or

\[\nabla x E_{sf} = -\frac{1}{c} \frac{E_{sf}}{E_{tc}} \frac{\partial E_{tc}}{\partial t} \quad \text{and} \quad (12-29) \]

\[\nabla x E_{sc} = -\frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t} \quad (13-29) \]

Where \(\frac{\partial}{\partial t} (E_{sf}) = 0 \), \(\frac{\partial}{\partial t} (E_{sc}) = 0 \)

\((E_{sf}, E_{sc} \text{ are function of space only}) \)

b-For anti quantons

\[\nabla x E = \nabla x \left((E_{sc} \frac{E_{tf}}{\varepsilon_0 \sqrt{c}}) + (E_{sf} \frac{\sqrt{c} E_{tc}}{\sqrt{\varepsilon_0}}) \right) \]

\[= \frac{E_{tf}}{\sqrt{\varepsilon_0 \sqrt{c}}} \nabla x E_{sc} + \frac{\sqrt{c} E_{tc}}{\sqrt{\varepsilon_0}} \nabla x E_{sf} \quad (14-29) \]

\[- \frac{\partial B}{\partial t} = -\frac{\partial}{\partial t} \left((E_{sf} \frac{E_{tc}}{\varepsilon_0 \sqrt{c}}) + (E_{sc} \frac{\sqrt{\mu_0} E_{tf}}{\sqrt{c}}) \right) \]

\[= -\frac{E_{sf}}{\sqrt{\varepsilon_0 \sqrt{c}}} \frac{\partial E_{tc}}{\partial t} - \frac{\sqrt{\mu_0} E_{sc}}{\sqrt{c}} \frac{\partial E_{tf}}{\partial t} \]

We get \(E_{tf} \nabla x E_{sc} = -\sqrt{\varepsilon_0 \mu_0} E_{sc} \frac{\partial E_{tf}}{\partial t} \) or

\[\nabla x E_{sc} = -\frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t} \quad \text{and} \quad (15-29) \]
Quanton based model of space fabric interactions

\[c E_{tc} \nabla x E_{sf} = -E_{sf} \frac{\partial E_{tc}}{\partial t} \quad \text{or} \]

\[\nabla x E_{sf} = -\frac{1}{c} \frac{E_{sf}}{E_{tc}} \frac{\partial E_{tc}}{\partial t} \quad (16-29) \]

4-ampere’s law for magnetic field

\[\nabla \times B = \mu_0 (j + \varepsilon_0 \frac{\partial E}{\partial t}) \]

Where \(\mu_0 \varepsilon_0 = \frac{1}{c^2} \)

a-For quantons

\[\nabla \times B = \nabla \left(\frac{E_{sc}}{\sqrt{\varepsilon_0 c}} \right) + \left(E_{sf} \frac{\sqrt{\mu_0 E_{tc}}}{\sqrt{c}} \right) \]

\[= \frac{E_{tf}}{\sqrt{\varepsilon_0 c}} \nabla \times E_{sc} + \frac{\sqrt{\mu_0 E_{tc}}}{\sqrt{c}} \nabla \times E_{sf} \quad (17-29) \]

\[\frac{1}{c^2} \frac{\partial E}{\partial t} = \frac{1}{c^2} \frac{\partial}{\partial t} \left(\left(E_{sf} \frac{E_{tc}}{\sqrt{\varepsilon_0 c}} \right) + \left(E_{sc} \frac{\sqrt{c} E_{tf}}{\sqrt{\varepsilon_0}} \right) \right) \]

\[= \frac{1}{c^2} \left(\frac{E_{sf}}{\sqrt{\varepsilon_0 c}} \frac{\partial E_{tc}}{\partial t} + \frac{\sqrt{c} E_{sc}}{\sqrt{\varepsilon_0}} \frac{\partial E_{tf}}{\partial t} \right) \]

we get \(\frac{\sqrt{\mu_0 E_{tc}}}{\sqrt{c}} \nabla \times E_{sf} = \frac{1}{c^2} \frac{E_{sf}}{\sqrt{\varepsilon_0 c}} \frac{\partial E_{tc}}{\partial t} \) or

\[\nabla \times E_{sf} = \frac{1}{c} \frac{E_{sf}}{E_{tc}} \frac{\partial E_{tc}}{\partial t} \quad \text{and} \quad (18-29) \]
\(\frac{E_{tf}}{\sqrt{\varepsilon_0 c}} \vec{\nabla} \times \vec{E}_{sc} = \frac{1}{c^2} \frac{\sqrt{\varepsilon_0} E_{sc}}{\varepsilon_0} \frac{\partial E_{tf}}{\partial t} \) or

\(\vec{\nabla} \times \vec{E}_{sc} = \frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t} \)

(19-29)

Which is the same results obtained from Faraday’s law of electric field without the minus sign

b-For anti quantons

\(\vec{\nabla} \times \vec{B} = \vec{\nabla} \left(\frac{E_{sf}}{\sqrt{\varepsilon_0 c}} \frac{E_{tc}}{\varepsilon_0} \right) + \left(\frac{E_{sc}}{\sqrt{\varepsilon_0 c}} \frac{\mu_0 E_{tf}}{c} \right) \)

\[= \frac{E_{tc}}{\sqrt{\varepsilon_0 c}} \vec{\nabla} E_{sf} + \frac{\mu_0 E_{tf}}{c} \vec{\nabla} E_{sc} \]

\(\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} = \frac{1}{c^2} \frac{\partial}{\partial t} \left(\left(\frac{E_{sc}}{\sqrt{\varepsilon_0 c}} \frac{E_{tf}}{\varepsilon_0} \right) + \left(\frac{E_{sf}}{\sqrt{\varepsilon_0 c}} \frac{\sqrt{\varepsilon_0} \mu_0 E_{tc}}{c} \right) \right) \)

\[= \frac{1}{c^2} \frac{E_{sc}}{\sqrt{\varepsilon_0 c}} \frac{\partial E_{tf}}{\partial t} + \frac{1}{c^2} \frac{\sqrt{\varepsilon_0} E_{sf}}{\sqrt{\varepsilon_0 c}} \frac{\partial E_{tc}}{\partial t} \]

We get \(\frac{E_{tc}}{\sqrt{\varepsilon_0 c}} \vec{\nabla} E_{sf} = \frac{1}{c^2} \frac{\sqrt{\varepsilon_0} E_{sf}}{\sqrt{\varepsilon_0 c}} \frac{\partial E_{tc}}{\partial t} \) or

\(\frac{\vec{\nabla} \times \vec{E}_{sf}}{E_{sf}} = \frac{1}{c} \frac{E_{sf}}{E_{tc}} \frac{\partial E_{tc}}{\partial t} \)

\(\frac{\sqrt{\mu_0} E_{tf}}{\sqrt{c}} \vec{\nabla} \times \vec{E}_{sc} = \frac{1}{c^2} \frac{E_{sc}}{\sqrt{\varepsilon_0 c}} \frac{\partial E_{tf}}{\partial t} \) or

Quantum based model of space fabric interactions
\[\nabla \times E_{sc} = \frac{1}{c} \frac{E_{sc}}{E_{tc}} \frac{\partial E_{tf}}{\partial t} \]

(21-29)

Again, the same results obtained from Faraday’s law of electric field without the minus sign, to summarize

a-Quantons case

1- \[\nabla \cdot E_{sf} = -c \frac{E_{tf}}{E_{tc}} \nabla \cdot E_{sc} \]

(22-29)

2- \[\nabla \times E_{sf} = -\frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tc}}{\partial t} \]

(23-29)

3- \[\nabla \times E_{sc} = -\frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t} \]

(24-29)

For anti quantons

1- \[\nabla \cdot E_{sc} = -c \frac{E_{tc}}{E_{tf}} \nabla \cdot E_{sf} \]

(25-29)

2- \[\nabla \times E_{sf} = -\frac{1}{c} \frac{E_{sf}}{E_{tc}} \frac{\partial E_{tc}}{\partial t} \]

(26-29)

3- \[\nabla \times E_{sc} = -\frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t} \]

(27-29)

It is worth noting that

1- the equations (2, 3) can be put in the following form
\[
\frac{\partial E_{tf}}{\partial t} + \frac{1}{\nabla x E_{sc}} \frac{E_{sc}}{E_{tf}} = c, \quad -\frac{\partial E_{tc}}{\partial t} - \frac{1}{\nabla x E_{sf}} \frac{E_{sf}}{E_{tc}} = c
\]

(28-29)

which is another expression for the energy degrees of freedom

2- Maxwell equations remain invariant under relativistic effects

30. Role of Maxwell equations in the evolution of the quanton

For the quanton case

1-the basic energies during the primordial time were in the form

\(E_{sf}, E_{tf} \) (free energy that varies in space and free energy that varies in time)

2-while there is nothing in theory that prevents free energies

\(E_{sf} \) (and \(E_{tf} \)) from generating quanton (or anti quanton)

energy system independently, after the formation of the quanton (anti quanton), as had been discussed in the energy constraining section, given the minuscule scale and the enormity of the temperatures involved in the process, it is extremely hard to imagine that those two energies could not be enclosed into a
single entity (pre-quanton, and pre-anti quanton), hence a more realistic approach is to suggest the coexistence of those two energies instead of the complete separation between them.

In fact the two scenarios did coexist.

a-quanton (or anti quanton) evolution through independent

\[E_{sf} \text{ (or } E_{tf}) \]

b-quanton (anti quanton) evolution through coexistence of

Both \(E_{sf} \text{ and } E_{tf} \), here we will discuss the second scenario, so the available types

a- \(E_{sf} \text{ } E_{tc} \) - \(E_{sf} \) dominated and

b- \(E_{sc} \text{ } E_{tf} \) - \(E_{tf} \) dominated

3-the ratio between space and time varying energies \(E_{sf}, E_{tf} \) energies is not equitable but governed by dimensional energy symmetry, which means that energy is split equally among
expanded dimensions, and this suggests a ratio of thee to one

<table>
<thead>
<tr>
<th>Energy field type</th>
<th>Prevalence (Percentage of the total energy in the primordial universe)</th>
<th>Ratio of $E_{sf} E_{tc}$</th>
<th>Ratio of $E_{tf} E_{sc}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{sf}-dominated (pre quanton)</td>
<td>75%</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>E_{tf}-dominated (pre anti quanton)</td>
<td>25%</td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>

4-as energy expands by varying in space E_{sf}, it creates a time varying field E_{tc} that interacts with the field of free space varying energy E_{sf} in a way that the rate of variation of E_{tc} would be equivalent to the curl of E_{sf} such that

$$\nabla \times E_{sf} = \frac{1}{c} \frac{\partial E_{tc}}{\partial t}$$

In other words the rate of variation of E_{tc} causes E_{sf} to curl into

The quanton (anti quanton) as it is formed hence, the energy Fields $E_{sf} E_{tc}$ are constrained into a quanton formation

5- the time varying energy E_{tf} creates a constrained space varying energy E_{sc}, while varying in time, the rate of variation of energy varying in time of E_{tf} induces the formation of a curl in the
constrained space varying field E_{sc}, such that

$$\nabla \times E_{sc} = \frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t},$$

so that the energy fields E_{sf}, E_{tf} are contained in the quanton (anti quanton) as it formed.

6- as the free and constrained energy fields $(E_{sf} E_{tc}), (E_{sf} E_{tc})$

expand they are governed by the relationship

$$\nabla \cdot E_{sf} = -c \frac{E_{tf}}{E_{tc}} (\nabla \cdot E_{sc}) \text{ for quantons and } \nabla \cdot E_{sc} = -c \frac{E_{tc}}{E_{tf}} (\nabla \cdot E_{sf})$$

For anti quantons
\[\nabla \times E_{sf} = \frac{1}{c} \frac{E_{sf}}{E_{tc}} \frac{\partial E_{tc}}{\partial t} \]

\[\nabla \cdot E_{sf} = -c \frac{E_{tf}}{E_{tc}} \nabla \cdot E_{sc} \]

\[\nabla \times E_{sc} = \frac{1}{c} \frac{E_{sc}}{E_{tf}} \frac{\partial E_{tf}}{\partial t} \]

Fig(7). Maxwell equations 's role in the evolution of the quanton

31. Lorentz transformation of energy fields

In the previous chapters we have discussed the concept of a relativistic quanton and how it is represented electromagnetic waves in the form of space and time varying fields.

Here, the Lorentz transformation will be discussed, for the electromagnetic waves (this time in terms of the quanton)

Energy fields)
Considering the case when energy fields are seen by an
observer traveling at relativistic speed along x axis

2-for Lorentz transformation of electromagnetic waves, and while

denoting (\({}'\)) for the case of a moving frame of reference, the
transformation takes the form

\[
E_x' = E_x, \quad E_y' = \gamma (E_y + \beta c B_z)
\]

\[
E_z' = \gamma (E_z + \beta c B_y), \quad B_x' = B_x
\]

\[
B_y' = \gamma (B_y - \frac{v E_z}{c^2}), \quad B_z' = \gamma (B_z - \frac{v E_y}{c^2})
\]

In this case the electric field is represented by the field \(E_y(x)\)

and the magnetic field is represented by the field \(B_z(x)\)

Using the same transformation for the case of free and constrained

energy dominated system, where

\[
E = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (E_f + c B_c) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sf}}{\sqrt{c}} \frac{E_{tc}}{\sqrt{c}} + c \frac{E_{sc}}{\sqrt{c}} \frac{E_{tf}}{\sqrt{c}} \right)
\]

for quantons, or

\[
E = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (E_c + c B_f) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sc}}{\sqrt{c}} \frac{E_{tf}}{\sqrt{c}} + c \frac{E_{sf}}{\sqrt{c}} \frac{E_{tc}}{\sqrt{c}} \right)
\]

for anti quantons
\[B = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (B_c + \frac{1}{c} E_f) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} + \frac{1}{c} \frac{E_{sf} E_{tc}}{\sqrt{c}} \right) \text{ for quantons, or} \]

\[B = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} (B_f + \frac{1}{c} E_c) = \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} + \frac{1}{c} \frac{E_{sc} E_{tf}}{\sqrt{c}} \right) \text{ for anti quantons} \]

after substitution, we get for \(E \) and \(B \)

\[a- \text{For quantons} \]

\[E_y' = \gamma \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) + c \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) + v \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) \left(1 + \frac{v}{c} \right) \]

\[= \gamma \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) \left(1 + \frac{v}{c} \right) + c \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) \left(1 + \frac{v}{c} \right) \]

\[E_y' = \gamma \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) + c \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) \left(1 + \frac{v}{c} \right) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} E_y \quad (1-31) \]

Where \(\gamma \left(1 + \frac{v}{c} \right) = \frac{\sqrt{(1 + \frac{v}{c}) \sqrt{(1 + \frac{v}{c}) \sqrt{(1 - \frac{v^2}{c^2})}}}}{\sqrt{(1 + \frac{v}{c}) \sqrt{(1 - \frac{v^2}{c^2})}} = \frac{1 + \frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}} \) \quad (2-31)

\[B_z' = \gamma \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) + \frac{1}{c} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) - \frac{v}{c^2} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) + c \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) \]

\[B_z' = \gamma \frac{1}{2} \frac{1}{\sqrt{\varepsilon_0}} \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} \right) \left(1 + \frac{v}{c} \right) + \frac{1}{c} \left(\frac{E_{sf} E_{tc}}{\sqrt{c}} \right) \left(1 + \frac{v}{c} \right) = \frac{1}{\sqrt{1 + \frac{v^2}{c^2}}} B_z \quad (3-31) \]
Where \(\gamma \left(1 - \frac{v}{c}\right) = \sqrt{\frac{(1-v/c)(1-v/c)}{(1+v/c)(1-v/c)}} = \frac{(1-v/c)}{(1+v/c)} \) (4-31)

b- For anti quantons

\[
E'_{y} = \frac{\gamma}{2} \frac{1}{\sqrt{E_{0}}} \left(\left(\frac{E_{sc} E_{tf}}{\sqrt{c}}\right) + c\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right) + \sqrt{\frac{E_{sc} E_{tf}}{\sqrt{c}}} \right)
\]

\[
= \frac{\gamma}{2} \frac{1}{\sqrt{E_{0}}} \left(\left(1 + \frac{v}{c}\right) + c\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right)\right) (1+\frac{v}{c})
\]

\[
E'_{y} = \frac{\gamma}{2} \frac{1}{\sqrt{E_{0}}} \left(\left(\frac{E_{sc} E_{tf}}{\sqrt{c}}\right) + c\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right)\right) \left(1 + \frac{v}{c}\right) = \frac{1}{\sqrt{(1+\frac{v}{c})}} E_{y}
\] (5-31)

\[
B'_{z} = \frac{\gamma}{2} \frac{1}{\sqrt{E_{0}}} \left(\left(\frac{E_{sc} E_{tf}}{\sqrt{c}}\right) + \frac{1}{c}\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right) + \frac{v}{c^{2}} \left(\frac{E_{sc} E_{tf}}{\sqrt{c}}\right) - c\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right)\right)
\]

\[
B'_{z} = \frac{\gamma}{2} \frac{1}{\sqrt{E_{0}}} \left(\left(\frac{E_{sc} E_{tf}}{\sqrt{c}}\right)\left(1 - \frac{v}{c}\right) + \frac{1}{c}\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right) \left(1 + \frac{v}{c}\right)\right) = \frac{1}{\sqrt{(1+\frac{v}{c})}} B_{z}
\] (6-31)

For a comoving frame of reference at \(v \) where \(\beta = \frac{v}{c} \) and \(\gamma = \frac{1}{\sqrt{1-\beta^{2}}} \)

The energy fields themselves as viewed by moving observer

\[
E' = \frac{1}{2} \frac{1}{\sqrt{E_{0}}} \left(\frac{E_{sc} E_{tf}}{\sqrt{c}}\right) + c\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right) = \frac{1}{\sqrt{E_{0}}} \sqrt{\frac{1+\beta}{1-\beta}} \frac{K_{q} c^{2}}{K_{q} c^{2}} \cos(k'r' - \omega't')
\]

\[
B' = \frac{1}{2} \frac{1}{\sqrt{E_{0}}} \left(\frac{E_{sc} E_{tf}}{\sqrt{c}} + \frac{1}{c}\left(\frac{E_{sf} E_{tc}}{\sqrt{c}}\right)\right) = \frac{1}{\sqrt{E_{0}}} \sqrt{\frac{1-\beta}{1+\beta}} \frac{K_{q} c^{2}}{K_{q} c^{2}} \cos(k'r' - \omega't')
\]
Where \(k' = \frac{1-\beta}{\sqrt{1+\beta}} k \), \(r' = \frac{1-\beta}{\sqrt{1+\beta}} r \)

\[\omega' = \sqrt{1+\beta} \omega \quad , \quad t' = \sqrt{1+\beta} t \]

to note that the product \(E_y' B_z' = \sqrt{\frac{1+\frac{v^2}{c^2}}{1-\frac{v^2}{c^2}}} E_y \sqrt{\frac{1+\frac{v^2}{c^2}}{1-\frac{v^2}{c^2}}} B_z \)

\(= E_y B_z = \text{constant} \), irrespective of the frame of reference

32. some concepts behind space fabric

1-Dimensional energy symmetry (with respect to time and space variation of energy)

2-Field interaction, no silent energy field, energy fields of different types (free / constrained) interact with other energy fields of different or similar nature to create a binding or repulsive interaction

3-Preservation of space fabric integrity (in the form of space fabric interactions)
Binding and retaining interactions)

4-energy fields are expressed at all the scales (energy fields are infinite in range)

33. Interactions of energy fields

1-Energy as it varies in space or time creates associated dynamic fields that exist inside as well as outside the quantons

2-the nature of the field and its interaction depends on the nature of the energy (free or constrained energy)

3-energy field interaction is according to following manner

a-Interaction of energy fields of similar type (free or constrained) is repulsive in nature

b-interaction energy fields of different type creates a binding interaction

4-an energy field can interact with another energy field only if they have the same field strength (they both have the same Dof’s)
(necessity condition)

5- same energy field can self interact to generate a repulsive reaction

6-energy fields are infinite in range of action but this range can still be divided into 3 main zones

a-inside quantons b- outside quantons : short range

c-outside quantons : long range

34. Bound and nonbinding energies

1-interaction between energy fields of different nature (free-constrained) generates a binding interaction and those energy fields which are involved in such an interaction are said to be bound energies, while energy fields that do not generate such interactions are said to be non-binding energies

2-for quantons free energy fields are split into two parts:
bound and nonbinding part or D_{sfb}, D_{sfn}, and the free energy

efields now become $E_{sf} = K_{sf} (D_{sfb} D_{sfn}), E_{tf} = K_{tf} (D_{tfb} D_{tfn})$

as fields generated by free energy ($E_{sfb} E_{tfb}$) fully interact with

fields generated by constrained energy ($E_{sc} E_{tc}$) in a binging

interaction, for anti quanton case $E_{sc} = K_{sc} (D_{scb} D_{scn}),$

$E_{tc} = K_{tc} (D_{tcb} D_{tcn})$, and the binding interaction is between fields

($E_{scb} E_{tcb}$) binding and ($E_{sf} E_{tf}$)

3-Fields created by free and constrained energies are best

described as having flux lines, and the number of those flux lines

is not indefinite in number

4- nonbinding energy fields are due to their self-interaction

5-for the space fabric case, binding interaction expresses a state

of equilibrium due to the symmetry interacting energy fields

(equal in strength and intensity)

6- for an energy system to be under equilibrium, all its energy
fields must be tied in a binding relationships (with other energy fields) at all the scales.

7-bound energy fields create binding interactions necessary for the integrity of the space fabric (later they will be called quanton binding \(E_b \) and retaining \(E_t \) interactions).

8-all remaining nonbinding energy fields and through the self interaction give rise to quanton inflation, splitting and on larger scale inflationary momentum.

35. types Energy fields interaction

the interactions between different energy fields inside and around the quanton are not real energies or nor generate real forces, since the term energy and subsequent force is reserved only for four dimensional Dof’s interactions, so we use the term interaction \((E_{ij/binding}) \) to describe the binding or interaction, between two
energy fields \((E_{sfi}, E_{scj})\) while the dimensions of any interaction depend on its degrees of freedom.

The interactions between energy fields \((E_{sfi})\) and \((E_{scj})\) be assessed as follows:

The binding interaction \((E_{ij\ binding})\) between two fields \((E_{sfi}, E_{scj})\) (represented by shared flux lines between the two fields) is proportional to the generated flux \((\varphi_{ij})\) between the two energy fields, the flux itself is proportional to the product of those two fields, and this is since

1. the generated interaction is proportional to the summation of energy degrees of freedom of both fields (proportional to the product of field strength of both fields -for example)

\[
D_{ij\ binding} = D_{sfi} \cdot D_{scj} = c^{Dof_{sfi} + Dof_{scj}} \]

(1-34)

2. the interaction must be proportional to the product of intensity of both fields as defined by the parameter \(K_{q}\)
(for example \(K_{sfb i} K_{tf i} K_{sc j} K_{tc j} = K_q^4 \))

3- the interaction must be related to true energy, so fractional dimensions of the energy fields intensities must always give a product which represents the real binding energy divided by degrees of freedom in other words interactions must be always in terms of \(K_q^4 \) (equivalent for example to \(K_{ij \, binding} = (K_s f \, K_{tf}) \))

\((K_{sc} \, K_{tc}) = K_q^4 \) as the term \(K_q^4 \) represents an energy density divided by \(c^4 \)

, the binding relationship for the case of two fields

\[
E_{ij \, binding} = \alpha_{ij} \frac{\varphi_{ij}}{\Delta r_{ij}} = \alpha_{ij} \frac{(K_{sf i} K_{sc j}) (D_{sf i} D_{sc j})}{(\Delta r_{ij})} = \alpha_{ij} \frac{(E_{sf i} E_{sc j})}{(\Delta r_{ij})} \quad (2-34)
\]

\(\alpha_{ij} \) : parameter of proportionality , \(\Delta r_{ij} \) : effective distance between Two fields

while \(E_{sf i} \) was defined as equal to \(K_{sf i} D_{sf i} \) (which expresses the energy field as the product of its strength (Dof) and intensity

Quanton based model of space fabric interactions
(in terms of its wave parameters), the binding interaction can be put as

$$E_{ij}^{binding} = \alpha_{ij} \frac{\phi_{ij}}{(\Delta r_{ij})} = \alpha_{ij} \left(\frac{E_i E_j}{(\Delta r_{ij})}\right)$$

the dimensions of such an interaction would be

$$\frac{\text{Energy}}{c^{1-(Dof_{total})} \ (3D \ volume)}$$

where $Dof_{total} = Dof_{free} + Dof_{constrained}$

so only interactions which have four degrees of freedom are able of generating a binding that has the true dimensions of energy density, it is noted that stable interactions result in the cancellation of the wave behaviour

35.a.Simple and complex energy fields interactions

1- energies tend to form higher order interactions whenever possible (multiple field interactions) (this is true up to $Dof = 4$)

2- hyper interactions (summation of Dof of constituent energies greater than 4) are inhibited inside and outside quanton for real interactions, Dofs must be equal or less than 4 weather
it is a simple or complex interaction

(in real spaces only real interactions can be generated)

35.b. interactions due to complex single fields

Interaction between two energy fields which are different in nature (free – constrained) is a simple binding interaction of the type

$$E_{ij\,binding} = \alpha_{ij} \frac{E_{sfbi} E_{scj}}{(\Delta r_{ij})}$$

however, when there are more than one energy fields of the same type (free /constrained) inside the quanton, in this case a resultant complex field is generated which has Dof equivalent to the summation of Dof’s of originating energy fields, an interaction as

$$E_{ij\,binding} = \alpha_{ij} \frac{E_{sfbi} E_{tibi} (E_{scj} E_{tej})}{(\Delta r_{ij})} \frac{1}{(\Delta r_{ij})}$$

where the free energy fields (space and time varying) were united to form a single complex energy field of the type $E_{sfb} E_{tfb}$ and constrained energies $E_{sc} E_{tc}$ form a constrained complex energy field where the degrees of freedom are the same for both type of
fields \(Dof_{sf} + Dof_{tb} = Dof_{sc} + Dof_{tc} = 1.5 \), while the Dof of the binding interaction \(Dof_{binding} \) is three

this is based on the conclusion made in the section: bridging the gap between physics and mathematics in energy constraining, where space and time varying energy fields of the same nature (free or constrained) behaved as a one variable

\(35.c.\text{Multiple simple interactions} \)

as pointed out before, simpler interactions can combine to form a single interaction with higher degrees of freedom (up to 4)

so, complex field interactions are generated as a result of two simple binding interactions of the type \((E_{sfb}, E_{sbj}) \) that can combine with another simple interaction \((E_{scb}, E_{sfj}) \) to form a complex one of the type

\[
E_{ij}^{binding} = \alpha_{ij} \left(E_{sf} E_{sc} E_{sij} E_{sj} \right) \frac{1}{(\Delta r_{ij})}
\]

which is the case of gravitation
35.d. simple and complex nonbinding (repulsive) interactions

while inside the quanton, the nonbinding energy E_{sfn} (or E_{scn})

for the case of anti quanton) generates field that is self interacting

this self interaction gives rise to only simple repulsive

interactions inside the quanton, while outside the quanton (anti

quanton) the generated self interacting field can be involved in a

repulsive interaction as well with either

1-a simple energy field of the same nature (free or constrained)

2-another complex self-interacting field again of the same nature

and the generated interaction would always be a repulsive one, as this energy field cannot create a binding interaction with

another field with opposing type due to this repulsive self

interaction

$$E_{Rij} = \alpha_{ij} \sqrt{E_{sfni}E_{tfni}} \sqrt{E_{sfni}E_{tfni}} \frac{1}{(r_{qi})}$$

$$= \alpha_{ij} \left(K_q^2 \sqrt{D_{sfni}D_{tfni}} \right) \left(K_q^2 \sqrt{D_{sfni}D_{tfni}} \right) \frac{1}{(r_{qi})}$$
\[= \alpha_{ij}(K_q^4 D_{scni} \frac{1}{r_{qi}}) \]

and once outside the quanton, the fields behave as complex ones

so, they must interact with another field (simple or complex) of the same energy nature to generate a nonbinding (repulsive) interaction in both cases

while outside the quanton, complex repulsive interactions take

the form \[E_{ijR} = \alpha_{ij} E_{sfin} E_{sfnj} \frac{1}{(\Delta r_{ij})} \]

36. Space fabric energy fields interactions

36.a-inside quantons

36.a.1 The quanton retaining interaction \((E_t)\) (complex binding)

the free and constrained energy fields interact with the energy of an opposite nature inside the quanton to create the quanton retaining interaction \((E_t)\)

This is interaction is between (the bound part) of the free energy field \((E_{sfb}E_{tfb})\) and constrained energy field \((E_{sc}E_{tc})\)
the bound part of the free energy that participates in this interaction which has to have the same degrees of freedom as constrained fields (due to the symmetry of Dof’s the interaction) and is expressed as

\[E_{sf}E_{tf} = (K_{sf}K_{tf})(D_{sfb}D_{tfb})(D_{sfn}D_{tfn}) \]

\[(D_{sf}D_{tf})_{bound} = (D_{sfb}D_{tfb}) = D_{sc}D_{tc} \quad \text{or} \]

\[(D_{sfb}D_{tfb}) = (c)(c^{0.5}) = (c^{1.5}) \]

\[(D_{sfn}D_{tfn}) = \frac{E_{sf}E_{tf}}{E_{sc}E_{tc}} = \frac{K_{q}^{2}D_{sf}D_{tf}}{K_{q}^{2}D_{sc}D_{tc}} = \frac{d_{sf}D_{tf}}{D_{sc}D_{tc}} = \frac{c^{2.50}}{c^{1.50}} = c \]

the generated binding is the retaining interaction \((E_t)\) that maintains the quanton’s integrity and prevents it from disintegration, the retaining interaction \((E_t)\) is binding energy type since it is developed between two fields of different nature this interaction takes the following form for a single quanton \((q)\)

\[(E_t)_q = \alpha (E_{sf}E_{tf})_{bound} (E_{sc}E_{tc}) \quad \text{(1-36)} \]
\[= \alpha_t \left(K_q^2 (D_{sf} b D_{tf} b) \right) \left(K_q^2 (D_{sc} D_{tc}) \right) \]

\[
(E_t)_q = \alpha_t \ K_q^4 \ c^3 = \frac{3\alpha_h k^4}{8\pi^5} = \frac{3\alpha_h}{8\pi r_q^4} \quad (2-36)
\]

Where the term \((E_{sf} E_{tf})_{bound}\) represents the magnitude of
bound part of the free energy \((E_{sf} E_{tf})\) that interacts with
constrained energy \((E_{sc} E_{tc})\), \((r_q)\) is the quanton radius

\(\alpha_t\) : retaining interaction parameter (< 1)

while for anti quanton case the retaining interaction would be

\[
(E_t)_{aq} = \alpha_t \left(E_{sc} E_{tc} \right)_{bound} (E_{sf} E_{tf}) = \quad (3-36)
\]

\[
= \alpha_t \left(K_q^2 (D_{scb} D_{tcb}) \right) \left(K_q^2 (D_{sf} D_{tf}) \right)
\]

\[
(E_t)_{aq} = \alpha_t \ K_q^4 \ c^3 = \frac{3\alpha_h}{8\pi r_q^4} \quad (4-36)
\]

as for the dimensions of such a energy-like interaction, which has

three Dof's, it should be \(\frac{\text{energy}}{\text{volume} \cdot c} = M L^{-2} T^{-1}\)

The same results for the retaining interaction can be obtained.
directly from the quanton wave-likes

\[E_{wf} = \frac{1}{2} (E_q + c E_qc), \quad E_{wc} = \frac{1}{2} (E_q + \frac{1}{c} E_qf) \]

The interaction between \(E_{wf}, E_{wc} \) is in the form \(E_q = E_{wf} E_{wc} \) or

\[E_q = \frac{1}{2} (E_q + c E_qc) \quad \frac{1}{2} (E_q + \frac{1}{c} E_qf) \]

\[= (\frac{1}{2} E_qf)(\frac{1}{2} E_qc) + (\frac{1}{2} E_qf)(\frac{1}{2} c E_qc) = \frac{1}{2} E_qf E_qc \quad (5-36) \]

\[= \frac{1}{2} (E_{sf}E_{tf}) (E_{sc}E_{tc}) = \frac{1}{2} (E_{sf}E_{tf}) (E_{sc}E_{tc}) \text{ as before, for} \]

Anti quanton case \(E_{wc} = \frac{1}{2} (E_q + c E_qf), \quad E_{wf} = \frac{1}{2} (E_q + \frac{1}{c} E_qc) \)

\[E_{aq} = \frac{1}{2} (E_q + c E_qf) \quad \frac{1}{2} (E_q + \frac{1}{c} E_qc) \quad (6-36) \]

\[= (\frac{1}{2} E_qc)(\frac{1}{2} E_qf) + (\frac{1}{2} c E_qc)(\frac{1}{2} c E_qf) = \frac{1}{2} E_qf E_qc \quad (7-36) \]

\[= \frac{1}{2} (E_{sf}E_{tc}) (E_{sc}E_{tf}) = \frac{1}{2} (E_{sf}E_{tf}) (E_{sc}E_{tc}) \]

It should be noted that

1-the interaction took place between energy fields of two different Wave-likes \(E_qf \) or \(E_qc \) and no such an interaction can take place

Quanton based model of space fabric interactions

152
between fields within the same wave-like (no self-interaction)

2- the interaction between wave likes DID NOT take the form

\[E_q = \frac{1}{2} (E_{qf} + cE_{qc}) \frac{1}{2} (E_{qc} + \frac{1}{c}E_{qf}) \]

\[= \frac{1}{4c} E_{qf}^2 + \frac{1}{4} cE_{qc}^2 + \frac{1}{2} E_{qf} E_{qc} \]

since the interaction terms \(\frac{1}{c} E_{qf}^2 \), \(cE_{qc}^2 \) generate binding degrees of freedom equivalent to 50% total Dof's, while the interaction term \(E_{qf} E_{qc} \) generates binding energy which forms 75% of all Dof's, so as it will be discussed latter, the binding interaction \(E_{qf} E_{qc} \) which is more stable takes precedence over less stable repulsive dominated interactions \(\frac{1}{c} E_{qf}^2 \), and \(cE_{qc}^2 \)

3- for both quanton and anti quanton case

\[E_q = E_{aq} = \frac{1}{2} (E_{sf}E_{tf}) (E_{sc}E_{tc}) \]

which seem to be identical, but the inflationary energy in case of the quanton is generated by the free energy field \((E_{sf}E_{tf})_{non\,binding} \) self-interaction, while for the
anti quanton case the same interaction is generated by the constrained energy fields \((E_{sc}E_{tc})\) \textit{non binding}

4-the same analysis and conclusions apply to the case of the electromagnetic waves where electromagnetic energy density

\[
E_q = cEB = c \left(\frac{E_{af}}{\sqrt{c}} + c \frac{E_{qc}}{\sqrt{c}} \right) \frac{1}{2} \left(\frac{E_{qc}}{\sqrt{c}} + \frac{1}{c} \frac{E_{af}}{\sqrt{c}} \right)
\]

\[
= c \left(\frac{1}{2} \left(2 \frac{E_{sf}E_{tc}}{\sqrt{c}} \frac{E_{sc}E_{tf}}{\sqrt{c}} \right) \right) = \frac{1}{2} E_{sf}E_{tc} E_{sc}E_{tf} = E_q
\]

(8-36)

36.a.2.quanton inflationary interaction \((E_i)\)

Type : simple nonbinding (repulsive)

Inflationary interaction can be thought of as the result of the remaining part (nonbinding part) of free energy which is not involved in the interactions that generate the retaining interaction \((E_t)\), which is interacting with itself as a result of this interaction is the appearance of a repulsive interaction \((E_i)\) that causes quanton to expand,
the generated quanton inflationary interaction would be in the form

\[(E_i)_q = \alpha_i \left(\sqrt{(E_{sf} E_{tf})_{nonbinding}} \right)^2\] \hspace{1cm} (9-36)

\[= \alpha_i (K_q^2 \sqrt{(D_{sf} D_{tf})}) \cdot (K_q^2 \sqrt{(D_{sf} D_{tf})})\]

\[(E_i)_q = \alpha_i K_q^4 c = \frac{3\alpha_i h}{8\pi c^2 r_q^4}\] \hspace{1cm} (10-36)

\(\alpha_i\) : inflationary interaction parameter

the inflationary interaction is at the origin of inflation of quanton and subsequent division, which is a synonym with space fabric expansion, this self-interaction can be thought of as field of energy field of magnitude

\[\sqrt{(E_{sf} E_{tf})} \left(= \sqrt{(E_{sf} E_{tf})_{nonbinding}} \right)\]

interacting with another energy field of similar magnitude creating the repulsive interaction

the dimensions of such a energy-like interaction, which has one Dof, it should be \[\frac{\text{energy}}{\text{volume} \cdot \text{c}^3} = M L^{-4} T^1\]
While for the case of anti quanton, the inflationary energy

\[(E_i)_{aq} = \alpha_i \left(\sqrt{(E_{sc} E_{tc})_{nonbinding}} \right) \sqrt{(E_{sc} E_{tc})_{nonbinding}} \]

\[= \alpha_i \left(K_q^2 \sqrt{(D_{scb} D_{tcb})} \right)^2 \left(K_q^2 \sqrt{(D_{scb} D_{tcb})} \right) \]

\[(E_i)_{aq} = \alpha_i K_q^4 c = \frac{3\alpha/h}{8\pi c^2 r_q^4} \]

36.b-outside quanton

36.b.1-Space fabric binding interaction \((E_b)\)

Type: complex binding

as energy fields are not limited in range to inside the quanton,

the fields of the free energy outside the quanton interact with the

fields of the constrained energies of other quantons to generate

the binding interaction \((E_b)\) and vice versa

the generated binding interaction \((E_b)\) that is responsible

maintaining the space fabric integrity, it is represented by two

contributions due to quantons and anti quantons,
where \((E_{bi})_q\) is the binding interaction developed between the quanton \((q_i)\) and other quantons \((q_j)\) and anti quatons \((aq_j)\),

a-For the quantons case

\[
E_{bfi} = E_b(0)_{sbi}E_{tfbi} = \alpha_b \left((E_{sfi}E_{tfi})_{q-bound} \sum_j^n (E_{scj}E_{tcj})_q \right) \left(\frac{r_{qi}r_{qj}}{(r_i - r_j)} \right) + \\
+ \left((E_{sfi}E_{tfi})_{q-bound} \sum_j^n (E_{scj}E_{tcj})_{aq-bound} \right) \left(\frac{r_{qi}r_{qj}}{(r_i - r_j)} \right)
\]

\(= \alpha_b \left(K_q^2 \left((D_{sfi}D_{tfi})_q \sum_j^n K_q^2 \left(D_{scj}D_{tcj} \right) \right) \left(\frac{r_{qi}r_{qj}}{(r_i - r_j)} \right) \right) + \\
K_q^2 (D_{sfi}D_{tfi})_q \sum_j^n K_q^2 (D_{scbj}D_{tcbj})_{aq} \left(\frac{r_{qi}r_{qj}}{(r_i - r_j)} \right)
\]

\[
E_{bfi} = \alpha_b K_q^4 C^3 \left(\sum_{j}^n \left(\frac{r_q}{(r_i - r_j)} \right) + (\sum_{j}^n \frac{r_q}{(r_i - r_j)}) \right)
\]

\(= \frac{\alpha_b \hbar}{2} \frac{1}{\pi \sigma^r q^3} \left(\sum_{j}^n \left(\frac{1}{(r_i - r_j)} \right) + (\sum_{j}^n \frac{1}{(r_i - r_j)}) \right)
\]

(13-36)

Where the term \((D_{sfi}D_{tfi})_q\) represents the magnitude of bound part of the free energy \((E_{sfi}E_{tf})\) that interacts with constrained energy \((E_{scj}E_{tcj})\), \((r_i - r_j)\) : the distance between quantons \((q_i)\) and \((q_j)\) or anti quantons \((aq_j)\), \((i \neq j)\),
\(\alpha_b : \) binding interaction parameter

while the binding interaction due to the energy constrained field

\[E_{sc} E_{tc} \] will be in the form

\[
E_{bci} = E_{bi} \left(E_{sci} E_{tci} \right)_{q} = \alpha_b \left(\left(E_{sci} E_{tci} \right)_{q} \sum_{j}^{n} \left(E_{sfj} E_{tff} \right)_{q-bound} \right) \left(\frac{1}{r_{ij}} \right)
\]

\[+ \left(E_{sci} E_{tci} \right)_{q} \left(E_{sfj} E_{tff} \right)_{aq} \left(\frac{1}{r_{ij}} \right) \]

\[= \alpha_b K_q^4 \left(D_{sci} D_{tci} \right)_{q} \sum_{j}^{n} \left(D_{sfj} D_{tff} \right)_{aq} \left(\frac{1}{r_{ij}} \right) \]

\[= \alpha_b K_q^4 C^3 \left(\sum_{j}^{n} \frac{r_q}{(r_i - r_j)_{q-q}} \right) + \left(\sum_{j}^{n} \frac{r_q}{(r_i - r_j)_{q-aq}} \right) \]

\[E_{bci} = \frac{\alpha h}{2} \frac{1}{V_q} \left(\sum_{j}^{n} \left(\frac{1}{(r_i - r_j)}_{q-q} \right) + \left(\sum_{j}^{n} \frac{1}{(r_i - r_j)}_{q-aq} \right) \right) \]

which is the same expression as before or \(E_{bf} \left(\left(E_{sf} E_{tff} \right) \right) = \)

\[E_{bc} \left(\left(E_{sci} E_{tci} \right)_{q} \right) \] and this is due to the symmetry of interactions

of course no one will be counting any quantons, as the
summation can be handled by assessing energy density over an integration volume

as for the factor \(\frac{\sqrt{r_{qi} r_{qj}}}{(r_i - r_j)} \), while for a single quanton of a radius \(r_q \) it has a total binding energy between bound free energy fields \((E_{sfb} E_{tfb})\) and constrained energy fields \((E_{sc} E_{tc})\) that is

equivalent To \(E_{tp} = \int_{V_q} V E_t \ dV = \alpha_t \int_{V_q} (E_{sfb} E_{tfb}) (E_{sc} E_{tc}) \ dV \)

\[
= \alpha_t \frac{3h}{8(\pi)^5} k^4 V_q
\]

\[
= \frac{h}{2\alpha_t} \frac{1}{3\pi r_q^3} \frac{1}{r_q} V_q = \alpha_t \frac{h}{2r_q} \frac{1}{V_q} V_q = \alpha_t \frac{h}{2r_q}
\]

which says that the binding energy is directly proportional to \(\frac{1}{r_q} \),

now for the case of a virtual quanton whose radius now becomes \((r_i - r_j)\) instead of \(r_q \), the binding energy between the two energy fields inside two separate quantons \(q_i, q_j \) becomes

\[
E_{bp} = \alpha_b \left(\int_{V_{qi}} (E_{sfbi} E_{tfbi}) dV \int_{V_{qj}} (E_{scj} E_{tcj}) dV \right) \frac{\sqrt{r_{qi} r_{qj}}}{(r_i - r_j)}
\]
\[\alpha_b \ K_{qi}^2 \ (D_{sibi} \ D_{tibi}) \ K_{qj}^2 \ (D_{scj} \ D_{tcj}) V_q \ \sqrt{\frac{r_{qi} r_{qj}}{(r_1-r_j)}} \]

\[= \alpha_b \ c^3 \ \frac{h}{\sqrt{2} \ c^3 V_{qi} r_{qi}} \ \frac{h}{\sqrt{2} \ c^3 V_{qj} r_{qj}} \ V_q \ \sqrt{\frac{r_{qi} r_{qj}}{(r_1-r_j)}} \]

\[= \frac{\alpha_b \ h}{2(r_1-r_j)} \]

so, this factor \(\sqrt{\frac{r_{qi} r_{qj}}{(r_1-r_j)}} \) acts as a conversion factor for the calculation of the binding between any energy fields regardless weather they exist in the same quanton or not

36.b.2-Quanton repulsive interaction \((E_r) \)
Type : complex repulsive

Outside the quanton, the nonbinding part of the quanton free energy field \((E_{sfni}E_{tfni})_q \) generates a repulsive interaction with other quantons' nonbinding free energy \((E_{sfnj}E_{tfnj})_q \)

for quanton \((q_i) \)

\[E_r((E_{sfni} E_{tfni})_q) = \alpha_r \ ((E_{sfj}E_{tfi})_{q-nb} \ \sum_j^n (E_{sfj}E_{tfj})_{q-nb} \ \left(\frac{\sqrt{r_{qi} r_{qj}}}{(r_1-r_j)}\right)) \]

Quanton based model of space fabric interactions
\[= \alpha_r \left(K_q^2 D_{sfni} D_{tfni} \right)_q \sum_j^n \left(K_q^2 D_{sfnj} D_{tfnj} \right)_q \left(\frac{\sqrt{r_{qi} r_{qj}}}{(r_i - r_j)} \right) \]

\[= \alpha_r K_q^4 c^2 \sum_j^n \left(\frac{\sqrt{r_{qi} r_{qj}}}{(r_i - r_j)} \right) \]

\[= \alpha_r c^2 \frac{3h}{\sqrt{2\pi c^3 r_{qi}^4}} \sum_j^n \left(\frac{3h}{\sqrt{2\pi c^3 r_{qj}^4}} \right) \]

\[E_r = \frac{3 \alpha_r h}{8\pi c r_q^3} \sum_j^n \left(\frac{1}{(r_i - r_j)} \right) \]

\(\alpha_r \): repulsive interaction parameter

The dimensions of such an energy density interaction, which has two DoF's, should be \(\frac{\text{energy}}{\text{volume} \cdot c^2} \) \(= M \cdot L^{-3} \cdot T^0 \)

For anti quanton \((aq_i) \)

the generated interaction due to nonbinding energy

\((E_{scoli} E_{tcni})_{aq} \) outside the anti quanton is also a repulsive in nature in nature since this energy interacts with the surrounding anti quantons' nonbinding constrained energy field \((E_{sclj} E_{tcnj})_{aq} \) to
generate an repulsive interaction

\[E_{ri}((E_{scni})_{aq}) = \alpha_r((E_{sci}E_{tcni})_{nb} \sum_j (E_{scj}E_{tcj})_{nb} \left(\frac{r_{qi}r_{qj}}{(r_i-r_j)^3}\right)) \]

\[= \alpha_r(K_{qi}^2D_{scni}D_{tcni})_q \sum_j (K_{qj}^2D_{scnj}D_{tcnj})_q \left(\frac{r_{qi}r_{qj}}{(r_i-r_j)^3}\right) \]

\[= \alpha_r K_q^4 c^2 \sum_j \frac{\sqrt{r_{qi}r_{qj}}}{(r_i-r_j)_{aq-aq}} \]

\[= \alpha_r c^2 \sum_j \frac{2\sqrt{3h}}{8\pi c^3 r_{qi}^4} \sum_j \frac{2\sqrt{3h}}{8\pi c^3 r_{qj}^4} \left(\frac{\sqrt{r_{qi}r_{qj}}}{(r_i-r_j)_{aq-aq}}\right) \]

\[E_{ri} = \frac{3 \alpha_r h}{8 \pi c r_q^3} \sum_j \left(\frac{1}{(r_i-r_j)_{aq-aq}}\right) \]

the distribution of anti quantons in the space fabric is not according to haphazard, in fact the anti quantons are arranged in a diagonal manner , which ensures the minimization of the relatively weaker quanton repulsive interaction \((E_r) \)

while repulsive interaction does exist between quantons , its effects are overridden by the presence of much stronger binding interaction \((E_b) \), and ,this is due to that fact that it has (3) Dof’s
(more field strength) while the repulsive interaction has only

(2) Dof’s

37. How space fabric binding interaction (E_b) is generated

1- energy fields out of the quanton, which generate the quanton

binding interaction are also at the origin of dark matter gravitation

like effect as well as at the origin of gravitation

if no inter-quanton binding were not present, there would have

been no gravitational like effect of dark matter, nor gravitation for normal matter

2-The generated free energy fields out of the quanton are not in

the form of ($E_{sf}E_{tf}$) (2.5 Dof’s), instead the free energy field

out of the quanton is divided into two parts:

first part which is the binding part which enters into the interaction

that forms the retaining interaction (E_t) or ($E_{sf}E_{tf}$)$_{q-bound}$ =

Quanton based model of space fabric interactions
\[K_q^2(D_{sfb}D_{tfb})_q \] and has (1.5 Dof's) and the second part which generates the quanton inflationary interaction \((E_i)\) namely the non binding part \(((E_{sfn}E_{tfn})_q = K_q^2(D_{sfn}D_{tfn})_q\) which has one (0.5+0.5) degree of freedom, so we can summarize the energy fields that are generated out of the quanton as follows

- \(a = E_{sc}E_{tc}\) (1.5 Dof’s) (bound constrained energy)
- \(b - (E_{sf}E_{tf})_{\text{bound}}\) (1.5 Dof’s) (bound free energy)
- \(c - (E_{sf}E_{tf})_{\text{nonbinding}}\) (0.5+0.5 Dof) (n-b self-interacting free energy), and for anti quanton case
- \(a = E_{sf}E_{tf}\) (1.5 Dof’s) (bound free energy)
- \(b - (E_{sc}E_{tc})_{\text{bound}}\) (1.5 Dof’s) (bound constrained energy)
- \(c - (E_{sc}E_{tc})_{\text{nonbinding}}\) (0.5+0.5 Dof) (n-b constrained energy)

3-each energy field can interact with an energy field of a similar Energy degrees of freedom but opposite type
4-the free energy field \((E_{sf}E_{tf})_{bound}\) of the quanton or \((E_{sf}E_{tf})\) of the anti quantons enters in an interaction with the constrained energy field \((E_{sc}E_{tc})\) of the other quantons or \((E_{sc}E_{tc})_{bound}\) of the anti quantons which generates a more stable binding energy rather than the less stable repulsive interaction with an energy field of the same nature

5- bound energy fields out of the quanton are symmetric to those out of the anti quanton (1.5 Dof’s of each energy type), and they all the generate a binding interaction \((E_b)\)

38. Dimensions of energy field interactions

While interactions that generate real energy density have 4 Dof’s, interactions that involve space fabric, have different dimensions generally, the number of energy Dof’s involved in an interaction is what determines its dimensions

From the previous discussion, we can deduce some rules
regarding the dimensionality of an interaction \((E_i) \) that involves

(\(Do f_i = x \)) degrees of freedom

dimensions of \([E_i] = \left(\frac{\text{energy}}{\text{volume}} \right) \left(\frac{1}{e^{4-x}} \right) = \)

\[
\text{Dim} [E_i] = M L^{2-3+4+x} T^{-2+4-x} = M L^{x-5} T^{2-x} = \left[\frac{M L^{x-2} T^{2-x}}{\text{volume}} \right]
\]

\[
= \frac{\text{energy}}{\text{volume}} \left(\frac{T^x}{L^x} \right)
\]

For the special case of \(x = 4 \), \([E_{D_4}] = M L^{-1} T^{-2} = \left(\frac{\text{energy}}{\text{volume}} \right)\)

39. energy division between various interactions

For the case of space fabric interactions, the total energy of each interaction inside the quanton can be assessed directly via the volumetric integration again the relationship between the individual interaction density and the total interaction density inside the quanton is not only volumetric but based on energy degree of freedom, this time in terms of the constant \(c \)
total retaining energy inside the quanton can be calculated as

\[E_{tp} = \int_{V_q} E_t \ dV = E_t \ V_q = \alpha_t \int_{V_q} \frac{E_q}{c} \ dv \quad \text{(dimensions: } \frac{\text{energy}}{c} \text{)} \]

(1-39)

the inflationary interaction \(E_{ip} \)

\[E_{ip} = \int_{V_q} E_i \ dV = E_i \ V_q = \alpha_i \int_{V_q} \frac{E_q}{c^3} \ dv \quad \text{(dimensions: } \frac{\text{energy}}{c^3} \text{)} \]

(2-39)

the binding interaction \(E_{bp} \)

\[E_{bp} = \int_{V_q} E_b \ dv = E_b \ V_q = \alpha_b \int_{V_q} \frac{E_q}{c} \ dv \quad \text{(dimensions: } \frac{\text{energy}}{c} \text{)} \]

(3-39)

the repulsive interaction \(E_{rp} \)

\[E_{rp} = \int_{V_q} E_r \ dv = E_r \ V_q = \alpha_r \int_{V_q} \frac{E_q}{c^2} \ dv \quad \text{(dimensions: } \frac{\text{energy}}{c^2} \text{)} \]

(4-39)

\(\alpha_t, \alpha_i, \alpha_b, \alpha_r \ldots \) : interaction dimensionless parameters

In this case where each interaction can be calculated as the result of density integration over the quanton volume is possible compared to the case of individual energy fields \(E_{sf}, \ldots \) where it is not possible to calculate individual energy field energies inside...
the quanton and the reason behind this is that each interaction is in terms of K_q^4 which is not the case for individual energy fields where integrations of the form $E_{sf} = \int_{V_q} E_{sf} \, dV$ are not possible, in general

$$E_p = (cE_{tp} + c^3E_{ip} + cE_{bp} + c^2E_{rp} \ldots)$$ (5-39)

Unfortunately for the interaction parameters α_t, α_i, α_b, α_r and at this moment there is no analytic relationship to determine them directly, however it can be predicted (without mathematical proof) that as r_q increases α_t would decrease, reflecting a weaker internal binding and α_b increases which reflects (leaking) field to the outside of the quanton so as to develop a stronger binding interaction which counteracts the greater inter quanton distances and maintains the space fabric integrity.
The relationship between quanton total energy and the total energy of various interactions

The last relationship allows for the calculation of the interactions not in terms of density but in terms of

\[
\frac{\text{energy}}{c^4 \text{-interaction Dof}}
\]

for the total retaining interaction inside the quanton

\[
E_{tp} = \alpha_t \int_{V_q} \frac{E_q}{c} \, dv = \alpha_t \int_{V_q} \frac{E_q}{c} \, dv = (\int_{V_q} (E_{sf}E_{tf})_{\text{bound}} (E_{sc}E_{tc})) \, dV
\]

\[
= \alpha_t ((K_q^2(D_{sfb}D_{tfb})) (K_q^2(D_{sc}D_{tc})) V_q
\]

(6-39)

\[
E_{tp} = \alpha_t K_q^4 c^3 V_q = \alpha_t \frac{3h k^4}{8\pi^5} = \alpha_t \frac{1}{2 \frac{4\pi}{3} r_q^3 r_q} V_q
\]

Based on the simplification of spherical quanton and a uniform...
field throughout, \(V_q = \frac{4}{3} r_q^3 \)

\[E_{tp} = \alpha_t \frac{h}{2r_q} \text{ as before} \quad (7-39) \]

While for the inflationary interaction

\[E_{ip} = \alpha_i \int_{V_q} \left(\frac{(E_{sf} E_{tf})_{\text{nonbinding}}}{\sqrt{}} \right)^2 dV \]

\[= \alpha_i \frac{h}{2r_q c^2} V_q = \alpha_i \frac{h}{2r_q c^2} \quad (8-39) \]

for the binding interaction \(E_{bp} = \)

\[\alpha_b \left(\int_{V_q} (E_{sfi} E_{tfi})_{q-\text{bound}} \sum \int_{V_q} (E_{scj} E_{tcj})_q dV \right) \frac{\sqrt{r_q l r_q}}{(r_l - r_j)} + \]

\[\int_{V_q} (E_{sfi} E_{tfi})_{q-\text{bound}} dV \sum \int_{V_q} (E_{scj} E_{tcj})_{aq-\text{bound}} dV \right) \frac{\sqrt{r_q l r_q}}{(r_l - r_j)} \]

\[= \alpha_b (K_{qi}^2 (D_{sfbi} D_{tfbi})_q \sqrt{V_{qi}} \sum \int_{V_q} K_{qj}^2 (D_{scbj} D_{tcbj})_q \sqrt{V_{qj}} \frac{\sqrt{r_q l r_q}}{(r_l - r_j)}) \]

\[+ K_{qi}^2 (D_{sfbi} D_{tfbi})_q \sqrt{V_{qi}} \sum \int_{V_q} K_{qj}^2 (D_{scbj} D_{tcbj})_aq \sqrt{V_{qj}} \frac{\sqrt{r_q l r_q}}{(r_l - r_j)} \]

\[E_{bp} = \]
\[
\alpha_b c^3 \frac{2}{\sqrt{2V_q c^3 r_{q_l}}} \sqrt{V_q} \left(\sum_j^n \frac{h}{2V_q c^3 r_{q_j}} \sqrt{V_q} \sqrt{r_{q_i} r_{q_j}} \right) + \sum_j^n \frac{h}{2V_q c^3 r_{q_j}} \sqrt{V_q} \sqrt{r_{q_i} r_{q_j}} \right)
\]

\[
= \frac{\alpha_b h}{2} \left(\sum_j^n \left(\frac{1}{(r_{i-j})_{q-j}} \right) \right) + \left(\sum_j^n \frac{1}{(r_{i-j})_{q-aq}} \right) \quad (9-39)
\]

For interactions outside the quanton and due to the symmetry of Fields (in the form of both fields having the same parameter \(K_q^2\))

and the same Dof (x), this allows for the following integration

which is valid for both inside and outside the quanton

\[
E_{binding} = \alpha_b \int_{V_{q_l}} E_{sf_i} E_{sc_j} \ dV = \int_{V_q} K_{q_i}^2 c^x dV \int_{V_{q_j}} K_{q_j}^2 c^x dV \left(\frac{r_{q_i} r_{q_j}}{(r_{i-j})} \right)
\]

\[
= \alpha_b c^{2x} \int_{V_{q_l}} \frac{2}{\sqrt{2V_q c^3 r_{q_i}}} \ dV \int_{V_{q_j}} \frac{2}{\sqrt{2V_q c^3 r_{q_j}}} \ dV \left(\frac{r_{q_i} r_{q_j}}{(r_{i-j})} \right)
\]

\[
= \alpha_b \frac{h}{2c^{3-2x}} \left(\frac{1}{(r_{i-j})} \right) \quad (10-39)
\]

40. The inverse relationship between wave length / energy – a possible explanation

The quanton retaining (binding) interaction took the form

\[
E_t = \alpha_t (E_{sf_b} E_{tf_b})(E_{sc} E_{tc}) \] , unlike any other potentials Like

Quanton based model of space fabric interactions
$U_g = G \frac{M m}{r}$ or $U_e = K \frac{Q_i Q_j}{r}$, do not have the term ($\frac{1}{\Delta r}$).

In fact, the quanton, like any other quantum system has its energy which is defined as $E_p = \frac{hkc}{2\pi}$, can alternatively be written as

$E_p(\text{packet energy}) = \frac{hkc}{2\pi} = \frac{hc}{2r_q} (\text{where } k = \frac{\pi}{r_q})$

While $E_{tp} = \int_{V_q} E_t \, dv = E_t V_q = \frac{a_e h}{2 r_q}$

(E_{tp} : total retaining energy inside quanton)

which shows that the quanton radius is inversely proportional to retaining energy (a binding type interaction), which already satisfies the inverse law as the quanton energy E_p decreases, its retaining energy decreases and consequently quanon radius and its wave length increases, this shows that the term $\frac{1}{r_q}$ is inherently present in the retaining interaction relationship as well as all forms of quanton interactions and is like any the form of potential and for the
particular case of electromagnetic waves, the inverse relationship between the wavelength and the energy of the wave is an expression of an increased / decreased binding energy and the corresponding change in the relativistic quanton dimensions or the wave length, while there are some other repulsive potentials that exist in the quanton like the inflationary interaction \((E_i)\) and the repulsive interaction \((E_r)\), the binding type interactions remains the dominant in nature since they possess the greatest number of energy Dof’s

41. Quanton stable degrees of freedom- role of symmetry of interactions

The condition of interaction between free and constrained energies

\[
(E_{sf}E_{tf})_{bound} = (E_{sc} E_{tc}) \text{ or } (D_{sfb}D_{tfb}) = (D_{sc} D_{tc})
\]

Though necessary, but not sufficient,

for a stable interaction, the condition becomes
\[\frac{E_{sfb}}{E_{tfb}} = \frac{E_{sc}}{E_{tc}}, \text{ which reduces to } \frac{D_{sfb}}{D_{tfb}} = \frac{D_{sc}}{D_{tc}} \quad (1-41) \]

or \((D_{sfb} D_{tc}) = (D_{sc} D_{tfb}) \quad (2-41) \)

these are degree of freedom of the energy fields in a wave like

Form \((E_{qf} \text{ and } E_{qc} \text{ form})\), which define the symmetry of the

bound part of free dominated wave like and the constrained

dominated part

as the free energy field \((E_{sf} E_{tf})_{\text{bound}}\) and the constrained energy

\((E_{sc} E_{tc})\) become bound together, the individual degrees of

freedom of the free \(\text{ and constrained space and time varying energy}\)

field go through a rearrangement to achieve the symmetry of the

interaction such that

\[D_{of tf} = D_{of tc}, D_{of sfb} = D_{of sc} \quad \text{for quantons} \]

\[D_{of tf} = D_{of tc}, D_{of scb} = D_{of sf} \quad \text{for anti quanton} \]

this symmetry ensures the stability of the interaction by reducing
the resultant wave behaviour of the generated interacting fields

This rearrangement, which is managed through energy constraining, takes the following form for the quanton

<table>
<thead>
<tr>
<th>Energy field</th>
<th>Transient Dof's</th>
<th>Stable Dof's</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{sfb} E_{tfb}$ (bound)</td>
<td>1.5</td>
<td>1.50</td>
</tr>
<tr>
<td>$E_{sfh} E_{tfh}$ ((nonbinding)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>E_{sf}</td>
<td>2.25</td>
<td>2.00</td>
</tr>
<tr>
<td>E_{tf}</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>E_{sc} (bound)</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>E_{tc} (bound)</td>
<td>0.75</td>
<td>0.50</td>
</tr>
</tbody>
</table>

and for anti quanton

<table>
<thead>
<tr>
<th>Energy field</th>
<th>Transient Dof's</th>
<th>Stable Dof's</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{sbh} E_{tch}$ (bound)</td>
<td>1.5</td>
<td>1.50</td>
</tr>
<tr>
<td>$E_{shc} E_{tsh}$ ((nonbinding)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>E_{sh}</td>
<td>2.25</td>
<td>2.00</td>
</tr>
<tr>
<td>E_{tc}</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>E_{sf} (bound)</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>E_{tf} (bound)</td>
<td>0.75</td>
<td>0.50</td>
</tr>
</tbody>
</table>

cancellation of the wave like behaviour between different fields takes place, for retaining interaction

$$E_t = \alpha_t(E_{qf})_{\text{bound}}E_{qc}$$
\[\alpha_t (K_{sf} K_{tc}) (D_{sfb} D_{tb}) (\psi_{sf} \psi_{tc}) (K_{sc} K_{tfb}) (D_{sc} D_{tfb}) (\psi_{sc} \psi_{tf}) \]

\[= \alpha_t K^4_q (D_{sfb} D_{tfb}) (D_{sc} D_{tc}) (\psi_{sf} \psi_{sc}) (\psi_{tf} \psi_{tc}) \]

\[= \alpha_t K^4_q (D_{sfb} D_{tfb}) (D_{sc} D_{tc}) \]

\[E_t = \alpha_t (E_{sf} E_{tf})_{\text{bound}} (E_{sc} E_{tc}) \]

42. Role of individual energy fields in the formation of space fabric

<table>
<thead>
<tr>
<th>Energy field</th>
<th>Role inside quanton</th>
<th>Role outside quanton (short range)</th>
<th>Interaction at cosmological scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{sfb} E_{tfb}$ (bound)</td>
<td>Quanton retaining interaction E_t</td>
<td>Quanton binding interaction E_b</td>
<td>Dark matter gravitational like effect</td>
</tr>
<tr>
<td>$E_{sc} E_{tc}$ (bound)</td>
<td>Quanton retaining interaction E_t</td>
<td>Quanton binding interaction E_b</td>
<td>Dark matter gravitational like effect</td>
</tr>
<tr>
<td>$E_{sfn} E_{tfn}$ (nonbinding)</td>
<td>Quanton inflationary interaction E_i</td>
<td>Quanton repulsive interaction E_r</td>
<td>Matter distortion of space fabric</td>
</tr>
</tbody>
</table>

summary of the role of individual energy fields and their interactions at Planck and cosmological scale for the quantons of space fabric
Fig(9). Summary of the Planck scale interactions and their energy field of origin for quantons of space fabric

<table>
<thead>
<tr>
<th>structure</th>
<th>quanton</th>
<th>Anti quanton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational like effect of dark matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quanton binding interaction E_b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quanton binding interaction E_b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quanton Inflationary interaction E_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quanton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(E_{sfbi}E_{tfbi})$ (bound)</td>
<td>E_b</td>
<td>N/A</td>
</tr>
<tr>
<td>$(E_{sci}E_{tcji})$ (bound)</td>
<td>E_b</td>
<td>N/A</td>
</tr>
<tr>
<td>$(E_{sfni}E_{tfni})$ (nonbinding)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Anti quanton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(E_{scbi}E_{tcbi})$ (bound)</td>
<td>E_b</td>
<td>N/A</td>
</tr>
<tr>
<td>$(E_{sfi}E_{tffi})$ (bound)</td>
<td>N/A</td>
<td>E_b</td>
</tr>
<tr>
<td>$(E_{scni}E_{tcni})$ (nonbinding)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Summary of the generated field interactions outside quanton / anti quanton due to different energy fields.
43. Conclusions

Uniformity and homogeneity of CMB testifies to its origin which is the release of radiation from the space fabric as a direct result of the process of free expansion of the universe (second law of Thermodynamics), this gives a gateway for further understanding of the quanton interactions.

44. References

Basic physics