Confirmation of VL4 as complete

© Copyright 2019 by Colin James III All rights reserved.

Abstract: Logic VL4 is defined as a bivalent classical logic that maps quantifiers to modalities as a tautology making VL4 complete. Paraconsistent, non bivalent, vector logics are defined as *non* tautologous fragments of VL4 as a universal logic.

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, \(F \) as contradiction, \(N \) as truthity (non-contingency), and \(C \) as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

Logic VL4, for variant MŁₜₜ, is a bivalent classical logic that maps quantifiers to modalities: the existential quantifier is equivalent to the modal operator of possibility; and the universal quantifier is equivalent to the modal operator of necessity. This definition is expressed in words as:

\[
\text{The possibility of } p \text{ implying the necessity of } p \text{ implies}
\]
\[
\text{the possibility of } q \text{ implying the necessity of } q. \quad (1.1)
\]

\[\begin{align*}
((%p>#p)>((%q>#q)); \\
TTTT TTTT TTTT TTTT
\end{align*}\]

(1.2)

Eq. 1.2 as rendered invokes the equivalence of the quantifiers to modal operators to map the logical value of non contingency \(N \) or truthity to imply the logical value of non contingency \(N \) or truthity. Eq. 1.2 results in \(T \) or tautology as self proving and complete.

Paraconsistent, non-bivalent, vector logics are expressed in words as:

\[
\text{The possibility of } p \text{ implying the necessity of } p \text{ implies}
\]
\[
\text{the possibility of } q \text{ *not* implying the necessity of } q. \quad (1.1)
\]

\[\begin{align*}
(%p>#p)>(%q<#q) ; \\
cccc cccc cccc cccc
\end{align*}\]

(2.2)

Eq. 2.2 invokes the logical value of non contingency \(N \) or truthity to imply the logical value of contingency \(C \) or falsity. Eq. 2.2 results in \(C \) or falsity as *not* tautologous.

VL4 classifies conjectures as a tautologous or *not* tautologous result, with the latter to include the contradictory result. This qualifies VL4 as a universal logic because it maps known logics, some of which as *non* tautologous fragments of VL4, another indication that VL4 is complete.