
A proof of Sophie Germain primes conjecture

Marko V. Jankovic

ARTORG Centre for Biomedical Engineering Research,

University of Bern,

Murtenstrasse 50, 3008 Bern, Switzerland

Abstract

In this paper a proof of the existence of an infinite number of Sophie Germain

primes, is going to be presented. In order to do that, we analyse the basic formula for

prime numbers and decide when this formula would produce a Sophie Germain prime,

and when not. Originally very difficult problem (in observational space) has been

transformed into a simpler one (in generative space) that can be solved by elementary

math.

1 Introduction

A prime p is a Sophie Germain prime if 2p + 1 is prime, too [1]. In that case the prime

number 2p + 1 is called safe prime. These special primes have applications in public key
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cryptography, pseudorandom number generation, and primality testing; see, for example,

[2, 5, 7]. Originally, they have been used also in the investigation of cases of Fermat’s last

theorem [3]. It has been conjectured that there exist infinitely many Sophie Germain primes,

but this was unproven (see for instance, [6]).

In this paper it is going to be proved that exists an infinite number of Sophie Germain

primes. The problem is addressed in generative space, which means that prime numbers are

not going to be analysed directly, but rather their representatives, in the other space, that

can be used to produce them.

In a very similar manner, it is possible to prove Twin Prime Conjecture and Polignac’s

conjecture for cousin primes[4].

Remark: Prime numbers 2 and 3 are in a sense special primes, since they do not share

some of the common features of all other prime numbers. For instance, every prime number,

apart from 2 and 3, can be expressed in the form 6l + 1 or 6l − 1, where l ∈ N . So, in this

paper most of the time we analyse prime numbers bigger than 3. It has to be said that both

2 and 3 are Sophie Germain primes, but that has no impact on the conclusion of this paper.

2 Proof

It is easy to check that any prime number (apart form 2 and 3) can be expressed in the form

6l + 1 or 6s− 1 (l, s ∈ N). Having that in mind it is easy to check that numbers in the form

6l + 1, could never be Sophie Germain primes since the safe prime is in the form

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1)
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and that is composite number divisible by 3. So, the prime number that can potentially be

Sophie Germain prime must be in the form 6s− 1 and then the safe prime is going to be in

the form 6(2s)− 1.

We denote any composite number (that is represented as a product of prime numbers

bigger than 3) with CPN5. Also, we mark with mpl a number in the form 6l + 1, and

with mps a number in the form 6s− 1 (l, s ∈ N). In that case, it is easy to check that any

composite number CPN5 can be expressed in the form mpl×mpl, mps×mps or mpl×mps.

So, if we have a number in the form 6k − 1 that is composite number it must hold

k =
CPN5 + 1

6
. (2.1)

Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product

mpl ×mps, or

mpl = 6x + 1 and mps = 6y − 1(x, y ∈ N),

which leads to

CPN5 = mpl ×mps = 6(6xy − x + y)− 1, (2.2)

or, due to symmetry

mpl = 6y + 1 and mps = 6x− 1,

which leads to

CPN5 = mpl ×mps = 6(6xy + x− y)− 1. (2.3)
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So, if we replace (2.2, 2.3) in (2.1) we obtain forms for all k that potentially cannot produce

a prime number. Those forms are expressed by the following equation

k =


(6x− 1)y + x

(6x + 1)y − x

, (2.4)

where x, y ∈ N .

Also, we know that safe prime which is generated by 2k cannot be composite. If the safe

number is composite the following equation must hold

k =
CPN5 + 1

6× 2
, (2.5)

where CPN5 is composite number in the mps form. Using the same analysis as in the

previous case, and replacing (2.2) and (2.3) in (2.5), we obtain additional cases in which k

cannot be used to produce Sophie Germain prime pairs, and they are defined by the following

equation

k =



(6x− 1)y + x
2
, x is even

(6x + 1)y − x
2
, x is even

(6x− 1)y + 3x + x−1
2

, x is odd

(6x + 1)y − 3x− x+1
2

, x is odd

, (2.6)

where x, y ∈ N . Equations (2.4) and (2.6) give a sufficient and necessary condition for k, so

that it cannot be used for generation of the prime pairs in the form(p, 2p + 1). In order to

prove that there are infinitely many prime pairs in the form (p, 2p+1) we need to prove that

exists infinitely many k that cannot be expressed in the form (2.4) or (2.6). In order to do

it, the number of k that cannot be expressed in the forms (2.4, 2.6) is going to be calculated.

First, we will check the form of (2.4, 2.6) for some values of x.



5

Case x = 1 Case x = 2 Case x = 3 Case x = 4

k = 5y + 1 k = 11y + 2 k = 17y + 3 k = 23y + 4

k = 5y + 3 k = 11y + 1 k = 17y + 10 k = 23y + 2

k = 7y − 1 k = 13y − 2 k = 19y − 3 k = 5(5y − 1) + 1

k = 7y − 4 k = 13y − 1 k = 19y − 11 k = 5(5y − 1) + 3

Case x = 5 Case x = 6 Case x = 7 Case x = 8

k = 29y + 5 k = 7(5y + 1)− 1 k = 41y + 7 k = 47y + 8

k = 29y + 17 k = 5(7y) + 3 k = 41y + 24 k = 47y + 4

k = 31y − 5 k = 37y − 6 k = 43y − 7 k = 7(7y − 1)− 1

k = 31y − 18 k = 37y − 3 k = 43y − 25 k = 7(7y − 1) + 3

From examples, we can see that if (6x− 1) or (6x + 1) represent composite number, k that

is represented by that number has also representation by one of the prime factors of that

composite number. This can be easily proved in the general case, by direct calculation using

representations similar to (2.2, 2.3). Here only one case is going to be analysed. All other

cases can be analysed analogously. In this case we assume

(6x− 1) = (6l + 1)(6s− 1),

where (l, s ∈ N). From previous equation x can be expressed as

x = 6ls− l + s.

Having that in mind, and selecting one representation of k that includes form (6x − 1), we
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have

k = (6x− 1)y − x = (6l + 1)(6s− 1)y − 6ls + l − s

or

k = (6l + 1)(6s− 1)y − s(6l + 1) + l = (6l + 1)((6s− 1)y − s) + l,

which means

k = (6l + 1)f + l

and that represents already existing form of the representation of k for factor (6l+ 1), where

f = (6s− 1)y − s.

So, we can see that all patterns for k that potentially result in composite number, include

prime numbers andit is going to be checked is the number of k that cannot be represented

by the models (2.4, 2.6) finite or infinite. In order to do it, a method similar to the sieve of

Eratosthenes [8] is going to be used. When all numbers that can be represented in form

5y + 1 and 5y + 3,

are removed from natural numbers, it can be seen that r1 = 2/5 of all natural numbers are

removed. So, c1 = 1 − 2/5 = 3/5 of all natural numbers cannot be represented by those

two patterns and they still contain some k that could be used for representation of Sophie

Germain primes. If, now, in addition, the natural numbers in the form

7y − 1 and 7y − 4,
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are removed, then the ratio of removed numbers can be calculated by the following equation

(together with previously removed numbers, and taking care that every removed number

is calculated only once; basically, we apply the formula for calculation of the probability of

occurring of two events that are not mutually exclusive P (A∪B) = P (A)+P (B)−P (A∩B))

r2 = r1 +
2

7
− 2

7
× r1 = r1 +

2

7
(1− r1) =

2

5
+

2

7

(
1− 2

5

)
=

20

5× 7
.

So, we have

c2 = 1− r2 = 1− r1 −
2

7
(1− r1) =

(
1− 2

7

)
× c1 =

3× 5

5× 7
,

of all natural numbers that potentially can be used for ”generation” of Sophie Germain

primes.

Now, we denote prime numbers bigger than 3 as p5, and define set S as

S = {p5(1), p5(2), ..., p5(i)},

where i is a natural number (in this moment we consider i bigger than 2), and p5(1) = 5,

p5(2) = 7 and so on. So, after removal of ith pair of numbers related to the ith p5, we will

have

ri = 21
∑
p∈S

1

p
− 22

∑
p,q∈S,
p 6=q

1

p× q
+ 23

∑
p,q,r∈S,
p 6=q 6=r

1

p× q × r
+ ... + (−1)i+12i

∏
p∈S

1

p
,

and

ci = 1− ri =

∏
p∈S(p− 2)∏

p∈S p
.

This formula can be proved by using mathematical induction method (but also by some

other methods). Here we briefly present the induction method.
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We have already seen that basis of the induction method for i = 2 is already satisfied.

We suppose that formula holds for i = n. Now, we are going to prove that it holds for

i = n + 1, too. So, since it holds

cn = 1− rn =

∏n
j=1(p5(j)− 2)∏n

j=1 p5(j)
,

also holds

rn = 1− cn =

∏n
j=1 p5(j)−

∏n
j=1(p5(j)− 2)∏n

j=1 p5(j)
.

When we remove the next pair of numbers that correspond to p5(n + 1) we have

rn+1 = rn +
2

p5(n + 1)
− 2

p5(n + 1)
× rn.

After a few elementary calculations, we obtain the following equation

rn+1 =

∏n+1
j=1 p5(j)−

∏n+1
j=1 (p5(j)− 2)∏n+1

j=1 p5(j)
= 1−

∏n+1
j=1 (p5(j)− 2)∏n+1

j=1 p5(j)
,

which means that cn+1 is defined by the following equation

cn+1 =

(
1− 2

p5(n + 1)

)
× cn =

∏n+1
j=1 (p5(j)− 2)∏n+1

j=1 p5(j)
, (2.7)

and that concludes the proof.

If we continue process until we remove all possible patterns (defined by (2.4, 2.6)) related

to all prime numbers bigger than 3 (and that is an infinite number), the nominator cn is

given by

C = lim
n→+∞

(
cn ×

n∏
j=1

p5(j)

)
=

+∞∏
j=1

(p5(j)− 2).
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It can be easily concluded that C is an infinite number. Beside that, if we consider the case

of irreducible cn, the value of the nominator of irreducible cn, at the end of the process, is

given by the following equation

Cir = lim
n→+∞

(nominator(irreducible(cn))) =
+∞∏
j=1

(p5nt(j)− 2), (2.8)

where p5nt represents p5 numbers that do not have a twin prime bigger than them. Again,

it can be easily concluded that Cir is an infinite number. That implies that the number of k

that can not be represented by (2.4, 2.6) is infinite. Why is it so, it is going to be explained

in the next section, in an elementary manner. That concludes the proof that number of

Sophie Germain primes is infinite. Here we are going to present an alternative way. From

(2.7) we know that the following relation holds

cn+1 =

(
1− 2

p5(n + 1)

)
× cn. (2.9)

That can be interpreted that in every step we remove 2/p5(n + 1) numbers of what is left

for potential representation of Sophie Germain primes. If we consider one additional process

CA where we in every step remove 2/5 of the numbers that is left, we can represent it as

can+1 =

(
1− 2

5

)
× can. (2.10)

From (2.9) and (2.10) we can easily conclude that the following equation holds

can+1 < cn+1, n ∈ N. (2.11)
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However, it is not difficult to be seen that removal of the 2/5 of the numbers from those

that are left, will result in infinite numbers that cannot be removed, at the end of the

process. In other words, infinite number of the natural numbers cannot be removed by the

process CA (this will also be analysed in the next section, in an elementary way, by box and

ball experiment). Having that in mind, and equation (2.11), we can also conclude that the

process proposed by (2.4, 2.6), will leave an infinite number of the numbers that cannot be

represented by (2.4, 2.6). That concludes an alternative the proof that number of Sophie

Germain primes is infinite.

3 Explanation

In this section it is going to be explained in an elementary manner, why the fact that

Cir → +∞ means that number of Sophie Germain primes is infinite.

In order to do that, it is going to be assumed that an infinite number of numbered balls

(with all natural numbers written on them only once), as well as, infinite number of boxes

of infinite size, are available. Sieve elimination process (SEP) is going to be explained by

usage of the balls and boxes. In other words, for every SEP a corresponding BB (balls and

boxes) experiment is going to be constructed. Also, we define sieve elimination thread (SET)

as a infinite series of numbers (e.g. 5y − 1, y ∈ N). Fact that balls are numbered is not

in any sense critical for reasoning and making decisions, but, sometimes, is helpful in the

sense that it is easier to understand underlying processes. For instance, if we remove a SET

(5y−1, y ∈ N)- that means that we remove one fifth of all balls - we can (but we do not have
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to) remove the balls with numbers defined by SET - important thing is to remove one fifth

of all balls. As it is going to be shown in the following example, if you stick to the numbers

on the balls that are moved (rather than number of the balls that are moved), numbers can,

even, create a small problem.

Example 1

Now, two experiments are going to be analysed.

First experiment: Imagine that balls with all natural numbers on them (written just

once) are in source box (SB), that has the size of the number of natural numbers, and that

we have another experimental box (EB) of proper size.

In a moment 1 minute before midnight, we are going to move balls with numbers 1 to

10 from SB to EB, and remove the ball with number 10 on it. In the 1/2 minute before

midnight, balls marked 11-20 are transferred to EB, and ball with number 20 is removed

from EB. We continue the process at the moments 1/2n, n ∈ N minute before midnight -

put balls with numbers n ∗ 10 + 1 to (n + 1) ∗ 10 and remove ball with number (n + 1) ∗ 10.

The question is: What is the number of the balls in the EB at midnight? And the answer is

obvious and you can say it is infinite.

Second experiment: Again, imagine that balls with all natural numbers on them (written

just once) are in one box (source box SB - that has the size of the number of natural numbers)

and that we have another empty box (experimental box - EB) of proper size.

In a moment 1 minute before midnight, we are going to move balls with numbers 1 to 10

from SB to EB, and remove the ball with number 1 on it. In the 1
2

minute before midnight,
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balls marked 11-20 are transferred to EB, and ball with number 2 is removed from EB. We

continue the process at the moments 1
2n
, n ∈ N minute before midnight - put balls with

numbers n∗10+1 to (n+1)∗10 and remove ball with number n+1. The question is: What

is the number of the balls in the EB at midnight? And the answer seems obvious and you

can say it is infinite. However, if you are asked to specify a ball with any specific number

that is still in the EB, you would not be able to do it. The reason is quite obvious - for any

number you choose you can specify the moment in time in which the ball with that number

has been removed from the EB.

So, numbers on the balls are not relevant for the reasoning - in both experiments, that

were previously analysed, the process was following - put 10 balls in the EB and then remove

one - or very simplified put nine balls in EB in every step. If there is no collapse of elementary

reasoning (CER), we can safely conclude that number of the balls in the EB at midnight is

infinite. For instance if we can conclude that

1 + 2 + 3 + 4 + ... = − 1

12
,

we obviously have a CER problem. Standard summation of infinite series of natural numbers

give us as a solution plus infinity, and in that case we have no CER problem.

Now, the following problem could be analysed: If we create a SEP using infinitely many

SETs and create corresponding BB experiment, could we know is the number of balls in the

EB at the end of BB experiment, finite or infinite? It is going to be shown that it is possible

to answer that question under assumption that we do not suffer from CER.
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In every experiment, from now on, we will move all the balls form SB to a EBs of size

1. Then, every x, x ∈ N boxes would be fused and some fraction of the balls is going to be

removed from each EB. The x is selected in such a way that it ensures that natural number

of the balls is removed from the EBs. If the ratio of the number of the balls in EB and size

of the EB, after removal, can be reduced, it has to be reduced before next step. Why is it

so, it is going to be explained in the second experiment of Example 2.

Example 2

First experiment: The following SEP and corresponding BB experiment are going to

be analysed (at the beginning, the balls whose number is equal to the number of natural

numbers are in SB, and natural number of empty EBs of size 1 is available):

STEP 1 - (1 minute before midnight). Move all balls from SB to infinite number of EB

of size 1. Then, fuse every 2 EBs (that, now, have size equivalent to the size of 2 balls), and

then remove one ball from each EB and put it back in the SB. So, in the moment 1 minute

before midnight a half of the balls (also we can say a half of the natural numbers - again it

is not important what are the numbers on the balls) are removed from the EBs and put to

SB, and each EB contains 1 ball. So, using notation from Proof Section we have that ratio

of removed balls is r1 = 1/2 and ratio of the balls still contained in EBs c1 = 1/2. Now,

we have interpretation of the c1 that its nominator represents the number of the balls in the

each EB, whose size is represented by its denominator.

STEP 2 - (1/2 minute before midnight). Create an infinite number of EBs of size 4 (by

fusing every two EB’s of size 2) and remove one ball from each EB and put it back in SB.
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Now we have that ratio of removed balls is r2 = 1/2 + 1/4 = 3/4 and ratio of the balls

still contained in EBs c2 = 1 − r2 = 1/4, and now we have interpretation of the c2 that its

nominator represents the number of the balls in the each EB, whose size is represented by

its denominator.

...

STEP N - (1/2N−1 minute before midnight). Fuse every 2 EBs of size 2n−1, n ∈ N and

obtain the EBs of size 2n, n ∈ N and then remove from each EB one ball and put it back in

SB. In that case ratio of removed balls (or the balls contained by SB) is

rn =
2n − 1

2n
,

while the ratio of the balls contained by the all EBs is defined by

cn =
1

2n
,

with interpretation that each EB of size given by denominator of cn contains the number of

balls defined by the nominator of cn, which is 1. So, without CER, we can conclude that at

the midnight, we have in EB one ball (or a finite number of balls). And this is in complete

agreement with our intuition that we can remove all balls (except one) from the basket by

halving the number in every step. At the end the size of EB is equivalent to the number of

natural numbers.

Second experiment: In the following experiment we are going to check what is going to

happen if we omit to remove balls in one step after fusion. Lets say that it happens in step

f . In the step f − 1 we had that
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rf−1 =
2f−1 − 1

2f−1 ,

and

cf−1 =
1

2f−1 .

So, if we skip removal of the balls from the fused boxes in the step f and continue the

normal process (with the ball removal) in the step f + 1 we’ll have the following situation

rf+1 =
2f+1 − 3

2f+1
,

and

cf+1 =
3

2f+1
.

After step f + k we will have the following situation

rf+k =
2f+k − 2k − 1

2f+k
,

and

cf+k =
2k + 1

2f+k
.

In this case we can see that at midnight nominator of cn is going toward infinity, so the

number of the balls that will be contained in the EB at the end of the process is going to be
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infinite. And this clearly is in accordance with our knowledge, since we have kept 1/2f balls

in the EB’s at the step f (that are never going to be removed by the rest of the process)

and that number is infinite.

Example 3

Now, we are going to present another example. Imagine that our SEP process has correspond-

ing BB experiment that fuses 5 EB’s in every step. After that, in every step, b/5, b ∈ {1, 2, 3}

of the balls is removed from the EBs in the first experiment, and 4/5 of the balls in the second

experiment. We are going to check what are the outcomes of those experiments.

First experiment:

STEP 1 - (1 minute before midnight). Move all balls from SB to EBs of size 1, and fuse

every 5 EBs to obtain the EBs of size 5 with 5 balls inside. Then, remove the b balls from

every EB and put it back to SB. So, in this moment nominator of c1 is 5− b > 1.

STEP 2 - (1/2 minute before midnight). Again fuse every 5 EBs to obtain the EBs of

size 25 with 5 × (5 − b) balls inside. Then, remove the b/5 of the balls from every EB and

put it back to SB. So, in this moment nominator of c2 is (1− b/5)× 5× (5− b) = (5− b)2.

...

STEP N-(1/2N−1 minute before midnight). Fuse every 5 EBs Then, remove the b/5 of

the balls from every EB and put it back to SB. So, in this moment nominator of cN =

(1− b/5)× 5× cN−1 = (5− b)N .

So,we can conclude that cN is increasing function of time and at midnight, without

suffering from CER, we can conclude that the number of the balls in the EB is going to be
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infinite.

Second experiment:

STEP 1 - (1 minute before midnight). Move all balls from SB to EBs of size 1, and fuse

every 5 EBs to obtain the EBs of size 5 with 5 balls inside. Then, remove the 4 balls from

every EB and put it back to SB. So, in this moment nominator of c1 is 1.

STEP 2 -(1/2 minute before midnight). Again fuse every 5 EBs to obtain the EBs of size

25 with 5 balls inside. Then, remove the 4/5 of the balls from every EB and put it back to

SB. So, in this moment nominator of c2 is (1− 4/5)× 5× 1 = 1.

...

STEP N-(1/2N−1 minute before midnight). Fuse every 5 EBs Then, remove the 4/5 of

the balls from every EB and put it back to SB. So, in this moment nominator of cN =

(1− 4/5)× 5 ∗ cN−1 = 1 .

So,we can conclude that cN is constant function of time and at midnight, without suffering

from CER, the number of the balls in the EB is going to be finite.

From previous examples we can see that without CER, if the corresponding BB exper-

iment of a given SEP results with nominator of the cn that is nondecreasing number that

tends toward infinity, then the number of balls in the EB at the end of the process is infinite,

which means that SEP will leave infinite number of natural numbers that do not fulfil the

rules specified by all SETs. If the nominator of cn tends toward finite number when the times

moves toward midnight, than a BB experiment results with some finite number of balls in

the EB at the end of the process, which means that only a finite number of the natural
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numbers do not fulfil the rules specified by all SETs.

Now, we are going to construct the corresponding BB experiment for the SEP defined

by (2.4, 2.6). Every SET will remove some balls from the EBs, after fusion of EBs. At the

beginning, the balls whose number is equal to the number of natural numbers are in SB, and

empty EBs of size 1 is available (the number of EBs is equal to the number of the balls).

The goal of the process is to check if the number of the balls in the EB at the end of the

process is finite or infinite, and nothing more than that. Notice, that only important fact is

the number of the balls in the EB - the numbers on the balls are irrelevant, so in this

case we will assume that balls are not marked with numbers.

STEP 1 - (1 minute before midnight). Move all balls from SB to EBs and fuse every

p5(1) = 5 EBs to obtain the EBs of size 5 with 5 balls inside. Then, remove the 2 balls from

every EB and put it back to SB. So, in this moment nominator of c1 is 3.

STEP 2 - (1/2 minute before midnight). Fuse every p5(2) = 7 EBs and establish EB’s of

size p5(1)×p5(2) = 35. Remove from all EB’s (2/p5(2))×p5(2)×c1 = 2×c1 balls and move it

back to SB. In this moment nominator of c2 = (1−2/p5(2))×p5(2)×c1 = (1−2/7)×7×3 = 15.

Now, we can see that ratio c2 has to be reduced from 15/35, to 3/7.

...

STEP N - (1/2N−1 minute before midnight). Fuse every p5(N) EBs together and remove

from each EB (2/p5(N))×p5(N)×cN−1 = 2×cN−1 balls and move it back to SB. So, in this

moment nominator of cN is
∏N

j=1(p5(j) − 2). If it is necessary, ratio cN has to be reduced

before the process is continued.
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If we continue process until we remove all SETs we can see that at the end of the process

(at midnight), the number of balls in the EB will be infinite (equal to Cir defined by (2.8),

if we do not suffer from CER. Once again, that means that number of k that cannot be

defined by (2.4) and (2.6) is infinite, and that completes the explanation of the conclusion

from previous section, that the number of Sophie Germain primes is infinite.
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