The Burnside \mathbb{Q}-algebras of a monoid

Pierre-Yves Gaillard

To each monoid M we attach an inclusion $A \hookrightarrow B$ of \mathbb{Q}-algebras, and ask: Is B flat over A? If our monoid M is a group, A is von Neumann regular, and the answer is trivially Yes in this case.

In this text "\mathbb{Q}-algebra" means "associative commutative \mathbb{Q}-algebra with one".

To each monoid M we attach an inclusion $A \hookrightarrow B$ of \mathbb{Q}-algebras, and ask: Is B flat over A? If our monoid M is a group, A is von Neumann regular, and the answer is trivially Yes in this case.

Let us define A.

Say that an M-set X is indecomposable if $X \neq \emptyset$ and if X is not a disjoint union of two nonempty sub-M-sets.

Let Ξ be a set of finite indecomposable M-sets such that any finite indecomposable M-set is isomorphic to a unique $X \in \Xi$.

If X, Y are in Ξ, then their product $X \times Y$ is a disjoint union $Z_1 \sqcup \cdots \sqcup Z_n$ of finite indecomposable M-sets. Moreover, if $Z \in \Xi$, then the number of i such that $Z_i \cong Z$ is a nonnegative integer $m(X, Y, Z)$ which depends only on the isomorphism classes of X, Y and Z.

We define A as the \mathbb{Q}-vector space with basis Ξ and multiplication given by

$$XY := \sum_{Z \in \Xi} m(X, Y, Z) \ Z.$$

In particular A is a \mathbb{Q}-algebra.

We temporarily denote A by $A(M)$ and Ξ by $\Xi(M)$ to emphasize the dependence on M.

Theorem 1. The \mathbb{Q}-algebra $A(G)$ of a group G is von Neumann regular.
Proof. If \(b \) is in \(A(G) \), then there is a largest finite index normal subgroup \(N \) of \(G \) such that \(b \in A(G/N) \). Let \(\phi_{G/N} : A(G/N) \to \mathbb{Q}^\Xi(G/N) \) be the \(\mathbb{Q} \)-algebra isomorphism defined in Section 3.3 of [1], and define \(b' \in A(G/N) \subset A(G) \) by
\[
b' = (\phi_{G/N})^{-1}\left(w \circ (\phi_{G/N}(b))\right),
\]
where \(w : \mathbb{Q} \to \mathbb{Q} \) is defined by \(w(\lambda) = \frac{1}{\lambda} \) if \(\lambda \neq 0 \) and \(w(0) = 0 \) (that is, \(w \) is a witness to the von Neumann regularity of \(\mathbb{Q} \)), so that we have \(b^2b' = b \) in \(A(G) \), which shows that \(A(G) \) is von Neumann regular. (Here \(X \subset Y \) means "\(X \) is a (not necessarily proper) subset of \(Y \).") \(\square \)

We denote again by \(\Xi \) and \(A \) (instead of \(\Xi(M) \) and \(A(M) \)) the set and the \(\mathbb{Q} \)-algebra defined above.

Let us define \(B \).

Proposition 2. For any \(Z \in \Xi \) there are only finitely \((X, Y) \in \Xi^2 \) such that \(m(X, Y, Z) \) is nonzero.

Proof. It suffices to show that, for \(X, Y \in \Xi \) and \(Z \) an indecomposable component of \(X \times Y \), the projection \(p : X \times Y \to X \) maps \(Z \) onto \(X \). (Indeed, up to isomorphism, there are only finitely many quotients of \(Z \).)

Let us fix an element \(a \) of \(M \). Say that a point of an \(M \)-set is periodic if it is a fixed point of \(a^n \) for some \(n \geq 1 \).

The following facts are clear:

(a) If \(v \) is a periodic point of an \(M \)-set \(U \) and \(n \) is a nonnegative integer, then \(v = a^n u \) for some \(u \in U \).

(b) If \(u \) is a point of a finite \(M \)-set, then \(a^n u \) is periodic for \(n \) large enough.

Let \(p : X \times Y \to X \) be the projection, and assume by contradiction that \(p(Z) \) is a proper subset of \(X \). Then there is a tuple \((a, x_1, x_2, y_2) \) with
\[
a \in M; \ x_1, x_2 \in X; \ x_1 \not\in p(Z); \ ax_1 = x_2; \ y_2 \in Y; \ (x_2, y_2) \in Z.
\]
It suffices to show \(x_1 \in p(Z) \). By (b) we can pick an \(n \in \mathbb{N} \) such that \(a^n(x_2, y_2) \in Z \) is periodic. Set
\[
x_3 := a^n x_2 = a^{n+1} x_1, \ y_3 := a^n y_2.
\]
By (a) there is a \(y_1 \in Y \) such that \(a^{n+1} y_1 = y_3 \), and we get
\[
a^{n+1}(x_1, y_1) = (x_3, y_3) \in Z,
\]
which implies \((x_1, y_1) \in Z\) and thus \(x_1 \in p(Z)\), contradiction. This completes the proof. □

Proposition 2 implies that the multiplication we defined above on \(A\) extends to the \(\mathbb{Q}\)-vector space of all expressions of the form

\[
\sum_{X \in \Xi} a_X X
\]

with \(a_X \in \mathbb{Q}\). We denote by \(B\) the \(\mathbb{Q}\)-algebra obtained by this process.

Question 3. Is \(B\) flat over \(A\)?

Beside the case of groups, there is only one case where I know that the answer is Yes. It is the case of the monoid \(M := \{0, 1\}\) with the obvious multiplication. In the post

https://math.stackexchange.com/a/3154240/660

Eric Wofsey shows the isomorphism \(A \cong \mathbb{Q}[x_1, x_2, \ldots]\), where the \(x_i\) are indeterminates, and it is clear that we have \(B \cong \mathbb{Q}[[x_1, x_2, \ldots]]\).

Proposition 4. The ring \(\mathbb{Q}[[x_1, x_2, \ldots]]\) is flat over \(\mathbb{Q}[x_1, x_2, \ldots]\).

The proof of Proposition 4 will use two lemmas:

Lemma 5. If \(A\) is a commutative ring with one, if \((M_i)_{i \in I}\) is a filtered inductive system of \(A\)-modules, and if \(N \to P\) is a morphism of \(A\)-modules, then the natural morphisms

\[
\text{colim} \ker(M_i \otimes_A N \to M_i \otimes_A P)
\]

\[
\to \ker \left(\text{colim}(M_i \otimes_A N) \to \text{colim}(M_i \otimes_A N) \right)
\]

\[
\to \ker \left((\text{colim} M_i) \otimes_A N \to (\text{colim} M_i) \otimes_A N \right)
\]

are bijective.

Proof. This follows respectively from Lemmas 4.19.2

https://stacks.math.columbia.edu/tag/002W

and 10.11.9

https://stacks.math.columbia.edu/tag/00DD

of [2]. □

Lemma 6. Filtered colimits preserve flatness. More precisely, if \(A\) and \((M_i)_{i \in I}\) are as above, and if in addition \(M_i\) is flat for all \(i\), then \(\text{colim} M_i\) is flat.
Proof. This follows immediately from Lemma 5. □

Proof of Proposition 4. We claim:
(a) $\mathbb{Q}[[x_1, x_2, \ldots]]$ is flat over $\mathbb{Q}[x_1, \ldots, x_n]$.
(b) Claim (a) implies the proposition.
Proof of (b). Set
$$A_n := \mathbb{Q}[[x_1, x_2, \ldots]] \otimes_{\mathbb{Q}[x_1, \ldots, x_n]} \mathbb{Q}[x_1, x_2, \ldots].$$
The ring A_n being flat over $\mathbb{Q}[x_1, x_2, \ldots]$ and $\mathbb{Q}[[x_1, x_2, \ldots]]$ being the colimit of the A_n, Claim (b) follows from Lemma 6.

Proof of (a). The ring $\mathbb{Q}[[x_1, \ldots, x_n]]$ being noetherian by Lemma 10.30.2
https://stacks.math.columbia.edu/tag/036
of [2], and flat over $\mathbb{Q}[x_1, \ldots, x_n]$ by Lemma 10.96.2(1)
https://stacks.math.columbia.edu/tag/00MB
of [2], it is enough to verify that $\mathbb{Q}[[x_1, x_2, \ldots]]$ is flat over $\mathbb{Q}[[x_1, \ldots, x_n]]$.
But, since $\mathbb{Q}[[x_1, x_2, \ldots]]$, viewed as an $\mathbb{Q}[[x_1, \ldots, x_n]]$-module, is just a product of copies of $\mathbb{Q}[[x_1, \ldots, x_n]]$, it is flat over $\mathbb{Q}[[x_1, \ldots, x_n]]$ by Lemma 10.89.5
https://stacks.math.columbia.edu/tag/05CY
and Proposition 10.89.6
https://stacks.math.columbia.edu/tag/05CZ
of [2], we are done. □

References.
[1] Serge Bouc, Burnside rings, Chapter 1, pages 739-804, in Handbook of Algebra, Volume 2, 2000, doi 0.1037/a0028240
https://tinyurl.com/y6trypqv

Tex file available at
https://tinyurl.com/y5skaqim and https://tinyurl.com/y5jfbv5r

May 5, 2019