Refutation of non Sahlqvist formulas by three counter examples

© Copyright 2019 by Colin James III All rights reserved.

Abstract: We evaluate three equations as examples of non Sahlqvist formulas. None is tautologous. What follows is that Fine’s theorem and monotonic modal logic are refuted. Therefore those conjectures form a non tautologous fragment of the universal logic $VŁ4$.

We assume the method and apparatus of Meth8/$VŁ4$ with Tautology as the designated proof value, \mathbf{F} as contradiction, \mathbf{N} as truthity (non-contingency), and \mathbf{C} as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET \sim Not, \neg ; $+$ Or, \lor, \cup ; $-$ Not Or; $\&$ And, \land, \cap ; \setminus Not And;
$>$ Imply, greater than, \rightarrow, \Rightarrow, \supset ; $<$ Not Imply, less than, \in, \subset, \varsubsetneq, \varsupsetneq, \approx;
$=$ Equivalent, \equiv, \iff; \neq Not Equivalent, $\not\equiv$;
$\%$ possibility, for one or some, \exists, \emptyset, \Diamond; $\#$ necessity, for every or all, \forall, \Box, \square;
$(z=z)$ \top as tautology, \top, ordinal 3; $(z@z)$ \bot as contradiction, \bot, Null, \perp, zero;
$(\%z>\#z)$ Δ as non-contingency, Δ, ordinal 1; $(\%z<\#z)$ ∇ as contingency, ∇, ordinal 2;
$\neg(y<x)$ $(x\leq y)$, $(x\subseteq y)$; $(A=B)$ $(A\sim B)$; $(B>A)$ $(A\neg B)$; $(B>A)$ $(A\neg B)$.
Note for clarity, we usually distribute quantifiers onto each designated variable.

From: en.wikipedia.org/wiki/Sahlqvist_formula

Examples of three non-Sahlqvist formulas:

1. The McKinsey formula does not have a first-order frame condition.

 $$\Box \Diamond p \rightarrow \Diamond \Box p$$ \hspace{1cm} (1.1)

 $$\#(\%p>\#p) ; \hspace{2cm} \text{NNNN} \hspace{0.5cm} \text{NNNN} \hspace{0.5cm} \text{NNNN} \hspace{0.5cm} \text{NNNN}$$ \hspace{1cm} (1.2)

2. The Löb axiom does not have a first-order frame condition.

 $$\Box(\Box p \rightarrow p) \rightarrow \Box p$$ \hspace{1cm} (2.1)

 $$\#(\#p>\#p) ; \hspace{2cm} \text{CTCT} \hspace{0.5cm} \text{CTCT} \hspace{0.5cm} \text{CTCT} \hspace{0.5cm} \text{CTCT}$$ \hspace{1cm} (2.2)

3. The conjunction of the McKinsey formula and the [modal] (4) axiom has a first-order frame condition ... but is not equivalent to any Sahlqvist formula.

 $$\Box(\Box p \rightarrow \Box p) \land (\Diamond \Diamond q \rightarrow \Diamond q)$$ \hspace{1cm} (3.1)

 $$\#(\#p>\#p) \& (\%q>\%q) ; \hspace{2cm} \text{NNNN} \hspace{0.5cm} \text{NNNN} \hspace{0.5cm} \text{NNNN} \hspace{0.5cm} \text{NNNN}$$ \hspace{1cm} (3.2)

Eqs. 1.2-3.2 are not tautologous and refute the conjecture of non Sahlqvist formulas as tautologous. What follows is that Fine’s theorem and monotonic modal logic are also refuted.