Proof that there are no odd perfect numbers

Kouji Takaki

June 16th, 2019
1. Abstract

For y to be a perfect number, if one of the prime factors is p, the exponent of p is an integer $n (n \geq 1)$, the prime factors other than p are $p_1, p_2, p_3, \ldots p_r$ and the even exponent of p_k is q_k,

$$y/p^n = (1 + p + p^2 + \cdots + p^n) \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) / (2p^n) = \prod_{k=1}^{r} p_k^{q_k}$$

must be satisfied. Let m be non-negative integer and q be positive integer,

$$n = 4m + 1$$
$$p = 4q + 1$$

Letting b and c be odd integers, satisfying following expressions,

$$b = \prod_{k=1}^{r} p_k^{q_k}$$

$$c = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) / p^n$$

$$2b = c(p^n + \cdots + 1)$$

is established. This is a known content. By the consideration of this research paper, since it turns out that there is a solution at most one when a is a multiple of p^n and at this time the value of b diverges to infinity, we have obtained the conclusion that there are no odd perfect numbers.

2. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself, and the smallest perfect number is

$$1 + 2 + 3 = 6$$

It is 6. Whether an odd perfect number exists or not is currently an unsolved problem.
3. Proof

An odd perfect number is \(y \), one of them is an odd prime number \(p \), an exponent of \(p \) is an integer \(n \) \((n \geq 1) \). Let \(p_1, p_2, \ldots, p_r \) be the odd prime numbers of factors other than \(p \), \(q_k \) the index of \(p_k \), and variable \(a \) be the sum of product combinations other than prime \(p \).

\[
a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) \quad \cdots \tag{1}
\]

The number of terms \(N \) of variable \(a \) is

\[
N = \prod_{k=1}^{r} (q_k + 1) \quad \cdots \tag{2}
\]

When \(y \) is a perfect number,

\[
y = a(1 + p + p^2 + \cdots + p^n) - y \quad (n > 0)
\]

is established.

\[
a \sum_{k=0}^{n} p^k / 2 = y
\]

\[
a \sum_{k=0}^{n} p^k / (2p^n) = y/p^n \quad \cdots \tag{3}
\]

3.1. If \(q_k \) has at least one odd integer

Letting the number of terms where \(q_k \) is an odd integer be a positive integer \(u \), because \(y/p^n = \prod_{k=1}^{r} p_k^{q_k} \) is an odd integer, the denominator on the left side of expression \(3 \) has a prime factor 2, from expression \(2 \) variable \(a \) has more than \(u \) prime factor 2 and variable \(a \) is an even integer. Therefore \(\sum_{k=0}^{n} p^k \) must be an odd integer, \(n \) is an even integer and \(u \) is 1.

3.2. When all \(q_k \) are even integers

\(y/p^n \) is an odd integer, the denominator on the left side of expression \(3 \) is an even integer, and since \(N \) is an odd integer when \(q_k \) are all even integers, variable \(a \) is and odd integer. Therefore \(\sum_{k=0}^{n} p^k \) is necessary to include one prime factor 2, \(\sum_{k=0}^{n} p^k \equiv 0 \mod{2} \) is established, and \(n \) must be an odd integer.

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the prime factor of \(y \) must be an odd integer and variable \(a \) must be an odd integer. We consider the case of 3.2 below.
In order for y to be a perfect number, the following expression must be established.

\[
y/p^n = (1 + p + p^2 + \cdots + p^n) \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) / (2p^n) = \prod_{k=1}^{r} p_k^{q_k}
\]

However, \(q_1, q_2, \ldots, q_r\) are all even integers.

Here, let \(b\) be an integer

\[
b = \prod_{k=1}^{r} p_k^{q_k} \quad \ldots \quad (4)
\]

A following expression is established.

\[
y/p^n = a(1 + p + p^2 + \cdots + p^n) / (2p^n) = b
\]

\[
a(p^{n+1} - 1) / (2(p - 1)p^n) = b
\]

\[
(a - 2b)p^{n+1} + 2bp^n - a = 0 \quad \ldots \quad (5)
\]

Because it is an \(n+1\) order equation of \(p\), the solution of the odd prime \(p\) is \(n+1\) at most.

\[
(ap - 2bp + 2b)p^n = a
\]

Since \(ap - 2bp + 2b\) is an odd integer, \(a/p^n\) is an odd integer, which is \(c\).

\[
ap - 2bp + 2b = c \quad (c > 0) \quad \ldots \quad (6)
\]

\[
(2b - a)p = 2b - c
\]

Since variable \(a\) is an odd integer, \(2b - a\) is an odd integer and \(2b - a \neq 0\)

\[
p = (2b - c) / (2b - a)
\]
Since \(n \geq 1 \)
\[a - c = cp^n - c \geq cp - c > 0 \]
\[a > c \]
is.

From equation \(\textcircled{6} \)
\[2b(p - 1) - (ap - c) = 0 \]
\[2b - c(p^{n+1} - 1)/(p - 1) = 0 \]

\((p^n + \cdots + 1)/2\) is an odd integer, \(n = 4m + 1 \) is required with \(m \) as an integer.
\[2b(p - 1) = c(p^{n+1} - 1) \]
\[2b = c(p^n + \cdots + 1) \]
\[2b = c(p+1)(p^{n-1} + p^{n-3} + \cdots + 1) \ldots \textcircled{7} \]
b is an odd integer when \(p + 1 \) is not a multiple of 4. It is necessary that \(p - 1 \) be a multiple of 4. A positive integer is taken as \(q \).
\[p = 4q + 1 \]
is established.

When \(p > 1 \)
\[p^n - 1 < p^n \]
\[(p^n - 1)/(p - 1) < p^n/(p - 1) \]
\[p^{n-1} + \cdots + 1 < p^n/(p - 1) \ldots \textcircled{8} \]

Since \(p \) is an odd prime number satisfying \(p = 4q + 1 \) and \(p \geq 5 \)
\[p^{n-1} + \cdots + 1 < p^n/4 \]
\[2b - a = c(p^n + \cdots + 1) - cp^n = c(p^{n-1} + \cdots + 1) \]
\[2b - a < cp^n/4 = a/4 \]
\[2b < 5a/4 \]
\[a > 8b/5 \ldots \textcircled{9} \]

4
Let a_k and b_k be integers and if
\[
a_k = 1 + p_k + p_k^2 + \cdots + p_k^{q_k}, \quad b_k = p_k^{q_k},
\]

\[
a_k - b_k < b_k/(p_k - 1)
\]

\[
a_k < b_k p_k/(p_k - 1)
\]

\[
a = \prod_{k=1}^r a_k < \prod_{k=1}^r b_k p_k/(p_k - 1) = b \prod_{k=1}^r p_k/(p_k - 1)
\]

\[
a/b < \prod_{k=1}^r p_k/(p_k - 1)
\]

When $r = 1$, since $a/b < 3/2$ is established, it becomes inappropriate contrary to inequality ⑨.

From expression ⑦,

\[
b = c(p + 1)/2 \times (p^{n-1} + p^{n-3} + \cdots + 1)
\]

holds. Since $(p + 1)/2$ is the product of only prime numbers of b, let d_k be the index,

\[
(p + 1)/2 = \prod_{k=1}^r p_k^{d_k}
\]

\[
p = 2 \prod_{k=1}^r p_k^{d_k} - 1
\]

From $a = cp^n$ and expression ⑦,

\[
2bp^n = a(p^n + \cdots + 1)
\]

\[
a(p^n + \cdots + 1)/(2bp^n) = 1 \quad (A)
\]

When $r = 1$,

\[
a = (p_1^{q_1+1} - 1)/(p_1 - 1)
\]

\[
b = p_1^{q_1}
\]

Equation (A) does not hold since there is no odd perfect number when $r = 1$.

5
Let \(R \) be a rational number,
\[
R = a(p^n + \cdots + 1)/(2bp^n)
\]

Let \(b' \) be a rational number and let \(A \) and \(B \) to be an integer,
\[
b' = (p_k^{a_k+1} - 1)/(p_k^{a_k}(p_k - 1)) > 1
\]
\[
A = (p_k^{a_k+1} - 1)/(p_k - 1)
\]
\[
B = p_k^{a_k}
\]

Multiplying \(R \) by \(b' \), there are both cases that \(p_k \) increases \(p \) or does not change. When multiplied by \(b' \), the rate of change of \(R \) is \(Ap^n(p^n + \cdots + 1)/(Bp^n(p^n + \cdots + 1)) \), if \(p \) after variation is \(p' \). If the rate of change of \(R \) is 1,
\[
Ap^n(p^n + \cdots + 1)/(Bp^n(p^n + \cdots + 1)) = 1
\]
This expression does not hold, since the right side is not a multiple of \(p \) when \(p' > p \), and \(A > B \) holds when \(p' = p \). Due to this operation, \(R \) may be larger or smaller than the original value, since the rate of change of \(R \) does not become 1.

Assuming that \(R = 1 \) in some \(r \), letting \(x \) be an integer and by multiplying fractions \(b' = A_{r+1}/B_{r+1}, b'' = A_{r+2}/B_{r+2}, \ldots \), and \(A_{r+1}/B_{r+1} \) to \(R \), if \(R = 1 \) holds finally. At this time, assuming that \(n \) changes, the change rate of \(R \) by this operation when multiplying by \(A_{r+1}/B_{r+1} \) is
\[
A_{r+1}p^n(p^{nr+1} + \cdots + 1)/(B_{r+1}p^{nr+1}(p^n + \cdots + 1))
\]
\[
1 \times A_{r+1}p^n(p^{nr+1} + \cdots + 1)/(B_{r+1}p^{nr+1}(p^n + \cdots + 1)) \times A_{r+2}p^{nr+1}(p^n + \cdots + 1)/(B_{r+2}p^{nr+1}(p^n + \cdots + 1)) \times \ldots \times A_xp^{nx-1}(p^n + \cdots + 1)/(B_xp^{nx-1}(p^n + \cdots + 1)) = 1
\]
\[
A_{r+1}A_{r+2} \ldots A_xp^n(p^n + \cdots + 1) = B_{r+1}B_{r+2} \ldots B_xp^n(p^n + \cdots + 1)(B)
\]
When \(n = n_x \)
\[
A_{r+1}A_{r+2} \ldots A_x = B_{r+1}B_{r+2} \ldots B_x
\]
holds. It becomes contradiction. Therefore, there is one solution when \(p \) and \(n \) are fixed.
Assuming that \(R = 1 \) in some \(r \), letting \(x \) be an integer and fixing \(p \) and \(n \) and by multiplying fractions \(b' = A_{r+1}/B_{r+1} \), \(b'' = A_{r+2}/B_{r+2} \), \(\cdots b''' = A_x/B_x \) to \(R \), and assuming that \(R = 1 \) holds finally. Dividing by \(A_sA_{s+1} \ldots A_r/B_sB_{s+1} \ldots B_r \), from expression (B),

\[
B_sB_{s+1} \ldots B_rA_{r+1}A_{r+2} \ldots A_x = A_sA_{s+1} \ldots A_rB_{r+1}B_{r+2} \ldots B_x
\]

holds. Since the right side is not a multiple of prime number \(p_s \) included in \(B_s \), it becomes contradiction. When dividing by a prime number in the expression of \(p \), contradiction arises since the prime number not included in \(b \) is in the expression of \(p \). Therefore, when \(a \) is divided by \(p^n \), the number of solutions is one.

When \(A_1A_2 \ldots A_{s-1} \) can be divided by \(p^n \), the combinations of primes are infinite, and there is at most one solution for one of the combinations. Let a set having infinite number of elements which are odd prime multiples of the values of \(B_1B_2 \ldots B_{s-1} \) be a set \(P \), and consider a set \(Q \) having as an element the value of \(b \) when \(a \) is an odd multiple of \(p^n \). When \(b \) is included in the set \(P \) or \(Q \), the number of solutions is one for each set. Since set \(Q \) is a proper subset of the sum of all the sets considered as set \(P \), there is at most one solution for all product sets of the set \(P \). Therefore, even if an odd perfect number exists, since its value diverges to infinity, there are no odd perfect numbers.
4. Complement

From equation (5),
\[2bp^n(p - 1) = a(p^{n+1} - 1)\]
\[2 = a(p^{n+1} - 1)/(bp^n(p - 1))\]
\[2 = (p_{1q_1+1} - 1)(p_{2q_2+1} - 1) ... (p_{rq_r+1} - 1)(p^{n+1} - 1)\]
\[\quad / (p_{1q_1}p_{2q_2} ... p_{rq_r}p^n(p_{1q_1} - 1)(p_{2q_2} - 1) ... (p_{rq_r} - 1))\]
\[2(p_{1q_1+1} - 1)(p_{2q_2+1} - p_{2q_2}) ... (p_{rq_r+1} - p_{rq_r})(p^{n+1} - p^n)\]
\[= (p_{1q_1+1} - 1)(p_{2q_2+1} - 1) ... (p_{rq_r+1} - 1)(p^{n+1} - 1)\]

We consider when \(r = 2\).
\[(p_{1q_1+1} - 1)(p_{2q_2+1} - 1)(p^{n+1} - 1) = 2(p_{1q_1+1} - 1)(p_{2q_2+1} - 2q_2)(p^{n+1} - p^n)\]
Let \(s, t, u\) be integers,
\[s = p_{1q_1+1} - 1\]
\[t = p_{2q_2+1} - 1\]
\[u = p^{n+1} - 1\]
are.
\[stu = 2(p_{1q_1+1} - 1 - (p_{1q_1} - 1))(p_{2q_2+1} - 1 - (p_{2q_2} - 1))(p^{n+1} - 1 - (p^n - 1))\]
\[stu = 2(s - (s + 1)/p_{1q_1} + 1)(t - (t + 1)/p_{2q_2} + 1)(u - (u + 1)/p + 1)\]
\[pp_1p_2stu = 2((s + 1)p_{1q_1} - (s + 1))(t + 1)p_{2q_2} + (t + 1)((u + 1)p + (u + 1))\]
\[pp_1p_2stu = 2(s + 1)(p_{1q_1} - 1)(t + 1)(p_{2q_2} - 1)(u + 1)(p - 1)\]
\[stu / ((s + 1)(t + 1)(u + 1)) = 2(p_{1q_1} - 1)(p_{2q_2} - 1)(p - 1)/(p_1p_2p)\]

Since \(stu / ((s + 1)(t + 1)(u + 1))\) is a monotonically increasing function for variables \(s, t\) and \(u\), if
\[s \geq 2q_{1q_1}^2 - 1 = 26, \quad p_1 = 3, \quad q_1 = 2\]
\[t \geq 2q_{2q_2}^2 - 1 = 342, \quad p_2 = 7, \quad q_2 = 2\]
\[u \geq 2^2 - 1 = 24, \quad p = 5, \quad n = 1\]
holds,
\[stu / ((s + 1)(t + 1)(u + 1)) \geq 26 \times 342 \times 24 / (27 \times 343 \times 25) = 7904 / 8575\]
\[2(p_{1q_1} - 1)(p_{2q_2} - 1)(p - 1)/(p_1p_2p) = 2 \times 2 \times 6 \times 4 / (3 \times 7 \times 5) = 32 / 35\]
Since \(stu/((s + 1)(t + 1)(u + 1)) \) is limited to 1 when \(s, t \) and \(u \) are infinite,
\[stu/((s + 1)(t + 1)(u + 1)) < 1 \]

If \(f(p_1, p_2, p) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \) holds, it is sufficient to consider a combination where \(f(p_1, p_2, p) < 1 \).
\[
\begin{align*}
f(3, 7, 5) &= 2 \times 2 \times 6 \times 4 / (3 \times 5) = 32/35 \\
f(3,11,5) &= 2 \times 2 \times 10 \times 4 / (3 \times 11 \times 5) = 32/33 \\
f(3,13,5) &= 2 \times 2 \times 12 \times 4 / (3 \times 13 \times 5) = 64/65 \\
f(3,17,5) &= 2 \times 2 \times 16 \times 4 / (3 \times 17 \times 5) = 256/255 \\
f(3,7,13) &= 2 \times 2 \times 6 \times 12 / (3 \times 7 \times 13) = 96/91 \\
f(3,5,17) &= 2 \times 2 \times 4 \times 16 / (3 \times 5 \times 17) = 256/255
\end{align*}
\]
From the above, when \(r = 2 \), a combination \((p_1, p_2, p) = (3, 7, 5), (3, 11, 5), (3, 13, 5) \) can be considered.

Let \(q_k \) be 2 and \(n = 1 \), if \(g(p_1, p_2, p) = (p_1^2 - 1)(p_2^2 - 1)(p^2 - 1)/(p_1^3 p_2^3 p^2) \),
\[
\begin{align*}
g(3,7,5) &= 26 \times 342 \times 24 / (3^3 7^3 5^2) = 7904/8575 > 32/35 \\
g(3,11,5) &= 26 \times 1330 \times 24 / (3^3 11^3 5^2) = 55328/59895 \\
g(3,13,5) &= 26 \times 2196 \times 24 / (3^3 13^3 5^2) = 3904/4225
\end{align*}
\]
Since the function \(g \) is the minimum in the case of \(q_k = 2 \) and \(n = 1 \), there is no solution \(q_k \) and \(n \) when \(g > f \), so the case of \((p_1, p_2, p) = (3, 7, 5) \) becomes unsuitable.

\[
\begin{align*}
stu/((s + 1)(t + 1)(u + 1)) &= 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \\
(p_1 q_1^{+1} - 1)(p_2 q_2^{+1} - 1)(p^{n+1} - 1) / (p_1 q_1^{+1} p_2 q_2^{+1} p^{n+1}) \\
&= 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p)
\end{align*}
\]

If \(F(p_1, p_2, p) = (p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \),
\[
F(p_1 q_1^{+1}, p_2 q_2^{+1}, p^{n+1}) = 2F(p_1, p_2, p)
\]
5. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

6. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017
Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015