Proof that there are no odd perfect numbers

Kouji Takaki

June 13th, 2019

1. Abstract

For y to be a perfect number, if one of the prime factors is p, the exponent of p is an integer $n(n \ge 1)$, the prime factors other than p are $p_1, p_2, p_3, \dots p_r$ and the even exponent of p_k is q_k ,

$$y/p^n = (1 + p + p^2 + \dots + p^n) \prod_{k=1}^r (1 + p_k + p_k^2 + \dots + p_k^{q_k}) / (2p^n) = \prod_{k=1}^r p_k^{q_k}$$

must be satisfied. Let m be non negative integer and q be positive integer,

$$n = 4m + 1$$
$$p = 4q + 1$$

Letting *b* and *c* be odd integers, satisfying following expressions,

$$b = \prod_{k=1}^{r} p_k^{q_k}$$

$$c = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \dots + p_k^{q_k})/p^n$$

$$2b = c(p^n + \dots + 1)$$

is established. This is a known content. By the consideration of this research paper, since it turns out that there is a solution at most one when a is a multiple of p^n and at this time the value of b diverges to infinity, we have obtained the conclusion that there are no odd perfect numbers.

2. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself, and the smallest perfect number is

$$1 + 2 + 3 = 6$$

It is 6. Whether an odd perfect number exists or not is currently an unsolved problem.

3. Proof

An odd perfect number is y, one of them is an odd prime number p, an exponent of p is an integer n ($n \ge 1$). Let $p_1, p_2, p_3, \dots p_r$ be the odd prime numbers of factors other than p, q_k the index of p_k , and variable a be the sum of product combinations other than prime p.

$$a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \dots + p_k^{q_k}) \dots \textcircled{1}$$

The number of terms N of variable a is

$$N = \prod_{k=1}^{r} (q_k + 1) \dots ②$$

When y is a perfect number,

$$y = a(1 + p + p^2 + \dots + p^n) - y (n > 0)$$

is established.

$$a \sum_{k=0}^{n} p^{k} / 2 = y$$
$$a \sum_{k=0}^{n} p^{k} / (2p^{n}) = y/p^{n} \dots 3$$

3.1. If q_k has at least one odd integer

Letting the number of terms where q_k is an odd integer be a positive integer u, because $y/p^n = \prod_{k=1}^r p_k^{q_k}$ is an odd integer, the denominator on the left side of expression ③ has a prime factor 2, from expression ② variable a has more than u prime factor 2 and variable a is an even integer. Therefore $\sum_{k=0}^n p^k$ must be an odd integer, n is an even integer and u is 1.

3.2. When all q_k are even integers

 y/p^n is an odd integer, the denominator on the left side of expression ③ is an even integer, and since N is and odd integer when q_k are all even integers, variable a is and odd integer. Therefore $\sum_{k=0}^n p^k$ is necessary to include one prime factor 2, $\sum_{k=0}^n p^k \equiv 0 \pmod{2}$ is established, and n must be an odd integer.

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the prime factor of y must be an odd integer and variable a must be an odd integer. We consider the case of 3.2 below.

In order for y to be a perfect number, the following expression must be established.

$$y/p^n = (1+p+p^2+\cdots+p^n) \prod_{k=1}^r (1+p_k+{p_k}^2+\cdots+{p_k}^{q_k})/(2p^n) = \prod_{k=1}^r p_k^{q_k}$$

However, $q_1, q_2, ..., q_r$ are all even integers.

Here, let b be an integer

$$b = \prod_{k=1}^{r} p_k^{q_k} \dots \textcircled{4}$$

A following expression is established.

$$y/p^n = a(1 + p + p^2 + \dots + p^n)/(2p^n) = b$$

$$a(p^{n+1}-1)/(2(p-1)p^n) = b$$

$$(a-2b)p^{n+1} + 2bp^n - a = 0 \dots 5$$

Because it is an n+1 order equation of p, the solution of the odd prime p is n+1 at most.

$$(ap - 2bp + 2b)p^n = a$$

Since ap - 2bp + 2b is an odd integer, a/p^n is an odd integer, which is c.

$$ap - 2bp + 2b = c (c > 0) \dots$$

$$(2b - a)p = 2b - c$$

Since variable a is an odd integer, 2b-a is an odd integer and $2b-a \neq 0$ p = (2b-c)/(2b-a)

Since $n \ge 1$

$$a - c = cp^n - c \ge cp - c > 0$$

a > c

is.

From equation 6

$$2b(p-1) - (ap - c) = 0$$

$$2b - c(p^{n+1} - 1)/(p - 1) = 0$$

 $(p^n + \cdots + 1)/2$ is an odd integer, n = 4m + 1 is required with m as an integer.

$$2b(p-1) = c(p^{n+1} - 1)$$

$$2b = c(p^n + \dots + 1)$$

$$2b = c(p+1)(p^{n-1} + p^{n-3} + \dots + 1) \dots$$

b is an odd integer when p + 1 is not a multiple of 4. It is necessary that p - 1 be a multiple of 4. A positive integer is taken as q.

$$p = 4q + 1$$

is established.

When p > 1

$$p^n - 1 < p^n$$

$$(p^n - 1)/(p - 1) < p^n/(p - 1)$$

$$p^{n-1} + \dots + 1 < p^n/(p-1) \dots \otimes$$

Since p is an odd prime number satisfying p = 4q + 1 and $p \ge 5$

$$p^{n-1} + \cdots + 1 < p^n/4$$

$$2b - a = c(p^n + \dots + 1) - cp^n = c(p^{n-1} + \dots + 1)$$

$$2b - a < cp^{n}/4 = a/4$$

Let a_k and b_k be integers and if

$$a_k = 1 + p_k + p_k^2 + \dots + p_k^{q_k}, \ b_k = p_k^{q_k},$$

$$a_k - b_k < b_k/(p_k - 1)$$

$$a_k < b_k p_k / (p_k - 1)$$

$$a = \prod_{k=1}^{r} a_k < \prod_{k=1}^{r} b_k p_k / (p_k - 1) = b \prod_{k=1}^{r} p_k / (p_k - 1)$$
$$a/b < \prod_{k=1}^{r} p_k / (p_k - 1)$$

When r = 1, since a/b < 3/2 is established, it becomes inappropriate contrary to inequality @.

From expression ⑦,

$$b = c(p+1)/2 \times (p^{n-1} + p^{n-3} + \dots + 1)$$

holds. Since (p+1)/2 is the product of only prime numbers of b, let d_k be the index,

$$(p+1)/2 = \prod_{k=1}^{r} p_k^{d_k}$$

$$p = 2 \prod\nolimits_{k=1}^{r} p_k^{\ d_k} - 1$$

From $a = cp^n$ and expression \bigcirc ,

$$2bp^n = a(p^n + \dots + 1)$$

$$a(p^{n} + \dots + 1)/(2bp^{n}) = 1 \dots (A)$$

When r = 1,

$$a = (p_1^{q_1+1} - 1)/(p_1 - 1)$$

$$b = p_1^{q_1}$$

Equation (A) does not hold since there is no odd perfect number when r = 1.

Let R be a rational number,

$$R = a(p^n + \dots + 1)/(2bp^n)$$

Let b' be a rational number and let A and B to be an integer,

$$b' = (p_k^{q_k+1} - 1)/(p_k^{q_k}(p_k - 1)) > 1$$

$$A = (p_k^{q_k+1} - 1)/(p_k - 1)$$

$$B = p_k^{q_k}$$

Multiplying R by b', there are both cases that p_k increases p or does not change. When multiplied by b', the rate of change of R is $Ap^n(p'^n + \dots + 1)/(Bp'^n(p^n + \dots + 1))$, if p after variation is p'. If the rate of change of R is 1,

$$Ap^{n}(p'^{n} + \dots + 1)/(Bp'^{n}(p^{n} + \dots + 1)) = 1$$

$$Ap^{n}(p'^{n}+\cdots+1) = Bp'^{n}(p^{n}+\cdots+1)$$

This expression does not hold, since the right side is not a multiple of p when p' > p, and A > B holds when p' = p. Due to this operation, R may be larger or smaller than the original value, since the rate of change of R does not become 1.

From $R \neq 1$ and $a = cp^n$ for some r, letting x be positive integer, also multiplying fractions $b' = A_{r+1}/B_{r+1}$, $b'' = A_{r+2}/B_{r+2}$, $\cdots b'' = A_x/B_x$ to R, if R = 1 holds and the value of p becomes p_x finally,

$$\begin{split} a(p^n+\cdots+1)/(2bp^n) \times A_{r+1}p^n(p_{r+1}^n+\cdots+1)/(B_{r+1}p_{r+1}^n(p^n+\cdots+1)) \\ \times A_{r+2}p_{r+1}^n(p_{r+2}^n+\cdots+1)/(B_{r+2}p_{r+2}^n(p_{r+1}^n+\cdots+1)) \dots A_xp_{x-1}^n(p_x^n+\cdots+1)/(B_xp_x^n(p_{x-1}^n+\cdots+1)) = 1 \end{split}$$

$$a/(2b) \times A_{r+1}/B_{r+1} \times A_{r+2}/B_{r+2} \dots A_{x}(p_{x}^{n} + \dots + 1)/(B_{x}p_{x}^{n}) = 1$$

$$a(p_x^n + \dots + 1)A_{r+1}A_{r+2} \dots A_x = 2bp_x^n B_{r+1}B_{r+2} \dots B_x$$

$$cp^{n}(p_{x}{}^{n}+\cdots+1)A_{r+1}A_{r+2}\dots A_{x}=2bp_{x}{}^{n}B_{r+1}B_{r+2}\dots B_{x}$$

When $p_x > p$, it becomes inconsistent since the right side of this expression does not include p as a factor.

When $p_x = p$,

$$cp^{n}(p^{n} + \cdots + 1)A_{r+1}A_{r+2} \dots A_{x} = c(p^{n} + \cdots + 1)p^{n}$$

$$A_{r+1}A_{r+2}...A_x = 1$$

It becomes contradiction, since this expression is not established. Therefore, $a=cp^n$ holds at one point where R=1.

Assuming that R=1 in some r by multiplying fractions $b'=A_{r+1}/B_{r+1}$, $b''=A_{r+2}/B_{r+2}$, $\cdots b'' \cdots '=A_x/B_x$ to R, if R=1 holds,

$$\begin{split} 1 \times A_{r+1} p^n (p_{r+1}{}^n + \dots + 1) / (B_{r+1} p_{r+1}{}^n (p^n + \dots + 1)) \times A_{r+2} p_{r+1}{}^n (p_{r+2}{}^n + \dots \\ &+ 1) / (B_{r+2} p_{r+2}{}^n (p_{r+1}{}^n + \dots + 1)) \dots A_x p_{x-1}{}^n (p_x{}^n + \dots + 1) / (B_x p_x{}^n (p_{x-1}{}^n + \dots + 1)) \\ &+ \dots + 1)) = 1 \end{split}$$

$$A_{r+1}A_{r+2}...A_xp^n(p_x^n + \cdots + 1) = B_{r+1}B_{r+2}...B_xp_x^n(p^n + \cdots + 1)$$

When $p_x > p$, it becomes inconsistent since the right side of this expression does not include p as a factor. When $p_x = p$,

$$A_{r+1}A_{r+2} ... A_x = B_{r+1}B_{r+2} ... B_x$$

is established. It becomes contradiction. Therefore, when R = 1 holds in some b, doing this operation by fixing n and changing b to a multiple of b larger than that value, y corresponding to b does not become an odd perfect number.

Assuming that R=1 in some r by multiplying fractions $b'=A_{r+1}/B_{r+1}$, $b''=A_{r+2}/B_{r+2}$, $\cdots b'' = A_x/B_x$ to R, if R=1 holds. At this time, assuming that n also changes, the change rate when multiplying by A_{r+1}/B_{r+1} is

$$A_{r+1}p^{n}(p_{r+1}^{n_{r+1}} + \cdots + 1)/(B_{r+1}p_{r+1}^{n_{r+1}}(p^{n} + \cdots + 1))$$

$$\begin{split} 1\times A_{r+1}p^{n}(p_{r+1}{}^{n_{r+1}}+\cdots+1)/(B_{r+1}p_{r+1}{}^{n_{r+1}}(p^{n}+\cdots+1))\times A_{r+2}p_{r+1}{}^{n_{r+1}}(p_{r+2}{}^{n_{r+2}}+\cdots\\ &+1)/(B_{r+2}p_{r+2}{}^{n_{r+2}}(p_{r+1}{}^{n_{r+1}}+\cdots+1)) ... A_{x}p_{x-1}{}^{n_{x-1}}(p_{x}{}^{n_{x}}+\cdots\\ &+1)/(B_{x}p_{x}{}^{n_{x}}(p_{x-1}{}^{n_{x-1}}+\cdots+1)) = 1 \end{split}$$

$$A_{r+1}A_{r+2}...A_xp^n(p_x^{n_x}+\cdots+1) = B_{r+1}B_{r+2}...B_xp_x^{n_x}(p^n+\cdots+1)...(B)$$

When $n = n_x$ it becomes contradiction like above proof.

When $n_x < n$, a contradiction arises in the case of $p_x \ne p$ since prime number p is not included in the right side. It becomes inconsistent in the case of $p_x = p$ since only the left side includes the prime number p. A contradiction arises similarly when $n_x > n$. In addition to this operation, exchanging the order of multiplications, suppose that division is performed until a can be divided by p^n . Dividing by A_s/B_s at R = 1,

$$1 \times B_s p^n (p_s^{n_s} + \cdots + 1) / (A_s p_s^{n_s} (p^n + \cdots + 1))$$

When performing division, if the prime number of the denominator is included in the expression of p, it is excluded. At this time, assuming that the product of the numerators subjected to the division is $A_sA_{s+1}...A_r$, since this term is the right side of the formula (B), if $A_1A_2...A_{r-1}$ is a multiple of p^n it becomes contradiction similarly. Therefore, when $A_1A_2...A_{r-1}$ is a multiple of p^n , multiplying after this, the solution in which the value of R is 1 is at most one.

When $A_1A_2...A_{r-1}$ can be divided by p^n , the combinations of primes are infinite, and there is at most one solution for one of the combinations. Let a set having infinite number of elements which are odd prime multiples of the values of $B_1B_2...B_{r-1}$ be a set P, and consider a set Q with an infinite number of elements that are odd prime multiples of p^n . When b is included in the set P or Q, the number of solutions is one for each set. Set Q includes all sets considered as set P. At this time, since set P is a proper subset of the set Q, there is at most one solution for all product sets of the set P. Therefore, even if an odd perfect number exists, since its value diverges to infinity, there are no odd perfect numbers.

4. Complement

From equation 5,

$$\begin{split} 2bp^n(p-1) &= a(p^{n+1}-1) \\ 2 &= a(p^{n+1}-1)/(bp^n(p-1)) \\ 2 &= (p_1^{q_1+1}-1)(p_2^{q_2+1}-1)...(p_r^{q_r+1}-1)(p^{n+1}-1) \\ &\qquad \qquad /(p_1^{q_1}p_2^{q_2}...p_r^{q_r}p^n(p_1-1)(p_2-1)...(p_r-1)(p-1)) \\ 2(p_1^{q_1+1}-p_1^{q_1})(p_2^{q_2+1}-p_2^{q_2})...(p_r^{q_r+1}-p_r^{q_r})(p^{n+1}-p^n) \end{split}$$

We consider when r = 2.

$$({p_1}^{q_1+1}-1)({p_2}^{q_2+1}-1)(p^{n+1}-1)=2({p_1}^{q_1+1}-{p_1}^{q_1})({p_2}^{q_2+1}-{p_2}^{q_2})(p^{n+1}-p^n)$$

= $(p_1^{q_1+1}-1)(p_2^{q_2+1}-1)...(p_r^{q_r+1}-1)(p^{n+1}-1)$

Let s, t, u be integers,

$$s = p_1^{q_1+1} - 1$$

$$t = p_2^{q_2 + 1} - 1$$

$$u = p^{n+1} - 1$$

are.

$$stu = 2(p_1^{q_1+1} - 1 - (p_1^{q_1} - 1))(p_2^{q_2+1} - 1 - (p_2^{q_2} - 1))(p^{n+1} - 1 - (p^n - 1))$$

$$stu = 2(s - (s + 1)/p_1 + 1)(t - (t + 1)/p_2 + 1)(u - (u + 1)/p + 1)$$

$$pp_1p_2stu = 2((s+1)p_1 - (s+1))((t+1)p_2 + (t+1))((u+1)p + (u+1))$$

$$pp_1p_2stu = 2(s+1)(p_1-1)(t+1)(p_2-1)(u+1)(p-1)$$

$$stu/((s+1)(t+1)(u+1)) = 2(p_1-1)(p_2-1)(p-1)/(p_1p_2p)$$

Since stu/((s+1)(t+1)(u+1)) is a monotonically increasing function for variables s, t and u, if

$$s \ge 3^{2+1} - 1 = 26$$
, $p_1 = 3$, $q_1 = 2$

$$t \ge 7^{2+1} - 1 = 342, p_2 = 7, q_2 = 2$$

$$u \ge 5^2 - 1 = 24$$
, $p = 5$, $n = 1$

holds,

$$stu/((s+1)(t+1)(u+1)) \ge 26 \times 342 \times 24/(27 \times 343 \times 25) = 7904/8575$$

$$2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35$$

Since stu/((s+1)(t+1)(u+1)) is limited to 1 when s, t and u are infinite, stu/((s+1)(t+1)(u+1)) < 1

If $f(p_1, p_2, p) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$ holds, it is sufficient to consider a combination where $f(p_1, p_2, p) < 1$.

$$f(3,7,5) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35$$

$$f(3,11,5) = 2 \times 2 \times 10 \times 4/(3 \times 11 \times 5) = 32/33$$

$$f(3,13,5) = 2 \times 2 \times 12 \times 4/(3 \times 13 \times 5) = 64/65$$

$$f(3,17,5) = 2 \times 2 \times 16 \times 4/(3 \times 17 \times 5) = 256/255$$

$$f(3,7,13) = 2 \times 2 \times 6 \times 12/(3 \times 7 \times 13) = 96/91$$

$$f(3,5,17) = 2 \times 2 \times 4 \times 16/(3 \times 5 \times 17) = 256/255$$

From the above, when r = 2, a combination $(p_1, p_2, p) = (3,7,5), (3,11,5), (3,13,5)$ can be considered.

Let
$$q_k$$
 be 2 and $n = 1$, if $g(p_1, p_2, p) = (p_1^3 - 1)(p_2^3 - 1)(p^2 - 1)/(p_1^3 p_2^3 p^2)$, $g(3,7,5) = 26 \times 342 \times 24/(3^3 7^3 5^2) = 7904/8575 > 32/35$ $g(3,11,5) = 26 \times 1330 \times 24/(3^3 11^3 5^2) = 55328/59895$ $g(3,13,5) = 26 \times 2196 \times 24/(3^3 13^3 5^2) = 3904/4225$

Since the function g is the minimum in the case of $q_k = 2$ and n = 1, there is no solution q_k and n when g > f, so the case of $(p_1, p_2, p) = (3,7,5)$ becomes unsuitable.

$$\begin{split} \text{stu}/((s+1)(t+1)(u+1)) &= 2(p_1-1)(p_2-1)(p-1)/(p_1p_2p) \\ (p_1^{q_1+1}-1)(p_2^{q_2+1}-1)(p^{n+1}-1)/(p_1^{q_1+1}p_2^{q_2+1}p^{n+1}) \\ &= 2(p_1-1)(p_2-1)(p-1)/(p_1p_2p) \end{split}$$

If
$$F(p_1, p_2, p) = (p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$$
,
 $F(p_1^{q_1+1}, p_2^{q_2+1}, p^{n+1}) = 2F(p_1, p_2, p)$

5. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

6. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017 Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015