Remarks on Infinitesimal Amount of Riemann Zeta Zeros

Algirdas Antano Maknickas

April 29, 2019

Abstract

This remarks proves, that Riemann zeta function has infinitesimal amount of zeros.

Riemann zeta function expressed as follow

$$\zeta(r, \theta) = \sum_{n=1}^{\infty} \frac{1}{n^r \cos \theta + i r \sin \theta}$$

According Abel’s summation formula [1]

$$\zeta(r, \theta) = \sum_{n=1}^{\infty} \frac{1}{n^r \cos \theta + i r \sin \theta} = \lim_{x \to \infty} \frac{x}{x^r \cos \theta + i r \sin \theta} - \int_{u=1}^{\infty} \frac{|u| \, du}{u^r \cos \theta + i r \sin \theta + 1}$$

For $$r > 1, \cos \theta > 0, \sin \theta > 0$$ the first term in (2) goes to zero and we can rewrite (2) without losing of generalisation as follow

$$\zeta(r, \theta) = \frac{\gamma_r \cos \theta + i r \sin \theta}{\gamma_r \cos \theta + i r \sin \theta} - \int_{u=1}^{\infty} \frac{du}{u^r \cos \theta + i r \sin \theta + 1}$$

where $$\gamma_r \cos \theta + i r \sin \theta$$ is constant for each $$r$$ and $$\theta$$. After integration we obtains

$$\zeta(r, \theta) = \frac{\gamma_r \cos \theta + i r \sin \theta - i \frac{\arctan \sin \theta - \cos \theta}{\gamma_r \cos \theta + i r \sin \theta + 1}}{\gamma_r \cos \theta + i r \sin \theta + 1}$$

Let’s restrict $$r$$ and $$\theta$$ to $$r \cos 1 > 0, r \sin \theta > 0$$. So,

$$\zeta(r, \theta) = \frac{\gamma_r \cos \theta + i r \sin \theta + 1}{-r \cos \theta - r i \sin \theta + 1}$$

or

$$\zeta(r, \theta) = \left((\Re \zeta(r, \theta))^2 + (\Im \zeta(r, \theta))^2 \right) \exp \left(i \arctan \frac{\Im \zeta(r, \theta)}{\Re \zeta(r, \theta)} + i 2 \pi n \right)$$

where

$$\Re \zeta(r, \theta) = \Re \gamma_r \cos \theta + i r \sin \theta + \frac{-r \cos \theta + 1}{(1 - r \cos \theta)^2 + r^2 \sin^2 \theta}$$

$$\Im \zeta(r, \theta) = \Im \gamma_r \cos \theta + i r \sin \theta + \frac{r \sin \theta}{(1 - r \cos \theta)^2 + r^2 \sin^2 \theta}$$
Obviously, for $r >> 1$ we can find infinitesimal amount of Riemann zeta zeros by solving equation as follow

$$\frac{r^2 \Re \gamma r \cos \theta + ir \sin \theta + r \sin \theta}{r^2 \Re \gamma r \cos \theta + ir \sin \theta - r \cos \theta + 1} = 2\pi n = 0, \forall n \in (-\infty, \infty) \quad (9)$$

It implies that Riemann zeta function has infinitesimal amount of zeros.

References