Sums of powers of the terms of Lucas sequences with indices in arithmetic progression

Kunle Adegoke
kunle.adegoke@yandex.com

Department of Physics and Engineering Physics,
Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

Friday 26th April, 2019

Abstract
We evaluate the sums $\sum_{j=0}^{k} u_{rj+s}^{2n} z^j$, $\sum_{j=0}^{k} u_{rj+s}^{2n-1} z^j$ and $\sum_{j=0}^{k} v_{rj+s}^{n} z^j$, where r, s and k are any integers, n is any nonnegative integer, z is arbitrary and (u_n) and (v_n) are the Lucas sequences of the first kind and of the second kind, respectively. As natural consequences we obtain explicit forms of the generating functions for the powers of the terms of Lucas sequences with indices in arithmetic progression. This paper therefore extends the results of P. Sta˘nică who evaluated $\sum_{j=0}^{k} u_{j}^{2n} z^j$ and $\sum_{j=0}^{k} u_{j}^{2n-1} z^j$; and those of B. S. Popov who obtained generating functions for the powers of these sequences.

1 Introduction

The Lucas sequences of the first kind, $(u_n(p,q))$, and of the second kind, $(v_n(p,q))$, with complex parameters p and q, are defined by

$$u_0 = 0, \quad u_1 = 1; \quad u_n = pu_{n-1} - qu_{n-2}, \quad (n \geq 2); \quad (1.1)$$

and

$$v_0 = 2, \quad v_1 = p; \quad v_n = pv_{n-1} - qv_{n-2}, \quad (n \geq 2). \quad (1.2)$$

The most well-known Lucas sequences are the Fibonacci sequence, $(f_n) = (u_n(1,-1))$ and the sequence of Lucas numbers, $(l_n) = (v_n(1,-1))$. Thus, the Fibonacci numbers, f_n, and the Lucas numbers, l_n are defined by:

$$f_0 = 0, \quad f_1 = 1, \quad f_n = f_{n-1} + f_{n-2} \quad (n \geq 2) \quad (1.3)$$

and

$$l_0 = 2, \quad l_1 = 1, \quad l_n = l_{n-1} + l_{n-2} \quad (n \geq 2). \quad (1.4)$$

Denote by α and β, the zeros of the characteristic polynomial $x^2 - px + q$ of the Lucas sequences. Then

$$\alpha = \frac{p + \sqrt{p^2 - 4q}}{2}, \quad \beta = \frac{p - \sqrt{p^2 - 4q}}{2}, \quad (1.5)$$
\[\alpha + \beta = p, \quad \alpha - \beta = \sqrt{p^2 - 4q} \quad \text{and} \quad \alpha \beta = q. \tag{1.6} \]

The difference equations (1.1) and (1.2) are solved by the Binet-like formulas

\[u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad v_n = \alpha^n + \beta^n. \tag{1.7} \]

It follows that

\[u_{2n} = \frac{\alpha^{2n} - \beta^{2n}}{\alpha - \beta} = \left(\frac{\alpha - \beta}{\alpha + \beta} \right) (\alpha^n + \beta^n) = u_n v_n. \tag{1.8} \]

Extension of the definitions of \(u_n \) and \(v_n \) to negative subscripts is provided by writing the recurrence relations as \(u_{-n} = (pu_{-n+1} - u_{-n+2})/q \) and \(v_{-n} = (pv_{-n+1} - v_{-n+2})/q \). Using the Binet-like formulas in (1.7) and the identities

\[\frac{x^{-n} - y^{-n}}{x - y} = -(xy)^{-n} \frac{x^n - y^n}{x - y} \tag{1.9} \]

and

\[x^{-n} + y^{-n} = (xy)^{-n} (x^n + y^n), \tag{1.10} \]

with \(x = \alpha \) and \(y = \beta \), we see that

\[u_{-n} = -u_n/q^n, \quad v_{-n} = v_n/q^n. \tag{1.11} \]

As advertised in the abstract, our aim is to evaluate the sums \(\sum_{j=0}^{k} u_{rj+s}^n z^j \), \(\sum_{j=0}^{k} v_{rj+s}^n z^j \) and, naturally, the generating functions \(\sum_{j=0}^{\infty} u_{rj+s}^n z^j \), \(\sum_{j=0}^{\infty} v_{rj+s}^n z^j \) and \(\sum_{j=0}^{\infty} v_{rj+s}^n z^j \). To this end we shall make use of the following identities:

Lemma 1. The following identities hold for nonnegative integer \(n \), integers \(r, s \) and \(k \) and arbitrary \(x, y \) and \(z \):

\[2 \sum_{j=0}^{k} (x^{rj+s} - y^{rj+s})^2n z^j = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \sum_{j=0}^{k} (xy)^{(rj+s)i} (x^{2(n-i)(rj+s)} + y^{2(n-i)(rj+s)}) z^j, \tag{1.12} \]

\[0 = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \sum_{j=0}^{k} (xy)^{(rj+s)i} (x^{2(n-i)(rj+s)} - y^{2(n-i)(rj+s)}) z^j, \tag{1.13} \]

\[2 \sum_{j=0}^{k} (x^{rj+s} - y^{rj+s})^2n-1 z^j = \sum_{i=0}^{2n-1} (-1)^i \binom{2n-1}{i} \sum_{j=0}^{k} (xy)^{(rj+s)i} (x^{(2n-1-2i)(rj+s)} - y^{(2n-1-2i)(rj+s)}) z^j, \tag{1.14} \]

\[0 = \sum_{i=0}^{2n-1} (-1)^i \binom{2n-1}{i} \sum_{j=0}^{k} (xy)^{(rj+s)i} (x^{(2n-1-2i)(rj+s)} + y^{(2n-1-2i)(rj+s)}) z^j, \tag{1.15} \]

\[2 \sum_{j=0}^{k} (x^{rj+s} + y^{rj+s})^n z^j = \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{k} (xy)^{(rj+s)i} (x^{(n-2i)(rj+s)} + y^{(n-2i)(rj+s)}) z^j, \tag{1.16} \]
0 = \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{k} (xy)^{rj+s+i} (x(n-2i)(rj+s) - y(n-2i)(rj+s)) z^j. \hspace{1cm} (1.17)

Proof. By the binomial theorem and a change of the order of summation, we have
\[\sum_{j=0}^{k} (x^{rj+s} - y^{rj+s})^2 n z^j = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \sum_{j=0}^{k} (xy)^{rj+s+i} y^{(2n-i)(rj+s)} z^j. \hspace{1cm} (1.18) \]
Interchanging \(x \) and \(y \) in (1.18) gives
\[\sum_{j=0}^{k} (x^{rj+s} - y^{rj+s})^2 n z^j = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \sum_{j=0}^{k} (xy)^{rj+s+i} x^{(2n-i)(rj+s)} z^j. \hspace{1cm} (1.19) \]
Addition of (1.18) and (1.19) gives identity (1.12), while their subtraction gives identity (1.13). The proof of (1.14) — (1.17) is similar.

We also require the sum of the terms of Lucas sequences with indices in arithmetic progression:

Lemma 2 ([1, Theorem 1]). The following identities hold for integers \(r, k \) and \(s \) and arbitrary \(z \):
\[
\begin{align*}
&\sum_{j=0}^{k} u_{rj+s} z^j = \frac{q^r u_{r(k+s)} z^{k+2} - u_{r(k+r+s)} z^{k+1} + q^s u_{r-s} z + u_s}{q^r z^2 - v_r z + 1}, \hspace{1cm} (1.20) \\
&\sum_{j=0}^{k} v_{rj+s} z^j = \frac{q^r v_{r(k+s)} z^{k+2} - v_{r(k+r+s)} z^{k+1} - q^s v_{r-s} z + v_s}{q^r z^2 - v_r z + 1}. \hspace{1cm} (1.21)
\end{align*}
\]

2 The main results

Theorem 1 (Sums of powers of the terms of Lucas sequences with indices in arithmetic progression). The following identities hold for integers \(r, s \) and \(k \), nonnegative integer \(n \) and arbitrary \(z \):
\[
\begin{align*}
2(p^2 - 4q)^n \sum_{j=0}^{k} u_{rj+s} z^j &= \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} q^s \frac{q^r(2n+ki) u_{r(k+s)(2n-2i)} z^{k+2} - q^r(k+1) u_{r(k+r+s)(2n-2i)} z^{k+1}}{q^{2n} z^2 - q^r v_{r(2n-2i)} z + 1} \\
&\quad - \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} q^s \frac{q^s(2n-2i) + r i u_{r-s)(2n-2i)} z - v_s(2n-2i)}{q^{2n} z^2 - q^r v_{r(2n-2i)} z + 1}, \hspace{1cm} (2.1) \\
2(p^2 - 4q)^{n-1} \sum_{j=0}^{k} u_{rj+s} z^j &= \sum_{i=0}^{2n-1} (-1)^i \binom{2n-1}{i} q^s \frac{q^r(2n-1+ki) u_{r(k+s)(2n-1-2i)} z^{k+2} - q^r(k+1) u_{r(k+r+s)(2n-1-2i)} z^{k+1}}{q^{(2n-1)} r z^2 - q^r v_{r(2n-1-2i)} z + 1} \\
&\quad + \sum_{i=0}^{2n-1} (-1)^i \binom{2n-1}{i} q^s \frac{q^s(2n-1-2i) + r i u_{r-s)(2n-1-2i)} z + v_s(2n-1-2i)}{q^{(2n-1)} r z^2 - q^r v_{r(2n-1-2i)} z + 1}, \hspace{1cm} (2.2)
\end{align*}
\]
\[
2 \sum_{j=0}^{k} v_{rj+s}^n z^j = \sum_{i=0}^{n} \binom{n}{i} q^{si} q^{r(n-k+1)} v_{(r-k+s)(n-2i)} z^{k+2} - q^{ri(k+1)} v_{(r+k+r+s)(n-2i)} z^{k+1} \\
q^{rn} z^2 - q^{ri} v_{r(n-2i)} z + 1
\]
(2.3)

Proof. Set \((x, y) = (\alpha, \beta)\) in (1.12), (1.14) and (1.16) and make use of Lemma 2.

In particular, we have
\[
2(p^2 - 4q)^n \sum_{j=0}^{k} u_{j}^{2n} z^j = \sum_{i=0}^{n} (-1)^i \binom{2n}{i} q^{2n+i} v_{(2n-2i)(2n-2i)} z^{k+2} - q^{i(k+1)} v_{(2n-2i)(2n-2i)} z^{k+1} \\
\frac{q^{2n-1} z^2 - q^{i} v_{2n-2i} z + 1}{q^{2n} z^2 - q^{i} v_{2n-2i} z + 1}
\]
(2.4)

\[
2(p^2 - 4q)^{n-1} \sum_{j=0}^{k} u_{j}^{2n-1} z^j = \sum_{i=0}^{n} (-1)^i \binom{2n-1}{i} q^{2n-1+i} u_{(2n-1-2i)(2n-1-2i)} z^{k+2} - q^{i(k+1)} u_{(2n-1-2i)(2n-1-2i)} z^{k+1} \\
\frac{q^{2n-1} z^2 - q^{i} u_{2n-1-2i} z + 1}{q^{2n} z^2 - q^{i} u_{2n-1-2i} z + 1}
\]
(2.5)

\[
2 \sum_{j=0}^{k} v_{j}^n z^j = \sum_{i=0}^{n} \binom{n}{i} q^{si} v_{k(n-2i)} z^{k+2} - q^{i(k+1)} v_{k(n-2i)} z^{k+1} \\
\frac{q^n z^2 - q^{i} v_{n-2i} z + 1}{q^{n} z^2 - q^{i} v_{n-2i} z + 1}
\]
(2.6)

Stănică [5] obtained results which may be considered equivalent to (2.4) and (2.5). We remark however that his expressions still contain the irrational numbers \(\alpha\) and \(\beta\).

Dropping terms proportional to \(z^k\), in the limit as \(k\) approaches infinity, we obtain the generating fuctions given in Corollary 2.

Corollary 2 (Generating functions for powers of the terms of Lucas sequences with indices in arithmetic progression). The following identities hold for integers \(r\) and \(s\) and nonnegative integer \(n\):

\[
2(p^2 - 4q)^n \sum_{j=0}^{\infty} u_{rj+s}^{2n} z^j = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} q^{2n+i} u_{(r-k+s)(2n-2i)} z^{k+2} + u_{(2n-2i)} z + 1 \\
\frac{q^{2n} z^2 - q^{i} u_{r(n-2i)} z + 1}{q^{2n-1} z^2 - q^{i} u_{r(n-2i)} z + 1}
\]
(2.7)

\[
2(p^2 - 4q)^{n-1} \sum_{j=0}^{\infty} u_{rj+s}^{2n-1} z^j = \sum_{i=0}^{2n-1} (-1)^i \binom{2n-1}{i} q^{2n-1+i} u_{(r-k+s)(2n-1-2i)} z^{k+2} + u_{(2n-1-2i)} z + 1 \\
\frac{q^{2n-1} z^2 - q^{i} u_{r(n-2i)} z + 1}{q^{2n-2} z^2 - q^{i} u_{r(n-2i)} z + 1}
\]
(2.8)

\[
2 \sum_{j=0}^{\infty} v_{rj+s}^n z^j = \sum_{i=0}^{n} \binom{n}{i} q^{si} v_{(r-k+s)(n-2i)} z^{k+2} + v_{(n-2i)} z + 1 \\
\frac{q^{n} z^2 - q^{i} v_{r(n-2i)} z + 1}{q^{n} z^2 - q^{i} v_{r(n-2i)} z + 1}
\]
(2.9)
We have, in particular,

\[
2(p^2 - 4q)^n \sum_{j=0}^{\infty} u_j^{2n} z^j = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \frac{-q^i v_{2n-2i} z + 2}{q^{2n} z^2 - q^i v_{2n-2i} z + 1}, \tag{2.10}
\]

\[
2(p^2 - 4q)^{n-1} \sum_{j=0}^{\infty} u_j^{2n-1} z^j = \sum_{i=0}^{2n-1} (-1)^i \binom{2n-1}{i} \frac{q^i v_{2n-1-2i} z}{q^{2n-1} z^2 - q^i v_{(2n-1-2i)} z} + 1, \tag{2.11}
\]

\[
2 \sum_{j=0}^{\infty} v_n^j z^j = \sum_{i=0}^{n} \binom{n}{i} \frac{-q^i v_{n-2i} z + 2}{q^n z^2 - q^i v_{(n-2i)} z + 1}. \tag{2.12}
\]

Popov [3] obtained results equivalent to (2.10) — (2.12).

References

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.

Keywords: Fibonacci number, Lucas number, Lucas sequence, summation identity, generating function.