The Inconsistency of Arithmetic

Ralf Wüsthofen

Abstract. Based on a strengthened form of the strong Goldbach conjecture, this paper presents an antinomy within the Peano arithmetic (PA). We derive two contradictory statements by using the same main instrument as in the proof\(^2\) of the conjecture, i.e. a set that is a structuring of the natural numbers starting from 3.

Notations. Let \(\mathbb{N}\) denote the natural numbers starting from 1, let \(\mathbb{N}_n\) denote the natural numbers starting from \(n > 1\) and let \(\mathbb{P}_3\) denote the prime numbers starting from 3.

Theorem. The Peano arithmetic (PA) is inconsistent.

Proof. We define the set
\[S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \} \]
and we consider the following two cases.

\((G)\) The numbers \(m\) in the components \(mk\) take all integer values \(x \geq 4\).
\(\neg(G)\) The numbers \(m\) in the components \(mk\) do not take all integer values \(x \geq 4\).

For each \(k \geq 1\), let \(S_g(m,k)\) denote the set of the middle components \(mk\) of the \(S_g\) triples. Then, by definition

\[(G) \iff S_g(m,k) = k\mathbb{N}_4 \text{ for every } k \geq 1 \]
\[\neg(G) \iff S_g(m,k) \neq k\mathbb{N}_4 \text{ for every } k \geq 1. \]

This implies that \(S_g\) does not contain the same triples in the cases \((G)\) and \(\neg(G)\):

\((I)\) \(\exists\) sets \(S, S'\) such that \(S \neq S'\) and (\(((G) \Rightarrow S_g = S)\) and \(\neg(G) \Rightarrow S_g = S'\)).

On the other hand, the case \(\neg(G)\) means that there is at least one \(n \geq 4\) such that \(nk\) is different from all the \(mk\) for each \(k \geq 1\), where all pairs \((p, q)\) of odd primes, that determine the numbers \(m\), are used in \(S_g\). For each \(k \geq 1\), such an \(nk\) can be written as some \(p k'\) when \(n\) is prime, as some \(p k'\) when \(n\) is composite and not a power of 2, or as \(4k'\) when \(n\) is a power of 2; \(p \in \mathbb{P}_3; k, k' \in \mathbb{N}\).

\(^1\) rwuesthofen@gmail.com
\(^2\) http://vixra.org/abs/1702.0300
The expression $p'_{k'}$ for n_k with $k' = k$ or $k' \neq k$ is a first component of S_g triples and the expression $4k'$ for n_k is component of the triple $(3k', 4k', 5k')$. So, since n_k equals some triple component $p'_{k'}$ or $4k'$ that exists by definition of S_g and since the S_g triples are generated by the first and third components, the triples are the same in the case n_k exists and in the case n_k does not exist.

In other words, the S_g triples are always the same, regardless of whether n_k as a component of them exists or not. Therefore, we obtain the contradiction that S_g contains the same triples in the cases (G) and $\neg(G)$:

\[
\forall \text{ sets } S, S' \quad (((G) \Rightarrow S_g = S) \text{ and } (\neg(G) \Rightarrow S_g = S')) \Rightarrow S = S'
\]

\[
\iff
\]

(II) \quad \nexists sets S, S' such that $S \neq S'$ and $((G) \Rightarrow S_g = S)$ and $(\neg(G) \Rightarrow S_g = S')$.

\[\square\]

The statement (II) is built on two properties of S_g, namely that n_k, given by the case $\neg(G)$, for each $k \geq 1$ can be expressed by a S_g triple component and that $n_k, k = 1$, cannot be the arithmetic mean of a pair of odd primes not used in S_g. We call these two properties of S_g 'covering' and 'maximality'. Without them, we could establish only the statement (I) and there would be no contradiction.

The proof uses a strengthened form of the strong Goldbach conjecture:

Strengthened strong Goldbach conjecture (SSGB): *Every even integer greater than 6 can be expressed as the sum of two different primes.*

SSGB is equivalent to saying that all integers $x \geq 4$ appear as m in a component m_k of S_g. Therefore, SSGB is equivalent to the case (G) and the negation \negSSGB is equivalent to the case $\neg(G)$. We have seen above that the S_g triples are the same in these two cases. This means that both SSGB and \negSSGB hold.