
From Turbulence to the Unification
of Maxwell Field and Gravitational

Field
(back to the roots)

Rolf Warnemünde



c© 2019 CC BY-NC-ND
Rolf Warnemünde
E-Mail: rolf.warnemuende@t-online.de

2



Abstract

The central focus of the theory lies on the solution of the since more than
165 years unsolved problem of turbulence. To achieve this aim the following
interstations are reached successfully:

1. definition of a pure continuum corresponding uniquely to a fluid,

2. stochastic turbulent particle transport by a fluctuating continuum,

3. context of deterministic turbulence and its stochastic counterpart in the sense
of an ensemble theory.

The result turns out to be geometrodynamics:

1. a pure geometrodynamics of turbulence in a 1+3-dimensional Euclidian Space,

2. a pure geometrodynamics of deformation.

Both geometrodynmics lead to

1. evolution equations of General Relativity,

2. the quantitative unification of Maxwell Field and Gravitational Field,

3. the facilitation of quantizing gravitational fields,

4. considerations of general gravitational waves from a new perspective.

The importance of the Einstein-Equations for microphysics is proved.
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1. Preface

After his graduation in physics the author has got the impression that all the
essential problems in physics had been solved. Accordingly William K. George
(Professor of Turbulence Emeritus) states: “I remember despairing as a student that
it seemed that all the problems were solved, and there was really nothing fundamental
left to do.“ [14] At an advanced age, after decades of research and development
in industry, this impression has fundamentally changed. Last but not least the
frequently occuring confrontations with problems of turbulence for example in
connection with pollutant propagation in turbulently moved atmosphere or heat
exchange processes in turbulently moved boundary layers1 has shown, that much
remains to be done. Furthermore the usual interpretation of quantum mechanics (
the probability problem ) and the question of its completeness got to thinking, too.

The variety of different “turbulence theories“2 would never have had a chance, to
find a useful application in Industry. As for turbulence not even a trace of a useful
definition exists. Although treatises (for instance thesises) have been published
by the most famous physicists of the 20th century like Heisenberg, it was nearly
impossible for the industry concerning research and development to invest money
and time. On the other hand hydrodynamics or rather turbulence didn’t play a
significant role studying theoretical physics.

The question, how an optimal theory of physics is characterized is qualitatively
easy answered but difficult to realize in a practical and specific way: It has to
give a 1 to 1 mapping of reality. Anyway there has to be a suitable definition of
that part of reality, whose processes are to be analyzed. Sometimes the neccessary
mathematics is not known. In this case one has to create formulations, which lead to
calculable solutions. The identifying of their existence and definiteness may be suf-
ficient for mathematics but for physics and especially industrial research they are not.

Theories in physics (especially in classical physics) are described by equations of
motion with geometrodynamical connection (location, time, velocity and their
space- und timelike partial derivations) and additional physical assumptions. These

1Reynold’s law of similarity has proved to be entirely unsuitable in the case of turbulence.
2According to the opinion of the author: they all do not deserve this title.
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1. Preface

assumptions include in the simplest case constants for instance the velocity of
light in the Maxwell Equations of vacuum 3 , or pure physical terms like in the
Navier-Stokes-Equations of hydrodynamics, which describe the accelleration field of
the fluid continuum by state variables of thermodynamics. (At this an appropriate
definition of the continuum is somewhat difficult.) These equations are in the laminar
flow range well confirmed by experiments, the applications beyond these limiting
cases remain at least dubious. The degree of hypothesizing in such theories is
least, if the mathematical formulation can be reduced to geometrodynamics without
assumptions and without loosing the unique reference to physical movements.

If it works calculating the velocity field of a heterogeneous mass as smeared mass
distribution in a pure geometrodynamical way, the future smeared mass distribution
can be determined exactly from the initially realized distribution.4 This is the result
of the well known continuity equation:

∂

∂t
ρ+ ~∇ · (ρ ·~v) = 0.

Calculations applying today’s theory of hydrodynamics do not result in velocity
fields of pure geometrodynamics. If the known hydrodynamic equations were correct
5, one could speak of a coupling of geometrodynamics and thermodynamics. Then
there were an analogy to the theory of General Relativity, which means a coupling
of space-time geometry with energy-momentum-density of matter. The development
of suitable evolution equations in General Relativity is of great challenge for today’s
research.

Initially there was the intention to look for a mathematical formulation of deter-
ministic transport processes of aerosols in turbulently moved fluids by a statistical
transport theory within the meaning of an ensemble consideration. The developed
transport equations would have been difficult to access experimentally, so that the
second part of the research project arose, in which the relation of stochastic theory
of natural causality with a suitable deterministic theory was established. Further
theoretical researches of stochastic continuum fluctuations of 3-dimensional vector
fields lead to pure geometrodynamics of turbulently fluctuating continua as well as
fluctuating deformations. In doing so old line of thoughts of Einstein and Wheeler are
not resumed. The resulting geometrodynamics is a consequent finding by avoiding

3these equations in this treatise are shown to be the consequence of geometrodynamics except the
mentioned experimental velocity of light

4Generally, more cannot be achieved calculating a fluid. It requires defining a mathematical con-
tinuum corresponding to a discontinuously smeared matter

5Generally, they are not correct. Turbulence manifestations are the common case, laminar hydro-
dynamics is the limiting case.
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1. Preface

hypotheses such that the unique relation of mathematical formulation and physical
reference is not lost.
After having found these mathematical structures solutions for General Relativity
fell into the laps:

1. evolution equations of General Relativity

2. a unification of electromagnetic and gravitational fields

3. considerations of gravitational waves from a new perspective

4. the possibility of quantizing gravitational fields6

Noting this required the fourth part of this treatise.

It is the opinion of the author, that the language of physics consists of two interacting
parts-so to speak form and content-, whereby the form is linked to mathematical
formulation and the content is linked to verbalized description.7 In this way the
present theory is developed. It is plausible that in the act of unifying certain fields
of physics a joint mathematical formulation should take shape.

How mathematical formulation looks like after the great unification is not yet
clear. The unification of Maxwell-and gravitational Field in this treatise is not yet
the great unification, as the necessary linking to an elementary particle physics
is missing. The author especially has in mind field theoretical explanations of
electron, proton as well as neutron. Quantum mechanics, quantum field theory as
well as the standard model of elementary particle physics of today turn up not to
be complete theories. The claim of quantum field theory being a superior theory
of physics is contradicted by the author in accordance with Penrose[34] as well as
Einstein. Generally, classical physics is not the limiting case of quantum field theory
(lim ~→ 0) as maybe the limiting cases (of classical physics) Newton Mechanics and
electrodynamics. In this treatise the electrodynamic field is shown to be a limiting
case of formally classical physics but at the end of central importance. Einstein’s
General Relativity and the geometrodynamics of continuum physics of this treatise
are no limiting cases of todays quantum field theory.

Overall, the author sees the way, which is persued, as a path to reality in analogy to
the book “The Road to Reality“ of Penrose[34]. However Penrose doubts in the last
chapter the correctness of the road outlined by himself (as it is nowadays generally
tried in physics) not at least because the unification of Maxwell Field and Gravita-
tional Field and quantization of the gravitational field failed. The author contends,
that the prerequisit for understanding new developments is the understanding of their
starting point, classical physics. Nowadays classical physics has serious shortcomings

6This option is not used in this treatise.
7the physicist is the moderator considering the interacting influences
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1. Preface

on one side and on the other side contains methods to ensure a natural causality that
is the simultaneous consideration of position and momentum, which is lost with the so
called modern physics (quantum mechanics, quantum field theory, etc.). This treatise
wants to cure the main deficits of classical physics via the way of solving the turbu-
lence problem, the main problem of continuum physics, avoiding usual hypotheses.
So the subtitle “back to the roots“ has been chosen.
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2. Introduction

Feynman[13]: “Nobody in physics
has really been able to analyze
it mathematically satisfactorily in
spite of its importance to the sis-
ter sciences. It is the analysis of
circulating or turbulent fluids.“

The description of turbulent movements within the framework of continuum me-
chanics turned out to be difficult since more than 160 years. However, laminar fluid
movements can be calculated by the known basic equations successfully confirmed in
experiments: equation of continuity, Navier-Stokes-Equations and energy equation.
The efforts, treating movements of turbulence in a similar way, must be considered
as failures. There are substantial reasons for believing, that the above equations
describing turbulent collective movements of non-homogenously distributed
molecular matter are inadequate. This was the situation that inspired the
idea, to explain the phenomenon of turbulence by stochastic methods. In that
context, particularly approaches of Kolmogorov are to be mentioned, which lead
to spectral energy distributions, assuming highly hypothetically, that turbulence is
statistically isotropical und homogeneous. Between them there is a wide range of
models with physically not well founded hypotheses. Overall, this leads to the state-
ment of Feynman cited at the beginning, whereupon not much has changed since then.

This situation is characterized in recent treatises as for example by Trinh, Khanh
Tuoc [24] in the following way:

“ the study of turbulence is immediately hampered by the surprising lack of a clear and
concise definition of the physical process. Tsinober (2001) has published a long list
of attempts at a definition by some of the most noted researchers in turbulence. The
most common descriptions are vague: ”a motion in which an irregular fluctuation
(mixing, or eddying motion) is superimposed on the main stream” (Schlichting 1960),
”a fluid motion of complex and irregular character” (Bayly, Orszag, Herbert, 1988)

12



2. Introduction

or negative as in the breakdown of laminar flow (Reynolds’ experiment 1883). Some
of the definitions are quite controversial like Saffman’s (1981) ”One of the best
definition of turbulence is that it is a field of random chaotic vorticity” because the
words random and chaotic would imply that a formal mathematical solution, which
is necessarily deterministic, does not exist. Perhaps the most accurate definition
can be attributed to Bradshaw (1971) ”The only short but satisfactory answer to the
question ”what is turbulence” is that it is the general-solution of the Navier-Stokes
equation”. This definition cannot be argued with but it is singularly unhelpful since
no general solution of the NS yet exists 160 years after they were formulated.“

or by McDonough [30] “ In particular, a turbulent flow can be expected to exhibit all
of the following features:

1. disorganized, chaotic, seemingly random behavior;

2. nonrepeatability (i.e., sensitivity to initial conditions);

3. extremely large range of length and time scales (but such that the smallest scales
are still sufficiently large to satisfy the continuum hypothesis);

4. enhanced diffusion (mixing) and dissipation (both of which are mediated by vis-
cosity at molecular scales);

5. three dimensionality, time dependence and rotationality (hence, potential flow
cannot be turbulent because it is by definition irrotational);

6. intermittency in both space and time.“

Fluctuation elements of the presented theory always form a dense point set, i.e. a
definition of a continuum of such fluctuation elements is important deducing equations
of motion in form of partial differential equations. On the other hand a concept of a
stochastic theory of a fluctuating continuum within the meaning of an ensemble theory
is deduced. Fundametal principles of this treatise as well as in the whole classical
physics are locality, causality and deterministics. In this treatise particular
emphasis is placed on specially defined natural causality, which in contrary to
Newtonian causality of point mechanics only knows finite velocities. Discussed
stochastics arises from statistics with an in thought experiment supposed unlimited
ensemble of locally equivalent deterministic processes.1 Finally turbulence is derived
as a deterministic process and traced back to geometrodynamics of turbulence. The
fluidelement movements are described by interacting vortex- and vector-curvature

1If one wants, it can be seen as a many-world-theory of classical physics. However this is done
creating beforehand unknown equations of the deterministic processes (in contrary to Everett’s
many-world-theory of quantum mechanics).
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2. Introduction

fields, whereas geometrodynamics of deformation ~d is characterised by a fluctuating
curvature-tensor-field of 2nd degree, alternatively decribed by interacting

∂~d

∂t
, rot(~d)

fields.

The interrelations of the deterministic and an associated stochastic theory enable a
complete equation system of turbulently moved continua. The formulation of stochas-
tically fluctuating processes of continua within the meaning of an ensemble theory is
innovative for physics and mathematics. The known Navier-Stokes-Equations are not
integrated in the complete equation system of turbulent moved fluids. The inclosed
accelleration field d~v

dt
of the associated momentum equation can not be described by

thermodynamic variables and viscose frictions.

d~v

dt
6= −1

ρ
~∇p+ ν∆~v+ (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

The complete system of equations consists of 12 equations with 12 unknowns and
contains only variables of motion in form of the vector fields: velocity, vortex, curva-
ture and an accelleration field. So the developed theory of turbulence proves to be
a geometrodynamics in a 3+1 dimensional Euclidian Space. Thermodynamics and
matter distribution do not occur explicitly. This theory of variables of motion is prin-
cipally exact. A smeared distribution of matter over Space-Time results by evalution
of the calculated velocity vector field and the equation of continuity. Currently, in
a parallel treatise, this system of equations will be solved numerically for different
physical situations: pipes, concentric pipes and rectangular channels. The numerical
solutions are two times continuously differentiable in space coordinates.[40]

Some potential solutions for General Relativity and Cosmology result uncon-
strainedly. They are preceded by definitions of dense fluid continua and distribution
functions for an unlimited ensemble of locally equivalent continua.

Generally, the background theory describes two geometrodynamics of different
structures, each faced by a stochastic theory of continuum fluctuations with natural
causality. No additional physical model considerations enter into the theory.2
Overall, the following problems are treated or solved respectively:

• Transport Theory of turbulently moved Particles
The stochastic transport equations considering consequently the continuum be-
haviour include coefficients, which stem from deterministic theory. The fluc-
tuation variables are Euler Angles. These thoughts are important for example

2for example thermodynamics in the usual Navier-Stokes-Equations
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2. Introduction

considering pollutant dispersion in the lower atmosphere. The Theory offers
several options of numerical evaluation depending on using the related par-
tial differential equation, its presentation as integral equation or using particle
trajectory-simulations in the related deterministic turbulence field (which can
be calculated too).

• Continuum Theory of turbulent Fluctuations
The physics of turbulence is described by certain geometrodynamics for re-
lated turbulent movements. The associated stochastic description represents a
Markov-Process with natural causality. A Markov Process as the stochastic
description of turbulence is generally denied, because the understanding of such
a stochastic process is too restricted. Formulating a transition probability for
space-time-points

(~x, t) −→ (~x′, t′),

is not enough. It depends on the velocity in (~x, t) reaching point (~x′, t′). Arriv-
ing at the point (~x′, t′) has to be the consequence of a velocity in (~x, t), which
will be regulated by means of a transition probability of velocities factored out
in vortex and related curvature vectors. The existence of a velocity as causal
factor for transport in space-time we call natural causality. Explicitly, this is
forbidden in quantum mechanics. That is why there are principal differences be-
tween turbulence theory on one side and quantum mechanics and quantum field
theory on the other side. The phase space appearing usually in Boltzmannlike
formulations is replaced by an in every point (~x, t) assumed velocity distri-
bution of an ensemble of parallelly existing deterministic systems. Transition
probabilities are explicitly calculated and are depending on the measurement
accuracy of the measured motion quantities and degenerate exactly measured
to δ-functions.

• Continuum Fluctuations of general 3-dimensional Vector Fields
Their physical interpretation enables for example the calculation of

– deformation fields (geometrodynamics of deformation)

– turbulence fields (geometrodynamics of turbulence)

– Maxwell Fields (they prove to be limiting cases of general deformation
fields)

• Evolution Equations of General Relativity
The complete equation system of turbulence proves to be an evolution equa-
tion system of General Relativity. That is why turbulence is described by
pure geometrodynamics. The Cauchy-Problem of General Relativity is solved

15



2. Introduction

by mapping the initial velocity vector field and its partial derivation with re-
spect of time from space-time into a 3+1 dimensional Euclidian observer space
(coordinate-space). From this all the necessary initial conditions for the sys-
tem of 12 coupled equations of cosmological turbulence can be calculated. The
determined accelleration field is the consequence of the Space-Time curvature
field of General Relativity.

• Fluctuations of the Riemannian hypersurface in Space-Time of General Relativity
Their formulation means the unification of General Relativity and Maxwell
Field. This relation was not expected in the frame of classical physics. It
results unconstrained by the mathematical structures of geometrodynamics of
deformation. As the mapping is of key importance in mathematics so is the
process in physics, in this case the deformation process of the Riemannian
hypersurface of General Relativity. The solution succeeds not on founding the
Riemannian geometry on an existing metric-tensor field but on a deformation
vector field from which the metric tensor field can be constructed. So gravi-
tational waves are seen from a new viewpoint. The Maxwell Fluctuations are
quantitativly correlated with deformation fluctuations of Space (Riemannian
hypersurface).
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Prerequisites
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3. Definition of a moved
fluid-continuum

3.1. Introduction

A proper definition of turbulence, which is based on a fluctuating, dense point
set, does not exist. But this is neccessary establishing equations of movement in
form of partial differential equations. The known Navier-Stokes equations are only
providing sufficient solutions for laminar problems. Below a fluctuating fluid is
defined, which is associated uniquely to a dense set of space points of the considered
time. This definition is the prerequisite developing stochastic theories of turbulent
transport of continously moved particles within the meaning of an ensemble theory,
a deterministic theory and the connection of stochastic and a deterministic turbulence.

3.2. Definition of moved fluid-elements

At every time, space points (~x) are assigned to fluid elements in a unique correspon-
dence. As this applies to every space point (~x) of the fluid field, the set of fluid
elements is seen as a continuum. A Continuum of fluid element points (simply called
fluid elements) is considered, where a fluid environment of non infinitesimal size is
uniquely allocated to every fluid element point. Two infinitesimally neighboring fluid
elements differ apart from their distance by their velocities and not quite identical
material distributions of their neighborhoods. The neighborhoods of two nearby fluid
elements overlap. A fluid element is shifted moving the material of its neighborhood.
Though the material of such a fluid element may have changed marginally after an
infinitesimal time interval tε, it can be identified principally by its prior material
status. As every molecule possesses its own identity, there has to be at least an in-
finitesimally greater difference of material distribution to the neighborhoods of other
fluid elements.
The neighborhoods exchange material with neighborhoods of adjacent fluid elements
and vary their thermodynamic state (a local thermodynamic state does not neces-
sarily exist). Their size is not infinitesimal, because a local thermodynamic state (if

19



3. Definition of a moved fluid-continuum

physically existent) has to be detectable at least in thought experiment. The open
neighborhoods have equally sized spherical shapes, generally. Near a solid border
they are descibed by parts of spheres. Infinitesimally adjacent fluid elements possess
overlapping neighborhoods. In an ε-surrounding they move in parallel. So one ob-
tains a fluid, which is assumed to be a dense fluctuating point set, though there is
no continuous matter distribution in Space-Time. That means it is possible to follow
theoretically the history of every fluid element, though it has exchanged a lot of its
initial material altering its local thermodynamic state.
Recapitulated:
Every space point (~x) of the open point set of a considered fluid area is
at every time in unique correspondence to a fluid element. The fluid is an
abstract, dense set of fluctuating fluid elements, which do not generally correspond
to material points.

3.3. Laminar moved fluids

A continuum of moved fluid elements is considered each uniquely assigned to a neigh-
borhood and a velocity.

~vtε =
~x2 − ~x1

tε
(3.1)

The fluid elements move along sufficiently often continuously differentiable trajec-
tories. The accuracies of the considered motion quantities are determined by tε-
measurement processes tε characterising the accuracy. Deriving the transport equa-
tion of turbulent particle transport a limes consideration (lim tε → 0) is subjected.
The whole of the velocities create a velocity vector field having rot(~v) 6= 0 generally.1
Though rot(~v) has dimension [1/sec], it does not refer to a rotation of laminar flow.
In an infinitesimally surrounding area of a space-time-point (~x0, t0) a fluid flow can
be defined locally 2 by parallelly moved fluid elements. Considering without loss of
generality a fluid movement of velocity ~v(~x0) = (vx, 0, 0) in a space point ~x0 in carte-
sian coordinates, the velocity is described in an ε-neighborhood and parallel to the
x-coordinate as follows:

~v(~x) =

 vx(~x)
vy(~x)
vz(~x)

 =


vx(~x0)+ ∂vx

∂x

∣∣∣
~x0

·∆x+ ∂vx
∂y

∣∣∣
~x0

·∆y + ∂vx
∂z

∣∣∣
~x0

·∆z + ...

∂vy
∂x

∣∣∣
~x0

·∆x+ ∂vy
∂y

∣∣∣
~x0

·∆y + ∂vy
∂z

∣∣∣
~x0

·∆z + ...

∂vz
∂x

∣∣∣
~x0

·∆x+ ∂vz
∂y

∣∣∣
~x0

·∆y + ∂vz
∂z

∣∣∣
~x0

·∆z + ...


1in english literature curl(~v) 6= 0 is used but in turbulence the name rot is more adapted as will
be seen

2except in stagnation points
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3. Definition of a moved fluid-continuum

The velocity components vy(~x) und vz(~x) osculate at the velocity ~v(~x0) = (vx, 0, 0)
spatially approaching (constant time t0),

vy(x0, y, z0) −→ vy(x0, y0, z0) = 0

vz(x0, y0, z) −→ vz(x0, y0, z0) = 0
.

That means especially, that all the partial derivations by y- or z-coordinate of 1. order
of vy(~x) and vz(~x) disappear in the point (x0, y0, z0).

lim
z→z0

∆vy
∆z

∣∣∣
~x0

= lim
y→y0

∆vz
∆y

∣∣∣
~x0

= 0

~x0 = (x0, y0, z0)

. (3.2)

Applying the differential quotients in the ~∇× -operator expresssed in cartesian coor-
dinates gives for the fluid velocity

( ~∇× ~v)|~x0
=

 0
∂vx
∂z
− ∂vz

∂x
∂vy
∂x
− ∂vx

∂y


|~x0

, ~v(~x0) = (vx, 0, 0) (3.3)

The orthogonality of ~∇× ~v⊥~v is a fundamental quality 34 and a necessary condition
for continuous fluid flow.

In this orthogonality velocity vector fields differ from deformation vector fields.

3.4. Turbulently moved fluids

Trying to identify the state of movement of a fluid element in turbulent fluids by a
velocity ~vtε it should be recognized, that the state of movement is not yet determined,
as the path in every space point (except in turning points) is uniquely adapted by
an infinitesimal circle segment. In the infinitesimal neighborhood of a path point
the velocity is identified by an instantaneous axis of rotation ~ωtε and a radius vector
~rtε .5

~vtε = ~ωtε ×~rtε (3.4)

3this relation can not be found in literature.
4This is one reason why the known millenium prize question does not lead to a solution of the
turbulence problem. However the validity problem of the Navier-Stokes-equations is more fatal.

5That is why turbulence can not be uniquely identified by experiments of local velocity statistics.
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3. Definition of a moved fluid-continuum

The considered vectorial motion quantities ~ωtε und ~rtε are determined by tε-
measurement processes, which are calculated later on by a limes process lim tε → 0.
A fluid element originating from the point ~x0 crossing ~x1 after the time tε reaches ~x2

after a further time tε.
~x0

tε−→ ~x1
tε−→ ~x2

By these 3 points a circle segment is uniquely drawn crossing point ~x1 with radius
vector ~rtε and speed of rotation ~ωtε . The local state of motion can not be described
by velocity only, neither statistically nor deterministically. 6

Thus the fluid element in the space-time-point (~x, t) is identified principally by the
contents of the matter of its neighborhood and state of movement expressed by ~ωtε
and ~rtε . In that way defined fluid elements move on sufficiently often continuously
differentiable trajectories. They lead considering a continuum of fluctuating fluid ele-
ments to multiply continuously differentiable vector fields of motion. The continuum
of moved fluid elements represent the turbulently collectiv movement of a discontin-
uously spaced Matter.
The field of turbulence is described by the two vector fields ~ωtε and ~btε ,

~btε = ~rtε/r
2
tε -curvature vector field. (3.5)

In addition, the results show that

~ωtε =
1

2
rot(~vtε). (3.6)

rot(~v) has the meaning of a local rotation in the frame of turbulence. An infinitesimal
disturbance of stationary pipe flow leads to an change of the significance of rot(~v),
where rot(~v) does not correspond to a rotation initially. Whether starting motions
of turbulence are suppressed, depends on an existent viscosity. These decelerations
are generally weak. The beginning of turbulent movements avoid Newtonian friction
as well as pressure gradients by means of hereto orthogonal motions.

Vortex fields in turbulence (local rotation fields will be identified with vortex fields)
and radius fields may have turning points (~x, t) along the paths of the fluid elements,
which means ~ω = 0 und ~r = ∞. 7 In this case the velocities are to be calculated
by interpolation or extrapolation of the neighborhood, for example. In the theory
a further method will be shown. The fluid elements are accompanied by a moving
frame of ~ω,~b and ~v along their paths.
In the following it is outlined, how locally Lagrangian and Eulerian formulations
of fluid dynamics are reassembled in the turbulence theory. So deterministic
considerations are found via stochastic descriptions, which could be designated as
Lagrangian. Nevertheless, Lagrangian paths are calculated only after the determin-

6This statement contadicts that of [44]
7The temporal and spatial neighborhood of a turning point does not have such singular properties.
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3. Definition of a moved fluid-continuum

Figure 3.1.: Turbulences understood by Leonardo da Vinci

istic turbulence field is determined. These relations will become clear in later chapters.
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4. Distribution functions

4.1. Introduction

Stochastically physical processes generally refer to random transports of physical
quantities from ~A = (~x1, t1) to ~B = (~x2, t2), where a diffusion equation results at the
end of all the discussions as can be seen in the well known treatise of Chandrasekhar
[5]. This takes place in accordance with the Langevin equation, all known attempts
characterizing Brownian motion and applying Fokker-Planck-equation, too. The
diffusion equation is subjected to a Newtonian causality, that means the related
propagation speed is unlimited. This is not the case in nonrelativistic physics beyond
Newtonian mechanics, generally, as shown in the further course of this treatise.
In this context the Boltzmann Equation, which is only applicable for extensively
diluted gases, constitutes a particularity. Despite surprising successes the importance
of this equation is obviously not appropriately appreciated. In first approximation
the Navier-Stokes equations are derived from this equation. A linear version can
be classified as key-equation of nuclear reactor physics and is used for radioactive
shielding problems in its stationary formulation.1These equations are based on a
6-dimensional phase-space with the apparent disadvantage, that using distribution
functions f(~x, t, ~v) a small but not infinitesimal phase space volume element
4x · 4y · 4x · 4vx · 4vy · 4vz = 4V is to be believed surrounding the phase space
point (~x, ~v). This situation is mathematically dissatisfying, as only a finite number
of molecules can be existent inside this Volume, and executing lim4V → 0 there
remain no molecules representing f(~x, t, ~v). Despite this contrariness the Boltzmann
Equation, in general or linear form, is successful considering the results.2
Such a situation exists in other fields of physics, too. For example, no mathematically
satisfying definition of a continuum is existent justifying partial differential equations
like the Navier-Stokes-equations. Nevertheless they have performed satisfactorily in
the case of laminar fluid dynamics, but extending to the general case of turbulence
the known equations of laminar fluid dynamics fail. Deficient mathematical justi-
fication is sometimes balanced by experiments, not always. In the special case of

11968, associated with this the author has developed in his diploma thesis a numerical method
(Monte-Carlo) for solving the linearely stationary Boltzmann Equation, without knowing this
equation, simply by simulating the stochastic elementary processes.

2The Boltzmann Equation is the single equation describing the transition from a nonexisting local
thermodynamic balance to a local thermodynamic balance.
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4. Distribution functions

kinetics, which is used for describing molecular self-diffusion, an ensemble theory is
applied, which could be used for developing the Boltzmann Equation, too, avoiding
the stated contrariness. On the other side the detailed mathematical formulations
and their results do not alter by such a modified interpretation. But as phase space
considerations are not possible for stochastically interpreted deterministic continuum
fluctuations an equivalent treatment of ensemble theory will be used for all discussed
problems.
The used distribution functions f(~x, t, ~v) are not functions of the 6-dimensional
phase space as usually applied in statiscal mechanics but regular functions of space
time with a probability density distrubution of motion quantities in every point
(~x, t) obtained by an unlimited ensemble of parallelly equivalent systems. In the
case of the stationary linear radiation transport equation3 very different elementary
particles like neutrons, electrons, α− particles, γ− particles etc. are simultaneously
calculated by this equation.

A suitable ensemble-consideration is helpful to avoid Newtonian causality (see
section 4.5), and to get rid of the mathematical inconsistency of ∆V of limited
size with limited number of included particles. So mathematically not justified
applications of related partial differential equations are avoided. This interpretation
not altering the mathematical formulations in connection with gas kinetics the
turbulence is lead to new relations.

4.2. Ensemble consideration of molecular
self-diffusion

The specifically used construction may appear somehow artificially, but it is supposed
to illustrate the classification of the usual diffusion equation as an approximate equa-
tion of a primary, with natural causality endowed transport equation. The particle
density distributions are gained in thought experiment by an unlimited number of
ensemble systems, which exist simultaneously. Their functions are sufficiently often,
continuously differentiable in space and time. Regarding the quantities of motion
the continuity condition is sufficient. This situation may be generated as follows:

An ensemble of parallel, extensively diluted monomolecular systems is considered
to be in local thermodynamic ballance. They are all seen as statistically equiv-
alent. They generally differ locally in an ε- neighborhood. Permitting for some

3This is a slight modification of the linear Boltzmann Equation with a streaming function
1
vf(~x, t, ~Ω) instead of distribution function f(~x, t, ~v)), and the different velocities before and
after molecular collisions are considered in the differential cross sections of the collision integral
only [43].
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4. Distribution functions

time equivalent molecules to enter in all systems by equally distributed sources
such that the additional quantity of gas is insignificant in relation to the original
quantity of the gas, the additional part of the gas will be in the same statistical
balance in all the systems of the ensemble after a short time, though it has not
reached a homogenous distribution. While the added part of gas consists in every
single system of a limited number of molecules only, it is possible to formulate a
sufficiently often continuously differentiable particle density distribution f(~x, ~v, t)
for the added gas part, as the statistics of the velocities relates to the whole ensemble.

The expectation value of a suitable particle density may be constructed as follows.
Around the point (~x, t) an equal-sized volume ∆V(~x,t) is chosen out of all representa-
tives µ of the ensemble in which a subset ∆Nµ of molecules is located. µ identifies a
single representative of the ensemble. µ passing all values from 1 to∞ an unlimited
number of ensemble-representatives is taken into account. The expectation value of
a particle density of this ensemble-consideration in point (~x, t) in the small volume
∆V(~x,t) of the neighborhood of (~x, t) results in

< ρ(~x, t) > |
∆V

= lim
n→∞

1

n

n∑
µ=1

∆Nµ

∆V(~x,t)

. (4.1)

Contracting the volume ∆V(~x,t) to the point (~x, t) one has

< ρ(~x, t) >= lim
∆V (~x,t)→0

< ρ(~x, t) > |
∆V
. (4.2)

This function of expectation values is sufficiently often continuously differentiable
in its depending variables, especially in space and time. In accordance with the
velocities, consisting of amount and direction of motion, their distribution density is
separated in these quantities as follows 4

< ρ(~x, t) > =

∫ ∞
0

∫
4π

f(~x, t, ~v)d~Ωdv =

∫
4π

h(~x, t, ~Ω)d~Ω

f(~x, t, ~v) = f(~x, t, v~Ω) = h(~x, t, ~Ω)g(v)∫ ∞
0

g(v)dv = 1, v =

∫ ∞
0

g(v)vdv

~v = v · ~Ω.

(4.3)

So the necessary connection is given by

4A separation ansatz f(~x, t, v~Ω) = h(~x, t, ~Ω)g(~x, t, v~Ω) is generally to be chosen.
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4. Distribution functions

h(~x, t, ~Ω) =

∫ ∞
0

f(~x, t,v~Ω)dv. (4.4)

This enables the derivation of a transport equation of h(~x, t, ~Ω) the amounts of the
velocities occuring as constant coefficients only.

At this the distribution of the velocity amounts g(v) is separated from the direction
distribution h(~x, t, ~Ω). The diffusing particles possess a gaussian distribution and the
equipartition law is applied. This is the prerequisite for deriving a suitable transport
equation below and afterwards in less than first approximation a diffusion equation
with constant diffusion coefficients.
This special distribution of the velocity amounts (equipartition law) corresponds to
the assumed situation of molecular self-diffusion of chapter 6. The gained expecta-
tion value of the density does not exactly equal the value measured in an ensemble
representative performed in a small volume. Thus one has

< ρ(~x, t) >≈ ρ(~x, t). (4.5)

An exact measurement (this has nothing to do with a measurement of the macroscopic
state quantity density) would result in

< ρ(~x, t) >6= ρ(~x, t) =

{
1 one particle existent in point (~x, t)

0 else
. (4.6)

4.3. Ensemble consideration of stochastic particle
transport in a continuum of longitudinal
fluctuations

Similarily, further considerations occur to section 4.2. Around the point (~x, t) an
equal-sized volume ∆V(~x,t) is chosen out of all representatives µ of the ensemble in
which a subset ∆Nµ of particles 5 is located. µ identifies a single representative of
the ensemble. The expectation value of a particle density results in

< ρ(~x, t) >= lim
∆V (~x,t)→0

(
lim
n→∞

1

n

n∑
µ=1

∆Nµ

∆V(~x,t)

)
. (4.7)

5the particles have to be of a size adapting the identical movement of present fluid element of the
fluctuating continuum
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This function of expectations is sufficiently often continuously differentiable in its
variables of space and time. By the separation of the velocity in amount and direction
the distribution density is described as follows

< ρ(~x, t) >=

∫ ∞
0

∫
4π

f(~x, t, ~v)d~Ωdv =

∫
4π

f(~x, t, ~Ω)d~Ω

f(~x, t, ~v) =G(~x, t, v~Ω)f(~x, t, ~Ω)∫ ∞
0

G(~x, t, v~Ω)dv =1, v(~x, t, ~Ω) =

∫ ∞
0

G(~x, t, v~Ω)vdv

~v = v · ~Ω.

(4.8)

So the necessary combination

f(~x, t, ~Ω) =

∫ ∞
0

f(~x, t,v~Ω)dv. (4.9)

is achieved deriving a transport equation for f(~x, t, ~Ω). In this transport equation
the velocities occur as coefficients of the averaged velocity amounts in dependence of
space, time and direction.

The gained expectation value of the density fails to comply with the measured en-
semble representative, that is

< ρ(~x, t) >6= ρ(~x, t) (4.10)

For a single ensemble representative the distribution function f degenerates to a delta-
function

f → δ(~v(~x,t), ~v) (4.11)

with ∫
~v

δ(~v(~x,t), ~v)d~v = 1∫
~v

δ(~v(~x,t), ~v)~vd~v = ~v(~x,t).

(4.12)

4.4. Ensemble consideration of stochastic particle
transport in turbulently moved continua

The fluid fluctuations of different ensemble-representatives may arise at the same
time by equivalent macroscopic-physical processes with different infinitesimal pertur-
bations. That is why different fluent motions are created in (~x, t) in every of the
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4. Distribution functions

parallel-sytems. The simultaneous release of passive particels retracing uniquely the
motions of fluid movements may have taken place by a distribution of similar point
sources in all parallel systems. So an own particle distribution is developed in every
individual system in space-time. The statistical recording running over the whole en-
semble leads to continuously differentiable distribution functions of a limited number
of particles 6 in a single system.
Further considerations follow analogously to section 4.2. Around the point (~x, t) an
equal-sized volume ∆V(~x,t) is chosen out of all representatives µ of the ensemble in
which a subset ∆Nµ of particles is located. µ identifies a single representative of the
ensemble. The expectation value of a particle density results in

< ρ(~x, t) >= lim
∆V (~x,t)→0

(
lim
n→∞

1

n

n∑
µ=1

∆Nµ

∆V(~x,t)

)
. (4.13)

This function of expectation values arises out of a distribution function f of motion
quantities

~ω =~ω(~x, t) rotation speed
~r =~r(~x, t) radius vector
~v =~ω(~x, t)×~r(~x, t) velocity vector

(4.14)

that means
f = f(~x, t, ~ω,~r). (4.15)

A separation results in

< ρ(~x, t) >=

∫
~r

∫
~ω

f(~x, t, ~ω,~r)d~ωd~r =

∫
2π

∫
4π

f(~x, t, ~Ω, ~Θ)d~Ωd~Θ

f(~x, t, ~ω,~r) = G(~x, t, ~ω,~r)f(~x, t, ~Ω, ~Θ)∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)dωdr = 1,

∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)ωrdωdr = v(~x, t, ~Ω, ~Θ)∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)rdωdr = r(~x, t, ~Ω, ~Θ),

∫ ∞
0

∫ ∞
0

G(~x, t,ω~Ω, r ~Θ)ωdωdr = ω(~x, t, ~Ω, ~Θ)

v(~x, t, ~Ω, ~Θ) =ω(~x, t, ~Ω, ~Θ) · r(~x, t, ~Ω, ~Θ)

~v(~x, t, ~Ω, ~Θ) =~ω(~x, t, ~Ω, ~Θ)×~r(~x, t, ~Ω, ~Θ).

(4.16)
Such the necessary combination is given by

6the particles have to be of a size adapting the identical movement of present fluid element of the
fluctuating continuum
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f(~x, t, ~Ω, ~Θ) =

∫ ∞
0

∫ ∞
0

f(~x, t,ω · ~Ω, r · ~Θ)dωdr. (4.17)

This enables a transport equation of f(~x, t, ~Ω, ~Θ) with the averaged amounts of ro-
tation velocities and radius-vectors as coefficients.

The resulting expectation value of the density does not equal the measured value of
a single ensemble representative. That is

< ρ(~x, t) >6= ρ(~x, t) (4.18)

Limiting to one system of the ensemble the distribution function degenerates to a
delta-function

f → δ(~ω(~x,t),~r(~x,t); ~ω,~r) (4.19)

with

∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)d~ωd~r = 1∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~ωd~ωd~r′ = ~ω(~x,t)∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~rd~ωd~r′ = ~r(~x,t).

(4.20)

4.5. Definition of Markov Processes with natural
causality

The probabilistic theory is related to random distributions of velocities ~π moving
from (~x, t) to (~x+ ~πtε, t+ tε). These velocity distributions may get together of vortex
and curvature vector fields

~π = ~ω ×
~b

b2
.

The transport from (~x − tε~π′, t− tε) to (~x, t) is addionally controlled by transition
probabilities

Wtε = Wtε(~x, t, ~π, ~π
′),
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resulting in

ftε(~x, t, ~π) =

∫
~π′
Wtε(~x, t, ~π, ~π

′)ftε(~x− tε~π
′, t− tε, ~π′)d~π′ .

Such a relation we call a Markov Process of natural causality. According to Sen [35]
there is a so called Newtonian causality in nonrelativistic physics implying the possi-
bility of unlimited velocities. However Newtonian causality is restricted to Newtonian
mechanics and stochastic processes of physics ending with diffusion equations when
applied practically. 7 This applies not for formulations of the general or linear Boltz-
mann Equation. In electrodynamics the velocity of light is the limiting velocity. In
this treatise one essential statement is: classical physics is generally not Newtonian.
Further on

1. is shown, that diffusion equations can only be approximations of an exact de-
scription. The diffusion equation is related to an unlimited propagation speed.
The diffusion coefficient is correlated with the velocity of sound. Exact descrip-
tions lead via Boltzmannlike formulations.

2. is shown, that the second Newtonian law applies to fluid dynamics in limiting
cases only. In field theories as fluid dynamics not force- but accelleration fields
are expressed. These are generally not free of rot (equivalently curl) in con-
trary to a Newtonian force field. That is why it is reasonable to distinguish
conservative from non conservative accelleration fields. In classical physics one
has normally non conservative fields.(Though for students a contrary impression
may occur.)

The Newtonian causality proves to be a limiting case of non relativistic classical
physics. Subsequently a causal Markov Process is continuously used or derived.
Overarching master equations can not exist, physically. The transition probabilities
Wtε depend on a time quantity tε related to continuum fluctuations of measurement
accuracy according to vectorial motion quantities. For tε → 0 (exact motion
quantities) the transition probabillity Wtε degenerates to a δ-function.

Simultaneous details of space and momentum are not possible in the context of quan-
tum mechanics. The Schrödinger Equation for free particles

i~
∂ψ(~x, t)

∂t
= − ~2

2µ
~∇2ψ(~x, t) (4.21)

can be transformed into a linear homogenuous integral eqution [16] [19]

7This statement applies to the Fokker-Planck and Langevin equation. See, for example,
Chandrasekhar[5]
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ψ(~x, t) = i

∫
G(~x, t; ~x′, t′)ψ(~x′, t′)d~x′. (4.22)

The Green function

G(~x, t;~x′, t′) =

〈
~x

∣∣∣∣exp(− i

}
(t− t′)H

)∣∣∣∣ ~x′〉 (4.23)

is called Feynman kernel, too.

In the case of the diffusion equation

∂ρ(~x, t)

∂t
= D~∇2ρ(~x, t) (4.24)

an equivalent integral equation the Green function understood as transition proba-
billity from (~x′, t′) to (~x, t) exists with

ρ(~x, t) =

∫
V ′
G(~x, t;~x′, t′)ρ(~x′, t′)d~x′ (4.25)

and the Green function

G(~x, t;~x′, t′) =

(
1

4πD(t− t′)

) 3
2

e
− (~x−~x′)2

4πD(t−t′) . (4.26)

Equations based on a ”heat-kernel”-structure are not exact in classical physics (as
well as the Newtonian mechanics).

In quantum mechanics and quantum field theory natural causality is
not possible because of the uncertainty principle. In Relativity there is
the maximal possible velocity, the velocity of light. A geometrodynamic
equation system of turbulence found further down does not contain such
limiting velocities, explicitly. Velocity fields are calculated uniquely by an
initial field giving to GR compatible results after mapping from Einstein
Space into a suitable observer-space. Using other initial conditions higher
velocities are possible.
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Part II.

Stochastically continuous transport
of passive scalar particles within

the meaning of an ensemble-theory
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5. Introduction

∂f

∂t
+ ω · r~Ω× ~Θ · ∇f =

−1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

l(l + 1)

2
f lmk(~x, t)Plm(~Ω)Hk(~Θ)

m

f tε(~x,
~Ω, ~Θ, t) =

∫
2π

∫
4π
W̃tε(~x, t, ~Ω, ~Θ, ~Ω

′
, ~Θ
′
)f tε(~x− tε · v

′~Ω′ × ~Θ
′
, ~Ω′, ~Θ

′
), t− tε)d~Ω

′
d~Θ
′

The aim is the derivation of a stochastic transport equation of turbulent, passively
moved scalar particles being based on particle balancing. Stochastics is always
understood as the randomness of motions. From point ~A originated a point ~B
is approached in consequence of a random velocity. The particle motions are
totally adjusted to the fluid motions of the fluctuating continuum and reproduce
single fluid motions in detail.1 The used stochastics is based for one thing on
an ensemble-consideration and on the other hand on a locally formulated motion
process. So an equation is achieved owning local coefficients depending on space and
time as well as the states of movement. The field of coefficients can be determined
in principal in every desired level of detail by the deterministic turbulence theory
of chapter 13. The transport equation is a partial differential equation shown to
be equivalent to a derived integral equation. The respective stochastic process is
immediately recognized as Markovian of natural causality. We call it causal Markov
Process.

Chapter 6: Within the framework of kinetic theory a physical situation is selected
handling the linear Boltzmann Equation. This equation is extensively studied in
nuclear reactor physics called neutron Boltzmann Equation[43].2 Using the above
described ensemble consideration a statistical particle balance is formulated by
local velocities and their unsteady changes by local cross sections. The resulting
mathematical ties help the developments in further chapters as guideline and answer
the question, which analogies exist between kinetic theory and turbulent stochastic
continuum transport.

1The particles are assumed to have a suitable weight
2The insights of this theory had little impact on similar fields of physics.
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Chapter 7: The motion of passive scalar particles by longitudinal continuum fluctua-
tions is examined. In the centre of the consideration is the development of transition
probability densities of velocities. They depend as well as the velocities and their
particle density distributions on the accuracy of a measuring process indexed by tε.
lim tε → 0 means exact measurements and the transition probabilities result into δ−
functions. They have the property of test functions of the distribution theory with
immediate physical meaning. Calculating them a transport equation in form of a
partial differential equation as well as an equivalent integral equation is derived.

Chapter 8: In analogy to chapter 7 the motion by turbulent continuum fluctuations
of passive particles is examined. The fluctuation directions are expressed by
Eulerian angles and the distribution functions are developed by generalized spherical
harmonics (we call them turbulence functions). A pair of equations is created
consisting of a partial differential equation and an equivalent integral equation
as in the cases of molecular self diffusion and the longitudinal (1+3)-dimensional
continuum fluctuations. The three physical situations can be compared all the more
as in the three cases the transition probabilities are explicitely formulated.
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6. Brownian motion as molecular
self-diffusion

∂

∂t
h+v~Ω · ∇h =

1

τ

+∞∑
l=1

γl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω)

htε(~x,vtε ~Ω, t) =

∫
4π

∫ ∞
0

Wtε(~Ω, v
′~Ω
′
)htε(~x− v′~Ω

′
tε, v

′~Ω
′
, t− tε)dv′d~Ω

′

6.1. Introduction

Brownian motion is understood as a disordered thermic motion of molecules in gases
or fluids creating a disordered motion of suspended, sufficiently small particles. This
Brownian motion is all the more livelier the smaller the particle quantity is. With
increasing particle sizes the detailed molecular influence on the particle movement
disappears and having suitable sizes the particles reproduce the turbulent fluid
motions. The phenomenon of small paricles was first examined by Einstein and
Smoluchowski.
Subsequently, the case of very small particles that is the statistical development
of the molecular distribution of a gas is evaluated. In the treatises of Einstein[12]
and Smoluchowski[36] the considerations lead in each case to a diffusion equation,
which contains two fundamental deficiencies, though beeing sufficient for the purpose
at that time. The propagation speed concerning a diffusion equation is unlimited.
Immediately after switching a point particle source on there is at least an infinitesimal
influence in arbitrary distance. In close proximity to a point source the solution of a
diffusion equation shows a ∼ 1

r
-behaviour. But it should be ∼ 1

r2
.

6.2. Transport equation of molecular self-diffusion

Examining the molecular self-diffusion in a highly diluted gas in thermodynamic
equilibrium the linear Boltzmann equation will be derived. It is a linear integro-
differential equation statistically describing the transport of diffusing particles by
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6. Brownian motion as molecular self-diffusion

cross sections of the interacting particles. The whole gas medium is regarded as
devided into two parts, a main part and an additional very small part. The diffusing
of the small part in the main part without changing the statistical properties of
the main part is considered. (See section 4.2) Due to the low density of the diffusing
molecules a relevant self interaction within the small part can be excluded. Regarding
the spatiotemporal development the velocity distribution density g(v) is normalised
to 1.

∫ ∞
0

g(v)dv = 1 (6.1)

The diffusing part is depicted by

f(~x, ~v, t) = f(~x, t, v~Ω) = h(~x, t, ~Ω)g(v) (6.2)

I.e. the velocity distribution is independent of space-time (~x, t) and direction (~Ω)
(equipartition theorem).

This allows to talk about an expectation value for every space-time point of the
particle density

< Φ(~x, t) >=

∫ ∞
0

∫
4π

f(~x, t, ~v)d~Ωdv =

∫
4π

h(~x, t, ~Ω)d~Ω. (6.3)

However the measured value of the density Φ(~x, t) is only a good approximation of
the expectation value

< Φ(~x, t) >≈ Φ(~x, t). (6.4)

This ceases to apply for the particle transport by fluctuating continua.

The total derivative of the distribution function f in direction of the velocity v~Ω
results in

d

dt
f(~x, t, v~Ω) =

∂

∂t
f + v~Ω∇f. (6.5)

The change of the particle density distribution for the velocity ~v = v~Ω is balanced by
collisions of molecules modifying the velocities with a certain probability expressed
by differential cross sections. Defining 1

v
f(~x, ~v, t) as particle stream1 the following

1Hereby no stream in the meaning of deterministic fluid dynamics is defined!
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6. Brownian motion as molecular self-diffusion

balance equation can be noted

1

v

d

dt
f(~x, t, v~Ω) =

1

v

∂

∂t
f + ~Ω∇f = I+ − I−. (6.6)

I+ corresponds to molecules coming from other directions ~Ω′.
I− corresponds to molecules leaving direction ~Ω.

The particle distribution density varying in space this expression has to be different
from zero. Otherwise the particle distribution density remains constant. So the
assumed initial distribution is variously dispersed in space.

The momentum exchange is determined on one side by the cross sections of the impact
partners and on the other side by the number of particles arriving at location ~x and
time t per unit area with the velocity ~v′ pivoting into the velocity ~v. This growth of
the number of particles per time and unit-area is

I+ = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′) · f(~x, t, v′ ~Ω′)dv′d ~Ω′ (6.7)

with

ρ =constant density of the main part of the gas
σ(~v · ~v′) =differential cross section, symmetrical in ~v and ~v′.

The particles simultaneously changing their velocity ~v into another ~v′ the appropriate
decrease of particle number per time- and area-unit is expressed by

I− = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′) · f(~x, t, v~Ω)dv′d ~Ω′ = Σ(v)f(~x, t, v~Ω) (6.8)

due to

Σ(v) = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′)dv′d ~Ω′′ [m−1]. (6.9)

Σ(v) represents the total macroscopic cross section and the transport equation results
in the molecular self diffusion equation
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6. Brownian motion as molecular self-diffusion

1

v

∂

∂t
f + ~Ω · ∇f = ρ

∫ ∞
0

∫
4π

σ(~v · ~v′) · f(~x, t, v′ ~Ω′)dv′d ~Ω′ − Σ(v)f . (6.10)

Further on, considering the molecules being in statistical balance throughout the
whole gas, i.e. the same Boltzmann Distribution g(v) is existing everywhere, an
integration of

∫∞
0

(6.10)dv results in a manageable equation as follows.

Defining

Σ =

∫ ∞
0

Σ(v)g(v)dv (6.11)

σ(~Ω · ~Ω
′
) =

∫ ∞
0

∫ ∞
0

σ(~v · ~v′)g(v′)dvdv′ (6.12)

v =

∫ ∞
0

vg(v)dv (6.13)

gives2

∂

∂t
h+ v~Ω · ∇h = vρ

∫
4π

σ(~Ω · ~Ω
′
) · h(~x, t, ~Ω′)d ~Ω′ − vΣ · h(~x, t, ~Ω). (6.14)

Developing by spherical harmonics (see appendix 9.2) yield in

σ(~Ω · ~Ω
′
) =

+∞∑
l=0

σlPl(cos(α)) =
+∞∑
l=0

σl

m=+l∑
m=−l

Plm(~Ω)P ∗lm( ~Ω′) (6.15)

and

h(~x, t, ~Ω) =
+∞∑
l=0

m=+l∑
m=−l

hlm(x, t)Plm(~Ω)

=
+∞∑
l=0

m=+l∑
m=−l

hlm(x, t)P ∗lm(~Ω).

(6.16)

2Such an equation corresponds in nuclear reactor physics to the one group neutron-transport-
equation regardless of absorbtions-and fission effects.
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6. Brownian motion as molecular self-diffusion

These developments inserted into (6.14) and executing the respective integrations
lead to

∂

∂t
h+ v~Ω · ∇h =ρv

+∞∑
l=1

σl
4π

2l + 1

m=+l∑
m=−l

hlmP
∗
lm(~Ω)− vΣ ·

+∞∑
l=0

+l∑
m=−l

hlm(~x, t)P ∗lm(~Ω)

=
+∞∑
l=1

v{ρσl
4π

2l + 1
− Σ} ·

+l∑
m=−l

hlm(~x, t)P ∗lm(~Ω)

(6.17)

It holds
Σ = 4πρσ0 = ρ

∫
4π

σ(~Ω · ~Ω
′
)d~Ω

′
[m−1] (6.18)

and defining

τ−1 = vΣ [sec−1]

γl =

(
σl
σ0

1

2l + 1
− 1

)
< 0 für l ≥ 1 [/]

(6.19)

=⇒ γ0 = 0 (6.20)

one gets

∂

∂t
h+ v~Ω · ∇h =

1

τ

+∞∑
l=1

γl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) . (6.21)

As γl ≤ 0, the development components of order l are the more rapidly decaying the
l becoming greater. The total derivation in the direction of the velocity v~Ω leads to

d

dt
h(~x, t, ~Ω) =

+∞∑
l=0

m=+l∑
m=−l

d

dt
hlm(x, t)Plm(~Ω) =

1

τ

+∞∑
l=1

γl ·
+l∑

m=−l

hlm(~x, t)Plm(~Ω). (6.22)

That is why the time behaviour of the single development components result in

d

dt
hlm(t) =

γl
τ
hlm (6.23)
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and
hlm(t) ∼ exp(

γl
τ
· t). (6.24)

So approximations of first order turn out to approach exact solutions, asymptoti-
cally.3

6.3. Brownian motion as Markov Process with
natural causality

Defining the transition probability density of directions

W tε(~Ω · ~Ω
′
) =

+∞∑
l=0

2l + 1

4π
e+Υl· tετ �

+l∑
m=−l

P ∗lm(~Ω)Plm( ~Ω′) (6.25)

and determining the following relationships

ε =
tε
τ
,

1

τ
= v · Σ = v · 4πρσ0 = const (6.26)

σ(~Ω · ~Ω
′
) =

+∞∑
l=0

σlPl(cos(α)) =
+∞∑
l=0

σl

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′
) (6.27)

Υl =

(
σl
σ0

· 1

2l + 1
− 1

)
(6.28)

an integral equation of self-diffusion results in dependence of directions of motions,
cross sections and locally averaged absolute values of velocities as coefficients,

htε(~x, t, ~Ω) =

∫
4π

W tε(~Ω · ~Ω
′
) · htε(~x− v~Ω

′
tε, t− tε, ~Ω′)d ~Ω′ (6.29)

from which equation

∂

∂t
h+ v~Ω · ∇h =

1

τ

+∞∑
l=1

Υl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) (6.21)

3This is correct in the case of lacking absorbtion processes. We are only regarding scattering.
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may be reconstructed.

Proof:

htε developed around ~x und t until first order one gets

htε(~x− v′tε ~Ω
′ · tε, ~Ω

′
, t− tε) = htε(~x, ~Ω

′
, t)− τ · ε · [

∂h′tε
∂t

+ ~v′tε · ~∇h
′
tε +O(ε2)] (6.30)

with tε = τ · ε. Inserted into (6.29) this leads to

htε =

∫
4π

W tεh
′
tεd

~Ω
′
−
∫
4π

W tε · τ · ε · [
∂h′tε
∂t

+ ~v
′
tε · ~∇h

′
tε +O(ε2)]d~Ω

′
(6.31)

and simple conversions give

∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε
=

∫
4π

W tε · τ [·
∂h′tε
∂t

+ ~v
′
tε · ~∇h

′
tε +O(ε2)]d~Ω

′
. (6.32)

Executing the limiting process tε → 0 the transition probability W tε results in a
δ-function and the particle density distribution htε achieves the limiting function h.

lim
tε→0

W tε = δ(~Ω, ~Ω
′
) :delta-Function

lim
tε→0

htε = h

lim
tε→0

~vtε = ~v = v · ~Ω

lim
tε→0

~Ωtε = ~Ω

(6.33)

Executing the limiting process tε → 0 on equation (6.32) the tε-indexing disappears
in accordance with the distribution functions.
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6. Brownian motion as molecular self-diffusion

Before the limes process is carried out the following integrations lead to∫
4π
W tε(~Ω · ~Ω

′
)htε(~x, t,

~Ω′)d~Ω
′
=∫

4π

[+∞∑
l=0

2l + 1

4π
e+Υl· tετ �

+l∑
m=−l

P ∗lm(~Ω)Plm( ~Ω′)

]
htε(~x, t,

~Ω′)d~Ω
′

=

∫
4π

[+∞∑
l=0

2l + 1

4π
e+Υl· tετ �

+l∑
m=−l

P ∗lm(~Ω)Plm( ~Ω′)

] +∞∑
l=0

m=+l∑
m=−l

htεlm(x, t)P ∗lm( ~Ω′)d~Ω
′

=
+∞∑
l=0

e+Υl· tετ
m=+l∑
m=−l

htεlm(x, t)P ∗lm(~Ω).

(6.34)

Thus one gets∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε · τ

=

∫
4π
W tεh

′
tεd

~Ω
′
−
∑+∞

l=0

∑m=+l
m=−l htεlm(x, t)P ∗lm(~Ω)

ε · τ

=

∑+∞
l=0 (e+Υl· tετ − 1)

∑m=+l
m=−l htεlm(x, t)P ∗lm(~Ω)

ε · τ
.

(6.35)

Setting

Υl = lim
tε→0

e+Υl· tετ − 1

ε
, tε = ε · τ (6.36)

creates

lim
ε→0

∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε · τ
=

1

τ

+∞∑
l=1

Υl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) (6.37)

and

lim
ε→0

∫
4π
W tεh

′
tεd

~Ω
′
− htε

ε · τ
=
∂h

∂t
+ ~v · ~∇h, (6.38)
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which results in

∂h

∂t
+ v~Ω · ~∇h =

1

τ

+∞∑
l=1

Υl ·
+l∑

m=−l

hlm(~x, t)P ∗lm(~Ω) . (6.39)

q.e.d.

Extending the transition probability density W by the velocity distribution g(v′)

Wtε(~Ω, v
′~Ω
′
) = g(v′)W tε(~Ω · ~Ω

′
), (6.40)

one gets the Brownian molecular motion under the terms of the described model in
the most general form.

ftε(~x,vtε ~Ω, t) =

∫
4π

∫ ∞
0

Wtε(~Ω, v
′~Ω
′
)ftε(~x− v′~Ω

′
tε, v

′~Ω
′
, t− tε)dv′d~Ω

′
(6.41)

The transition probabilities are not symmetric in contrary to the differential cross
section!

6.4. Approximation formula

An approximation formula of 1. order of the equation

∂

∂t
h+ v~Ω · ∇h =

1

τ

∞∑
l=1

γl ·
+l∑

m=−l

h1m(~x, t)P1m(~Ω) (6.42)

is beeing looked for. The approach accounts for the methods of the transport theory
of nuclear reactor physics [43]. In cartesian coordinates this leads to

∂

∂t
h+ v ·

(
Ωx

∂

∂x
h+ Ωy

∂

∂y
h+ Ωz

∂

∂z
h

)
=

1

τ

∞∑
l=1

γl ·
+l∑

m=−l

h1m(~x, t)P1m(~Ω). (6.43)
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Ωx = sin(ϑ)cos(ϕ)

Ωy = sin(ϑ)sin(ϕ)

Ωz = cos(ϑ)

(6.44)

The spherical harmonics of 0th and 1st Order are

P00 = 1 P1−1 = 2−
1
2 e−iϕsinϑ P10 = cosϑ P11 = −2−

1
2 eiϕsinϑ

P ∗00 = 1 P ∗1−1 = 2−
1
2 e+iϕsinϑ P ∗10 = cosϑ P ∗11 = −2−

1
2 e−iϕsinϑ.

(6.45)

In cartesian coordinates until 1st order this leads to

∂

∂t
h+ v ·

(
Ωx

∂

∂x
h+ Ωy

∂

∂y
h+ Ωz

∂

∂z
h

)
=

1

τ
γ1 ·

+1∑
m=−1

h1m(~x, t)P1m(~Ω) (6.46)

The direction vectors in cartesian coordinates expressed by spherical harmonics are
written

Ωx = 2−
1
2 [P1−1 − P11]

Ωy = −i2−
1
2 [P1−1 + P11]

Ωz = P10.

(6.47)

The transport equation in 1st approximation is reduced to

∂

∂t
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

+ v

[
·2−

1
2 [P1−1 − P11]

∂

∂x
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

− i2−
1
2 [P1−1 + P11]

∂

∂y
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

+ P10
∂

∂z
(h00P00 + h1−1P1−1 + h10P10 + h11P11)

]
=

1

τ
γ1 · (h1−10P1−1 + h10P10 + h11P11).

(6.48)

After integrating
∫

(6.48P ∗lm(~Ω)d~Ω for l = 0, 1 the evolution equation set until 1st
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order

∂h00

∂t
+
v

3

[
2−

1
2

(
−∂h11

∂x
+
∂h1−1

∂x

)
−i2−

1
2

(
∂h11

∂y
+
∂h1−1

∂y

)
+
∂h10

∂z

]
= 0 (6.49)

∂h10

∂t
+ v

∂h00

∂z
− Υ1

τ
h10 = 0 (6.50)

∂h1−1

∂t
+ v2−

1
2

(
∂h00

∂x
+ i

∂h00

∂y

)
−Υ1

τ
h1−1 = 0 (6.51)

∂h11

∂t
+ v2−

1
2

(
−∂h00

∂x
+ i

∂h00

∂y

)
−Υ1

τ
h11 = 0 (6.52)

is approached.

Now we define a vector field ~J .

Jx =
4π

3
2−

1
2h(1−1−h11)

Jy =− i4π
3

2−
1
2 (h1−1 + h11)

Jz =
4π

3
h10

Φ =4πh00

(6.53)

Insertion (6.53) into (6.49) gives

∂Φ

∂t
+ v · ~∇ · ~J = 0. (6.54)

Φ is the particle density of an in a thought experiment assumed small part of the
molecular set. Inserting (6.53) into (6.50) until (6.52) leads to

~J =
τ

Υ1

[
v

3
~∇Φ +

∂~J

∂t

]
(6.55)

with Υ1 =

(
1
3
σ1
σ0
− 1

)
= −η

So a telegrapher’s equation arises4

τ

η

∂2Φ

∂t2
+
∂Φ

∂t
=
τ

η
v~∇ · v

3
~∇Φ. (6.56)

4To derive telegrapher’s equation relativistic considerations are not necessary as is stated in [10].
The propagation speed is closely connected with the speed of sound.
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As η, τ und v represent constants, the telegrapher’s equation is written

τ

η

∂2Φ

∂t2
+
∂Φ

∂t
=D∆Φ

with D =
τ

η

v2

3

(6.57)

D=diffusion coefficient, η dimensionless, τ = (v · Σ)−1= mean free collision time
v=mean amount of velocity
Compared to the 1st derivation the term with temporal derivation of 2nd order can
normally be neglected.

The dependence of the diffusion coefficient from macroscopic state variables of an
ideal gas may happen as follows:

The equation of state of the ideal gas becomes

p = ρRT . (6.58)

The mean quadratic velocity of a Maxwellian velocity distribution of particles with
mass m is [9]

v2 =
3kT

m
(6.59)

=⇒

v =

√
8

π

kT

m
=

√
8

π

p

ρ
(6.60)

m means the mass of a molecule.
k is the Boltzmann constant.

To get a comparison with the speed of sound at a Gaussian velocity distribution

c =

√
∂p

∂ρ


T

(6.61)

one obtains

v =

√
8

π
c (6.62)

and
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D =
1

ηΣ

8

3π
c2 . (6.63)

The propagation speed for Brownian molecular motion is v. This in particular be-
comes apparent by equation (6.29). In connection with the diffusion approximation
an unlimited propagation speed is assigned. This leads to solutions approaching
asymptotically to those of the linear Boltzmann Equation. In close proximity to
point sources (less than 3 average free lengths afar5) one obtains the following char-
acteristics of the exact and the diffusional solution.

Φ ∼ 1

r2
solution of the transport equation in the proximity of a point source

(6.64)
Anticipating this result from an exact theory appears directly plausible.

Φ ∼ 1

r
solution of the diffusion approximation in the proximity of a point source

(6.65)

Avoiding such deficiencies it is neccessary to take a stochastic velocity distribution
into account as root of the diffusion process. Analyzing turbulent particle transport
this does not satisfy.

6.5. Appendix: equations for the spherical
hamonics components

The general equations arise out of

∫
(6.43)P ∗lm(~Ω)d~Ω (6.66)

=⇒

5An experience of the neutron transport theory [43]
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∂hlm(~x, t)

∂t
= −v

[√
(l + 2 +m)(l + 1 +m)

2l + 3

(
−1

2

∂hl+1,m+1

∂x
− i

2

∂hl+1,m+1

∂y

)
+

√
(l + 1−m)(l + 2−m)

2l + 3

(
1

2

∂hl+1,m−1

∂x
− i

2

∂hl+1,m−1

∂y

)
+

√
(l − 1−m)(l −m)

2l − 1

(
1

2

∂hl−1,m+1

∂x
+
i

2

∂hl−1,m+1

∂y

)
+

√
(l +m)(l +m− 1)

2l − 1

(
−1

2

∂hl−1,m−1

∂x
+
i

2

∂hl−1,m−1

∂y

)
+

√
(l + 1 +m)(l −m+ 1)

2l + 3

∂hl+1,m

∂z
+

√
(l +m)(l −m)

2l − 1

∂hl−1,m

∂z

]
−Υl

τ
hlm

(6.67)
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7. Stochastic transport by
longitudinal fluctuations of a
continuum

f tε(~x,
~Ω, t) =

∫
4π

W̃tε(~x, t, ~Ω, ~Ω
′
)f tε(~x− tε · v

′~Ω′, ~Ω′, t− tε)d~Ω
′

m

∂f

∂t
+ v~Ω · ~∇f = − 1

tE

+∞∑
l=0

+l∑
m=−l

l(l + 1)

2
f l,m(~x, t)Pl,m(~Ω)

7.1. Introduction

The motion of passive particles by longitudinal continuum fluctuations is examined.
The particles are moved in this field without interaction.1 In accordance with section
4.3 they perform detailed motions of single fluid elements of fluid continua. The con-
sidered velocities of the particles are determined by measure processes. The particles
coming from point x1 and moving further for a time tε are detected in x2. So the
velocity ~vtε may be assigned to

~vtε =
~x2 − ~x1

tε
= vtε ~Ωtε . (7.1)

This corresponds to (~x1, t) −→ (~x2, t+ tε) = (~x1 + ~vtε · tε, t+ tε).

According to an ensemble consideration (see chapter 4 ) for every point (~x, t) a con-
tinuously differentiable particle density distribution of velocities ~vtε is assigned in
accordance with

ftε = ftε(~x, ~vtε , t). (7.2)

1Such conditions generally lead to linear equations.
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The functions indexed with tε or ε enclose motion quantities ~vtε or their motion di-
rections ~Ωtε as variables subordinated to an understanding of measurement accuracy.
The indexing of motion quantities with tε or ε may be dropped if their functions are
indexed. Executing a limiting process, for instance

lim
tε→0

ftε(~x, ~v, t) = f(~x, ~v, t) (7.3)

f and ~v are literally understood as results of exact measurement processes. 2 Inte-
grating the particle density distribution over the velocity one obtains an expectation
value of a particle density not generally coinciding with the actually measured value
ρ.

< ρtε(~x, t) >=

∫
4π

∫ ∞
0

ftε(~x, v~Ω, t)dvd~Ω 6= ρtε(~x, t) (7.4)

This is contradicting the molecular self-diffusion beeing an inherent stochastic
process.
It results into a rigorously derived partial differential equation calculating particle
density distributions in dependence on space-time and motion directions. The
initially unlimited number of unknown coefficients is reduced to one, a local
time-scaling. The initially abstractly formulated transition probabilities obtain their
precise functional dependencies alternativly generating an integral equation. For
numerical solutions there are always suitable Monte-Carlo methods possible.

Equations of 1st approximation substantially differ from usual diffusion equa-
tions.

7.2. Transport by Markov Processes with natural
causality

The probability particles at location ~x and time t changing their velocity from ~v′tε =

v′~Ω′ to ~vtε = v~Ω is given by the transition probability

Wtε = Wtε(~x, t, v~Ω, v
′~Ω′) (7.5)

with ∫
4π

∫ ∞
0

Wtε(~x, t, v~Ω, v
′~Ω′)dv′d~Ω′ = 1. (7.6)

2With the indexing tε an assigned measurement process is always understood according to accuracy.
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So the following Markov Process is defined by

ftε(~x, v~Ω, t) =

∫
4π

∫ ∞
0

Wtε(~x, t, v~Ω, v
′~Ω′)ftε(~x− tε · v′~Ω′, v′~Ω′, t− tε)dv′d~Ω

′
(7.7)

i
~x = ~x− ~x1 = v′tε

~Ω′tε · tε (7.8)

For the transition probability Wtε merely steadiness is reqired regarding all variables.
The sequence of the velocities ~v′tε , ~vtε means a motion

(~x− ~v′tε · tε, t− tε, ~v
′
tε) −→ (~x, t, ~vtε). (7.9)

At the process tε → 0 the transition probabilitiesWtε prove to be physical realisations
of test functions of distribution theory.
The passive particles have to reproduce the motions of the fluctuation field, exactly.
For the particle density distribution ftε(~x, t, ~v) a separation approach is formulated
without restriction of generality:

ftε(~x− v~Ω · tε, v~Ω, t) =Gtε(~x− v~Ω · tε, v~Ω, t)f tε(~x− v~Ω · tε, ~Ω, t)∫ ∞
0

Gtε(~x, v~Ω, t)dv = 1
(7.10)

=⇒

f tε(~x− v~Ω · tε, ~Ω, t) =

∫ ∞
0

ftε(~x− v~Ω · tε, v~Ω, t)dv (7.11)

This results in

v = v(~x, t, ~Ω) =

∫ ∞
0

Gtε(~x, v~Ω, t) · vdv. (7.12)

I.e. v is dependent on (~x, t, ~Ω).

A transition probability only in dependence on the directions and space-time W tε is
obtained by integration of Wtε over the velocity amounts v′tε and vtε
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W tε(~x, ~Ω, ~Ω
′
, t) =

∞∫
0

∞∫
0

Wtε(~x, t, v~Ω, v
′~Ω′)Gtε(~x− v′~Ω′ · tε, v′~Ω′, t− tε)dv′dv .

(7.13)

Now an integration of
∫∞

0
(7.7)dv is leading to

f tε(~x,
~Ω, t) =

∞∫
0

∞∫
0

∫
4π

WtεGtε(~x−v′~Ω′·tε, v′~Ω
′
, t−tε)f tε(~x−v

′~Ω′·tε, ~Ω
′
, t−tε)dv′dvd~Ω

′

(7.14)
respectively

f tε(~x,
~Ω, t) =

∫
4π

W tε(~x, t, ~Ω, ~Ω
′)f tε(~x− v

′~Ω′ · tε , ~Ω′, t− tε)d~Ω
′
. (7.15)

f tε in the integrand is developed about ~x and t until 1st order and one obtains

f tε(~x− v
′~Ω′ · tε, ~Ω

′
, t− tε) = f tε(~x,

~Ω
′
, t)− τE · ε · [

∂f
′
tε

∂t
+ v′tε

~Ω
′
tε · ~∇f

′
tε +O(ε2)]

f
′
tε = f tε(~x,

~Ω
′
, t)

(7.16)

with tε = τE · ε and τE = const. Inserted in (7.15) this leads to

f tε =

∫
4π

W tεf
′
tεd

~Ω
′
−
∫
4π

W tε · τE · ε · [
∂f
′
tε

∂t
+ ~v

′
tε · ~∇f

′
tε +O(ε2)]d~Ω

′
. (7.17)

and simple conversions give
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∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε
=

∫
4π

W tε · τE[·
∂f
′
tε

∂t
+ ~v

′
tε · ~∇f

′
tε +O(ε)]d~Ω

′
. (7.18)

The process tε → 0 applied to the transition probability W tε ceates a δ-function and
the particle density distribution f tε results in f .

lim
tε→0

W tε = δ(~Ω, ~Ω
′
) :delta-Function

lim
tε→0

f tε = f

lim
tε→0

~vtε = ~v = v · ~Ω

lim
tε→0

~Ωtε = ~Ω

(7.19)

These relations applied to equation (7.18) give

lim
ε→0

∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε · τE
=
∂f

∂t
+ ~v · ~∇f (7.20)

and

lim
ε→0

∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε · τE
(7.21)

subsequently called exchange-term.

7.3. Calculation of the exchange-term

The dependencies of the transition probabilityW tε on the initially uncorrelated move-
ment directions ~Ω and ~Ω

′
may be expressed by the scalar product of the movement

directions ~Ω · ~Ω
′
and the simultaneous interchange of the constant time scaling τE by

a time scaling depending on location, time and direction tE(~x, ~Ω, t), i.e.

lim
ε→0

∫
4π
W tεf

′
tεd

~Ω
′
− f tε

ε · τE
= lim

ε→0

∫
4π
W̃tε(~Ω · ~Ω

′
)f
′
tεd

~Ω
′
− f tε

ε · tE(~x, ~Ω, t)

W tε(~x, t, ~Ω, ~Ω
′) −→ W̃tε(~Ω · ~Ω′)
τE −→ tE(~x, ~Ω, t).

(7.22)
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The direction distribution of the particles is developed by complex spherical harmonics
Plm, the transition probability by legendre polynomials Pl.

f(~x, ~Ω, t) =
+∞∑
l=0

+l∑
m=−l

f lm(~x, t)Plm(~Ω) =
+∞∑
l=0

+l∑
m=−l

f lm(~x, t)P ∗lm(~Ω) (7.23)

W̃tε(~Ω
′
· ~Ω) =

+∞∑
l=0

W̃tεlPl(cos(α)) =
+∞∑
l=0

m=+l∑
m=−l

W̃tεlPlm(~Ω
′
)P ∗lm(~Ω) (7.24)

The spherical harmonics Plm are

Plm(~Ω) = eimϕ
(−sin(ϑ))m

l!2l
·
(

(l −m)!

(l +m)!

) 1
2 dl+m(cos2ϑ− 1)l

(dcosϑ)l+m
(7.25)

The normalisation holds:

∫
4π

PlmP
∗
lmd

~Ω =

{
4π

2l+1
l = l’ und m=m’

0 sonst
(7.26)

There is the relation between spherical harmonics Plm and Legendre polynomials Pl:

Pl(~Ω
′
· ~Ω) = Pl(cos(α)) =

m=+l∑
m=−l

Plm(~Ω
′
)P ∗lm(~Ω) (7.27)

Thus one has

∫
4π

W̃tεf
′
εd
~Ω
′
=

∫
4π

+∞∑
l=0

m=+l∑
m=−l

W̃tεlPlm(~Ω
′
)P ∗lm(~Ω) �

+∞∑
l=0

+l∑
m=−l

f tεlm(~x, t)P ∗lm(~Ω
′
)d~Ω

′

=
+∞∑
l=0

W̃tεl
4π

2l + 1

+l∑
m=−l

P ∗lm(~Ω)f tεlm(~x, t).

(7.28)

The left side of equation ( 7.20 ) results in
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lim
ε→0

∫
4π
W̃tεf

′
tεd

~Ω
′
− f tε

tE · ε
= lim

ε→0

+∞∑
l=0

+l∑
m=−l

(W̃tεl
4π

2l+1
− 1)

tE · ε
f tεlm(~x, t)P ∗lm(~Ω)

=
1

tE

+∞∑
l=0

+l∑
m=−l

Υlf tεlm(~x, t)Plm(~Ω)

(7.29)

with

Υl = lim
ε→0

(W̃tεl
4π

2l+1
− 1)

ε
(7.30)

as exchange coefficient.

Now equation ( 7.20 ) yields

1

tE

+∞∑
l=0

+l∑
m=−l

Υlf lm(~x, t)Plm(~Ω) =
∂f

∂t
+ v~Ω · ~∇f . (7.31)

7.4. Calculation of the exchange-coefficients Υl

The transition probability is outlined by Legendre-polynomials respectively spherical
harmonics:

W̃tε(~Ω · ~Ω
′
) =

+∞∑
l=0

W̃tεlPl(cos(ϑ)) =
+∞∑
l=0

W̃tεl

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′
)

cos(ϑ) = ~Ω · ~Ω
′
= µ.

(7.32)

On the other hand is
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lim
tε→0

W̃tε(~Ω · ~Ω
′
) = δ(~Ω · ~Ω

′
)

δ(~Ω · ~Ω
′
) =

+∞∑
l=0

2l + 1

4π

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′
) =

+∞∑
l=0

2l + 1

4π
Pl see(9.20).

(7.33)

W̃tε(µ) > 0 is only in the range µ ∈ [1 − ε, 1] essentially different from 0. So the
Legendre polynomials are approximated by

Pl(µ) = 1− dPl
dµ
|1 · ε+O(ε2) ε = 1− µ

dPl
dµ
|1 =

l(l + 1)

2
see (9.1) P0 = 1,P1 = µ

=⇒

Pl(µ) = P0 − (P0 − P1)
l(l + 1)

2
+O(ε2).

(7.34)

Using

∫ +1

−1

PlPl′dµ = δll′
2

2l + 1
(7.35)

follows∫ +1

−1

W̃tεPldµ = 2W̃tε0 − l(l + 1)W̃tε0 +
l(l + 1)

3
W̃tε1 =

2

2l + 1
W̃tεl. (7.36)

Furthermore is

∫
4π

W̃tε(~Ω · ~Ω
′
)d~Ω

′
=

∫
4π

W̃tε0d~Ω
′
= 4πW̃tε0 = 1

=⇒ W̃tε0 =
1

4π
,

(7.37)

as W̃tε for tε → 0 degenerates to a δ-function. That is why the W̃tεl are expressed
by W̃tε1 and the determination of W̃tε1 remains to be calculated. We set
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lim
ε→0

(W̃ tε1
4π
3
− 1)

ε
= ζ. (7.38)

Multiplying equation (7.36) with 2π leads to

4π

2l + 1
W̃tεl = 4πW̃tε0 − (4π)

l(l + 1)

2
W̃tε0 +

4π

3

l(l + 1)

2
W̃tε1. (7.39)

I.e.

4π

2l + 1
W̃tεl − 1 =

l(l + 1)

2
(
4π

3
W̃tε1 − 1) = − l(l + 1)

2
ζ +O(ε2) = Υl +O(ε2)

Υl = − l(l + 1)

2
ζ

(7.40)

=⇒
∂f

∂t
+ v~Ω · ~∇f = − 1

tE

+∞∑
l=0

+l∑
m=−l

l(l + 1)

2
f l,m(~x, t)Pl,m(~Ω) (7.41)

This equation only contains the unknown coefficients tE and v principally depending
upon the space-time-point (~x, t) and the fluctuation direction ~Ω

tE =tE(~x, t, ~Ω)

v =v(~x, t, ~Ω).
(7.42)

The total derivation of f(~x, t, ~Ω) with respect to t in direction of ~Ω leads to

d

dt
f(~x, t, ~Ω) =

+∞∑
l=0

m=+l∑
m=−l

d

dt
f lm(x, t)Plm(~Ω) =

1

tE

+∞∑
l=1

γl·
+l∑

m=−l

f lm(~x, t)Plm(~Ω). (7.43)

The time behavior of the spherical harmonic components is described by the equa-
tions

d

dt
f lm(t) =

γl
tE
f lm (7.44)
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and result in
f lm(t) ∼ exp(

γl
tE
· t). (7.45)

The greater the order l the more powerful is its temporal decay.

7.5. Reconstruction of the transition probabilities
W tε

The Transition probability W̃tε0→1→2 , changing the movement direction ~Ω at the
times t0, t1, t2 from ~Ω0 via ~Ω1 to ~Ω2

~Ω0
~Ω1

~Ω2

is the product of the single transition probabilities.

W̃tε,0→1→2 = W̃ tε
2

(~Ω0 · ~Ω1) · W̃ tε
2

(~Ω1 · ~Ω2). (7.46)

On the other side

W̃tεl = (1 + Υlε)
2l + 1

4π
+O(ε2) (7.47)

holds and thus arises

W̃tε(~Ω · ~Ω
′
) =

+∞∑
l=0

(1 + Υlε)
2l + 1

4π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) +O(ε2). (7.48)

The probability, that a particle changes the direction after an infinitesimal time in-
terval ε · tE from ~Ω0 to ~Ω2 is given by

W̃tε(~Ω0 · ~Ω2) =

∫
4π

W̃ tε
2

(~Ω0 · ~Ω1) · W̃ tε
2

(~Ω1 · ~Ω2)d~Ω1 (7.49)

and

W̃tε(~Ω0 · ~Ω2) =
+∞∑
l=0

(
1 + Υl

ε

2

)2
2l + 1

4π
·

+l∑
m=−l

P ∗lm( ~Ω0)Plm( ~Ω2) +O(ε2). (7.50)

59



7. Stochastic transport by longitudinal fluctuations of a continuum

Using n intermediate steps W̃tε is expressed by an integral over the product of the
single transition probabilities.

W̃tε,0→1...→n = W̃ tε
n

(~Ω0 · ~Ω1) · W̃ tε
n

(~Ω1 · ~Ω2)....W̃ tε
n

(~Ωn−1 · ~Ωn) (7.51)

W̃tε(~Ω0 · ~Ωn) =

∫
4π

∫
4π

....

∫
4π

W̃ tε
n
· W̃ tε

n
....W̃ tε

n
d~Ω1....d~Ωn−1 (7.52)

For n→∞ this results in:

W̃tε(~Ω · ~Ω
′
) = lim

n→∞

+∞∑
l=0

{
1 +

εΥl

n

}n
2l + 1

4π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) +O(ε2) (7.53)

and finally

W̃tε(~Ω · ~Ω
′
) =

+∞∑
l=0

eΥl·ε 2l + 1

4π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) +O(ε2) . (7.54)

Selecting ε = tε
tE(~x,t,~Ω)

the exchange function W̃tε may be understood in the depen-
dencies

W̃tε = W̃tε(~x, t, ~Ω, ~Ω
′
). (7.55)

Therefore

W tε(~x, t, ~Ω, ~Ω
′
) ≈ W̃tε(~x, t, ~Ω, ~Ω

′
) (7.56)

is calculated, too.=⇒

f tε(~x,
~Ω, t) =

∫
4π

W tε(~x, t, ~Ω, ~Ω
′
)f tε(~x− tε · v

′~Ω′, ~Ω′, t− tε)d~Ω
′

v′ = v′(~x, ~Ω′, t)

(7.57)

The Transition probability W tε is unsymmetrical in the direction quantities on ac-
count of ε = tε

tE(~x,t,~Ω)
.
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7.6. Approximation formula

In 1st approximation a telegrapher’s equations is derived out of the linear Boltzmann
Equation leading to the known diffusion equation without taking into account the
second time derivation. In this case the diffusion equation is proved to be usefull.
Subsequent considerations are displaying which relation exists between the 1st
approximation of the particle transport by longitudinal continuum fluctuations and
the known diffusion equation.

Assuming the simplification

1

tE
= τ(~x, ~Ω, t) = τ0 = const (7.58)

the transport equation described in 1st approximation is

∂f

∂t
+ v~Ω · ∇f = − 1

tE
·

+1∑
m=−1

f 1m(~x, t)P1m(~Ω). (7.59)

In cartesian coordinates one gets

∂f

∂t
+ vxΩx ·

∂f

∂x
+ vyΩy ·

∂f

∂y
+ vzΩz ·

∂f

∂z
= − 1

tE
·

+1∑
m=−1

f 1m(~x, t)P1m(~Ω) (7.60)

with
vx = v(~x, t, ~Ω) vy = v(~x, t, ~Ω) vz = v(~x, t, ~Ω). (7.61)

Subsequently we confine us on

vx = vy = vz = v(~x), (7.62)

suggesting an isotropy of fluctuation motions in the statistical ensemble. The condi-
tions are selected such that the further derivations analogous to 6.4 follow until to a
telegrapher’s equation.

tE
∂2Φ

∂t2
+
∂Φ

∂t
= tEv~∇ ·

v

3
~∇Φ (7.63)

The usual diffusion coefficient normally contained in ~∇ · D~∇Φ cannot be found.
In the equation above D = tE · v

2

3
is contained partly outside partly between the

~∇−operators. This has consequences in inhomogeneous media. Such problems arise
unrecognized using the Bousinesque approach . I.e. in an inhomogenuous medium
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this approach may be fatal. The term of second derivation by time has nothing
to do with relativistic theory. Because of the small size of tE it may generally be
neglected.
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8. Stochastic transport by
turbulent
continuum-fluctuations

∂f

∂t
+ v~Ω× ~Θ · ∇f =

−1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

l(l + 1)

2
f lmk(~x, t)Plm(~Ω)Hk(~Θ)

m

f tε(~x,
~Ω, ~Θ, t) =

∫
2π

∫
4π
W̃tε(~x, t, ~Ω, ~Θ, ~Ω

′
, ~Θ
′
)f tε(~x− tε · v

′~Ω′ × ~Θ
′
, ~Ω′, ~Θ

′
), t− tε)d~Ω

′
d~Θ
′

8.1. Introduction

The motion of passive particles by turbulent continuum fluctuations is examined.
The particles are moved not affecting this field. Their trajectories correspond in
every ε−neiborhood of a point to a circle segment passed with the velocity

~vtε = ~ωtε × ~rtε . (8.1)

The considered motion quantities ~ωtε and ~rtε are determined by successively detecting
a single particle originating from a point ~x0 after a time tε moving to ~x1 and after a
further time tε to ~x2. By these 3 points a circle segment is uniquely defined for the
point ~x1 with radius vector ~rtε and a rotation speed ~ωtε .

~rtε = rtε · ~Θtε

~ωtε = ωtε · ~Ωtε

(8.2)

In the special case ~ωtε → 0 and ~r → +∞ the velocity ~vtε is revealed out of its neigh-
borhood.1 The particle density distributions are received in a thought experiment
by an unlimited number of deterministic ensemble-systems (see chapter 4 ). In every

1Applying the deterministic theory this problem must be treated numerically.
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point (~x, t) a continuously differentiable particle density distribution of the motion
quantities ~ωtε und ~rtε is assigned in accordance with

ftε = ftε(~x, t, ~ω, ~r). (8.3)

The with tε indexed functions are automatically assumed to contain motion quantities
of corresponding measurement accuracies. The indexing of the motion quantities can
be omitted if the functions are indexed. After execution of a limiting process for
example

lim
tε→0

ftε(~x, t, ~ω, ~r) = f(~x, t, ~ω, ~r) (8.4)

f and (~ω, ~r) are understood according to an exact measuring process. Integrating
the particle density distribution over the motion quantities one obtains expectation
values of a particle density not conforming with the actual particle density ρ.

< ρtε(~x, t) >=

∫
2π

∫
4π

∫ ∞
0

∫ ∞
0

ftε(~x, t,ω · ~Ω, r · ~Θ)dωdrd~Ωd~Θ 6= ρtε(~x, t) (8.5)

A strictly deduced partial differential equation is obtained calculating the develop-
ment of spatio-temporal particle density distributions. The incipiently unlimited
number of unknown coefficients is reduced to a local time-scaling related to the
vortex calculation of an associated deterministic theory discussed in further chapters.
The initially abstractly formulated transition probabilities get concrete functional
dependencies. There are always found suitable Monte-Carlo methods treating them
with the help of the deterministic theory described in further chapters.

8.2. The transport as Markov Process with natural
causality

A particle at location ~x and time t changing its velocity from ~v′ = (~ω′ × ~r′) to
~v = (~ω × ~r) is given by the transition probability

Wtε = Wtε(~x, t; ~ω, ~r; ~ω′, ~r′) (8.6)

with
∞∫

0

∞∫
0

∫
4π

∫
2π

Wtε(~x, t; ~ω, ~r; ~ω′, ~r′)dω′dr′dΩ′dΘ′ = 1. (8.7)
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=⇒

ftε(~x, t, ~ω, ~r) =
∞∫

0

∞∫
0

∫
4π

∫
2π

Wtε(~x, t, ~ω, ~r, ~ω
′, ~r′)ftε(~x− ~ω′ × ~r′ · tε, ~ω′, ~r′, t− tε)dω′dr′dΩ′dΘ′

(8.8)

Continuity is required respectively of all variables of the transition probability Wtε .
The sequence of velocities ~v′tε , ~vtε means a motion from

(~x− ~ω′tε × ~r
′
tε · tε, t− tε, ~ω

′
tε × ~r

′
tε) to (~x, t, ~ωtε × ~rtε). (8.9)

For the limiting process tε → 0 the transition probabilities Wtε prove to be physical
realizations of test functions of the distribution theory.

lim
tε→0

Wtε = δ(~ω, ~r; ~ω′, ~r′). (8.10)

The passive scalar particles precisely reproduce the motions of the fluctuation field.
For the particle density distribution ftε(~x, t, ~ω, ~r) the following separation aproach is
used without loss of generality:

ftε(~x−~ω×~r ·tε, t, ~ω, ~r) = Gtε(~x−~ω×~r ·tε, t, ~ω, ~r)f tε(~x−v~Ω× ~Θ·tε, t, ~Ω, ~Θ) (8.11)

with ∫ ∞
0

∫ ∞
0

Gtε(~x, t,ω~Ω, r ~Θ)dωdr = 1∫ ∞
0

∫ ∞
0

Gtε(~x, t,ω~Ω, r ~Θ)ωrdωdr = v(~x, t, ~Ω, ~Θ)

v(~x, t, ~Ω, ~Θ) = ω(~x, t, ~Ω, ~Θ) · r(~x, t, ~Ω, ~Θ)

(8.12)

=⇒

f tε(~x− v~Ω× ~Θ · tε, t, ~Ω, ~Θ) =

∫ ∞
0

∫ ∞
0

ftε(~x− ~ω×~r · tε, t,ω · ~Ω, r · ~Θ)dωdr (8.13)

One obtains a transition probability W tε only depending on the directions by inte-
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grating Wtε over the amounts ω′, r′, ω, r.

W tε(~x, t, ~Ω, ~Θ, ~Ω
′
, ~Θ
′
) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

WtεGtε(~x− ~ω′ × ~r′ · tε, t− tε, ~ω′, ~r′)dω′dr′dωdr

(8.14)
The integration ∫ ∞

0

∫ ∞
0

(8.8)dωdr (8.15)

gives

f tε(~x, t,
~Ω, ~Θ) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

∫
4π

∫
2π

Wtεftε(~x−~ω
′×~r′·tε, t−tε, ~ω′, ~r′)dω′dr′dωdrd~Ω

′
d~Θ
′

(8.16)

=⇒ f tε(~x, t,
~Ω, ~Θ) =

∫
4π

∫
2π

W tεf tε(~x− v
′ ~Ω′ × ~Θ′ · tε, t− tε, ~Ω

′
, ~Θ
′
)d~Ω

′
d~Θ
′

(8.17)

In the integrand f tε is developed around ~x and t:

f tε(~x−
i

~x, t− tε, ~Ω
′
, ~Θ
′
) = f tε(~x, t,

~Ω
′
, ~Θ
′
)−τE · ε · [

∂f
′
tε

∂t
+v′~Ω

′
× ~Θ

′
·∇f ′tε +O(ε2)]

(8.18)

This leads to∫
4π

∫
2π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε
=∫

4π

∫
2π

W tε(~x, t, ~Ω
′
, ~Θ
′
, ~Ω, ~Θ) · τE[·

∂f
′
tε

∂t
+ v′ ~Ω′ × ~Θ′ · tε · ∇f

′
tε +O(ε2)]d~Ω

′
d~Θ
′
.

(8.19)

As
lim
tε→0

W tε = δ(~Ω, ~Θ; ~Ω
′
, ~Θ
′
) (8.20)

=⇒

lim
ε→0

∫
4π

∫
2π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε · τE
=
∂f

∂t
+ v~Ω× ~Θ · ∇f . (8.21)

Furtheron
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lim
ε→0

∫
4π

∫
2π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε · τE
(8.22)

is called exchange-term.

8.3. Calculation of the exchange-term

Exchange term dependencies of scalar products ~Ω · ~Ω
′
and ~Θ · ~Θ

′
are taken into

account istead of individually depending directions ~Ω, ~Ω
′
and ~Θ, ~Θ demanding the

following relation

lim
ε→0

∫
2π

∫
4π
W tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε · τE
= lim

ε→0

∫
2π

∫
4π
W̃tε(~Ω · ~Ω

′
, ~Θ · ~Θ

′
)f
′
tεd

~Ω
′
d~Θ
′
− f tε

ε · tE
.

(8.23)

The following transitions

τE = const −→ tE = tE(~x, t, ~Ω, ~Θ)

W tε(~x, t, ~Ω, ~Θ; ~Ω
′
, ~Θ
′
) −→ W̃tε(~Ω · ~Ω

′
, ~Θ · ~Θ

′
)

(8.24)

are regarded. Moreover, a separation of ~Ω · ~Ω
′
and ~Θ · ~Θ

′
is asumed:

W̃tε(~Ω · ~Ω
′
, ~Θ · ~Θ

′
) = Vtε(~Ω · ~Ω

′
) ·Mtε(~Θ · ~Θ

′
). (8.25)

Functions of the unit vectors ~Ω and ~Θ are presented by a complete orthogonal func-
tion system representing an extension of the spherical harmonics called turbulence
functions.

f tε(~x, t,
~Ω, ~Θ) =

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

f tεlmk(~x, t)Qlmk(~Ω, ~Θ)

=
+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

f tεlmk(~x, t)Q
∗
lmk(

~Ω, ~Θ)

(8.26)

∫
2π

∫
4π

Qlmk(~Ω, ~Θ)Q∗lmk(
~Ω
′
, ~Θ
′
)d~Ω

′
d~Θ
′
=

{
8π2

2l+1
für l = l’ und m=m’

0 sonst
(8.27)
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with

Qlmk(~Ω, ~Θ) =Plm(~Ω)Hk(~Θ)∫
2π

Hk′(~Θ)H∗k(~Θ)d~Θ =

{
2π für k’=k
0 sonst

Hk(~Θ) =eikθ

(8.28)

The product ~Ω · ~Ω
′
in the separated exchange function Vtε is developed by spherical

harmonics.

Vtε(~Ω
′
· ~Ω) =

+∞∑
l=0

VtεlPl(cos(α)) =
+∞∑
l=0

Vtεl

m=+l∑
m=−l

Plm(~Ω
′
)P ∗lm(~Ω)

mit

lim
tε→0

Vtε(~Ω
′
· ~Ω) =δ(~Ω,~Ω

′
)

(8.29)

The product ~Θ · ~Θ
′
in the separated exchange function Mtε is developed by functions

Hk.

Mtε(~Θ
′
· ~Θ) =

+∞∑
k=0

Mtεkcos(kβ) =
1

2

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(

~Θ)]

(8.30)

with

cos(kβ) =
1

2
[Hk(~Θ

′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)] =

1

2
[eik(θ

′−θ) + e−ik(θ
′−θ)]

~Θ
′
· ~Θ = cos(β) = cos(θ′ − θ) =

1

2
[H1(~Θ

′
)H∗1 (~Θ) +H−1(~Θ

′
)H∗−1(~Θ)] =

1

2
[ei(θ

′−θ) + e−i(θ
′−θ)]

lim
tε→0

Mtε(
~Θ
′
· ~Θ) = δ(~Θ,~Θ

′
)

(8.31)

=⇒

68



8. Stochastic transport by turbulent continuum-fluctuations

∫
4π

∫
2π

W̃tεf
′
tεd

~Ω
′
d~Θ =

∫
4π

∫
2π

Vtε(
~Ω
′
· ~Ω) ·Mtε(

~Θ
′
· ~Θ)f

′
tεd

~Ω
′
d~Θ
′

=

∫
4π

∫
2π

[
{

+∞∑
l=0

Vtεl

m=+l∑
m=−l

Plm(~Ω
′
)P ∗lm(~Ω) �

1

2

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)]}

�
+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

f tεlmk(~x, t)P ∗lm(~Ω
′
)H∗k( ~Θ′)

]
d~Ω
′
d~Θ
′

=

+∞∑
l=0

Vtεl
4π

2l + 1

+l∑
m=−l

P ∗lm(~Ω)

+∞∑
k=0

Mtεk2πf tεlmk(~x, t)H∗k(~Θ).

(8.32)

Finally the exchange term results in

lim
ε→0

∫
4π

∫
2π
W̃tεf

′
tεd

~Ω
′
d~Θ
′
− f tε

ε

= lim
ε→0

+∞∑
l=0

+l∑
m=−l

+∞∑
k=0

(Vtεl
4π

2l+1
Mtεk2π − 1)

ε
f tεlmk(~x, t)P

∗
lm(~Ω)H∗k(~Θ)

=
+∞∑
l=0

+l∑
m=−l

+∞∑
k=0

Υlkf lmk(~x, t)Plm(~Ω)Hk(~Θ).

(8.33)

With the exchange coefficients

Υlk = lim
ε→0

(V tεl
4π

2l+1
Mtεk2π − 1)

ε
(8.34)

the transport equation

∂f

∂t
+ v~Ω× ~Θ · ∇f =

1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

Υlkf lmk(~x, t)Plm(~Ω)Hk(~Θ) (8.35)

is achieved. Further on it is shown that in Υlk the index k may be skipped.

8.4. Calculation of the exchange-coefficients Υl

Considering an overall closed volume range V the particle number in the entire volume
remains constant if no absorbtion is assumed.
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total number of particles =

∫
V

∫
4π

∫
2π

fd~Ωd~ΘdV = const. (8.36)

=⇒

d

dt

∫
V

∫
4π

∫
2π

fd~Ωd~ΘdV =∫
V

∫
4π

∫
2π

[
∂f

∂t
+ v~Ω× ~Θ · ∇f ]d~Ωd~ΘdV = Υ0,0 · V = 0

(8.37)

and thus
Υ0,0 = 0 . (8.38)

Getting an overview over the exchange function Mtε the essential relations are pre-
sented again with the following equations:

Mtε(
~Θ
′
· ~Θ) =

+∞∑
k=0

Mtεkcos(kβ) =
1

2

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)]

cos(kβ) =
1

2
[Hk(~Θ

′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)] =

1

2
[eik(θ

′−θ) + e−ik(θ
′−θ)]

~Θ
′
· ~Θ = cos(β) = cos(θ′ − θ) =

1

2
[H1(~Θ

′
)H∗1 (~Θ) +H−1(~Θ

′
)H∗−1(~Θ)] =

1

2
[ei(θ

′−θ) + e−i(θ
′−θ)]

lim
ε→0

Mtε(~x, t,
~Θ
′
· ~Θ) = δ(~Θ,~Θ

′
)∫

2π

Hk′(~Θ)H∗k(~Θ)d~Θ =

{
2π für k’=k
0 else

Mtε(~Θ
′
· ~Θ) =

∑+∞
k=0Mtεkcos(kβ) only takes values essentially different from 0 in an

ε-neighborhood of β = 0, such that ~Θ
′
· ~Θ = cos(β) = 1−O(ε2) is sufficient. =⇒

2π ·Mtεk =∫ +π

−π
Mtεcos(kβ)dβ =

∫ +π

−π
Mtε(1−O(ε))dβ = 2π ·Mtε0 −O(ε2).

(8.39)
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On the other hand∫
2π

Mtε(~Θ · ~Θ)′d~Θ
′
=

1

2

∫
2π

k=+∞∑
k=0

Mtεk[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(

~Θ)]d~Θ
′
= 2π ·Mtε0 = 1.

(8.40)

is valid. =⇒

Mtεk = Mtε0 =
1

2π
. (8.41)

The calculation of the exchange coefficients is not influenced by Mtε the Υ-values
given by

Υl = lim
tε→0

(V tεl
4π

2l+1
− 1)

tε
. (8.42)

Further calculation of the Υl analogously happen to section 7.4 with the result

Υl = − l(l + 1)

2
ζ ζ = const. (8.43)

Now the equation of turbulent particle transport is written

∂f

∂t
+ v~Ω× ~Θ · ∇f = − 1

tE

+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

l(l + 1)

2
f lmk(~x, t)Plm(~Ω)Hk(~Θ) (8.44)

the coefficient ζ
tE

replaced by 1
tE
. A more complicated dependency of tE = tE(~x, t, ~Ω)

possibly remains. Maybe, physically justified simplifications lead to practical solu-
tions. The below presented theory of deterministic turbulence enables the calcultion
of these coefficients by numerical evaluation.

Die total derivative with respect to time gives
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d

dt
f(~x, t, ~Ω, ~Θ) =

+∞∑
l=0

m=+l∑
m=−l

+∞∑
k=−∞

d

dt
f lmk(~x, t)Plm(~Ω)Hk(~Θ)

=
1

tE

+∞∑
l=1

γl ·
+l∑

m=−l

+∞∑
k=−∞

f lmk(~x, t)Plm(~Ω)Hk(~Θ).

(8.45)

The time behavior of the single modes are obtained by

d

dt
f lmk(t) =

γl
tE
f lmk (8.46)

f lmk(t) ∼ exp(
γl
tE
· t). (8.47)

The greater the order l the more powerful is its temporal decay.

8.5. Reconstruction of the transition probabilities
W tε

The transition probability W̃tε,0→1→2 , a particle changing its motion pair of
directions (~Ω, ~Θ) at the times t0, t1, t2 from (~Ω0, ~Θ0) via (~Ω1, ~Θ1) to (~Ω2, ~Θ2),

(~Ω0, ~Θ0) (~Ω1, ~Θ1)
(~Ω2, ~Θ2)

results out of the product of the single probabilities of the pairs of directions (vortex
vector and radius vector direction of motion in a circle segment). The grafical pre-
sentation is meant symbolically because such a pair of directions does not compose
to an overall direction. ~Ωi is always orthogonal to ~Θi. A vectorial overall direction
of ~Ωi and ~Θi has no physical meaning in the 3 dimensional space. 2

W̃tε,0→1→2 = W̃ tε
2

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) · W̃ tε
2

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2) (8.48)

2~Ω, ~Θ would make a single direction vector in a 4-dimensional space. The longitudinal fluctuations
in the 4-dimensional space should accord to turbulence in the 3-dimensional space.
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The probability , that a particle changes its pair of directions within a time tε = ε · tE
from (~Ω0, ~Θ0) to (~Ω2, ~Θ2), is obtained by

W̃tε(~Ω0 · ~Ω2, ~Θ0 · ~Θ2) =

∫
2π

∫
4π

W̃ tε
2

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) · W̃ tε
2

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2)d~Ω1d~Θ1.

(8.49)
The evolution coefficients of the transition probability are

W̃ tε
2
l =

{
1 +

ε ·Υl

2

}
2l + 1

4π
· 1

2π
(8.50)

and therefore

W̃ tε
2

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) =
+∞∑
l=0

{
1 +

ε ·Υl

2

}
2l + 1

4π
· 1

2π

+l∑
m=−l

Plm(~Ω1)P ∗lm(~Ω0)

· 1

2

+∞∑
k=−∞

[Hk(~Θ1)H∗k(~Θ0) +H−k(~Θ1)H∗−k(
~Θ0)].

(8.51)

respectively

W̃ tε
2

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2) =
+∞∑
l=0

{
1 +

ε ·Υl

2

}
2l + 1

4π
· 1

2π

+l∑
m=−l

Plm(~Ω2)P ∗lm(~Ω1)

· 1

2

+∞∑
k=−∞

[Hk(~Θ2)H∗k(~Θ1) +H−k(~Θ2)H∗−k(
~Θ1)].

(8.52)

Integrating (8.49) one obtains

W̃tε(~Ω0 · ~Ω2, ~Θ0 · ~Θ2) =
+∞∑
l=0

{
1 +

ε ·Υl

2

}2
2l + 1

4π
· 1

2π

+l∑
m=−l

P ∗lm(~Ω0)Plm(~Ω2)

· 1

2

+∞∑
k=−∞

[Hk(~Θ0)H∗k(~Θ2) +H−k(~Θ0)H∗−k(
~Θ2)].

(8.53)
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Using n intermediate stages W̃tε is expressed by an integral over the product of the
single transition probabilities.

W̃tε,0→1...→n = W̃ tε
n

(~Ω0 · ~Ω1, ~Θ0 · ~Θ1) · W̃ tε
n

(~Ω1 · ~Ω2, ~Θ1 · ~Θ2)....W̃ tε
n

(~Ωn−1 · ~Ωn, ~Θn−1 · ~Θn)

(8.54)

W̃tε(
~Ω0 · ~Ωn, ~Θ0 · ~Θn) =

∫
2π

∫
4π

∫
2π

∫
4π

....

∫
2π

∫
4π

W̃ tε
n
· W̃ tε

n
....W̃ tε

n
d~Ω1d~Θ1....d~Ωn−1d~Θn−1

(8.55)

W̃tε(
~Ω · ~Ω

′
, ~Θ · ~Θ

′
) = lim

n→∞

+∞∑
l=0

{
1 +

ε ·Υl

2

}n
2l + 1

4π

· 1

2π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) · 1

2

+∞∑
k=−∞

[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(~Θ)]

(8.56)

For n→∞ arises

lim
n→∞

{
1 +

ε ·Υl

2

}n
= eΥl·ε (8.57)

and using (8.55)

=⇒

W̃tε(~Ω · ~Ω
′
, ~Θ · ~Θ′) =

+∞∑
l=0

eΥl·ε 2l + 1

4π
· 1

2π
·

+l∑
m=−l

P ∗lm(~Ω)Plm(~Ω
′
) · 1

2

+∞∑
k=−∞

[Hk(~Θ
′
)H∗k(~Θ) +H−k(~Θ

′
)H∗−k(

~Θ)]
.

(8.58)
Choosing ε = tε

tE(~x,t,~Ω)
the exchange function W̃tε may be understood in the depen-

dencies

W̃tε = W̃tε(~x, t, ~Ω · ~Ω
′
, ~Θ · ~Θ

′
) (8.59)

and

W tε(~x, t, ~Ω, ~Θ, ~Ω
′
, ~Θ
′
) ≈ W̃tε(~x, t, ~Ω · ~Ω

′
, ~Θ · ~Θ

′
) (8.60)
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is given, too. =⇒

f tε(~x,
~Ω, ~Θ, t) =

∫
2π

∫
4π
W̃tε(~x, t, ~Ω, ~Θ, ~Ω

′
, ~Θ
′
)f tε(~x− tε · v

′~Ω′ × ~Θ
′
, ~Ω′, ~Θ

′
), t− tε)d~Ω

′
d~Θ
′

v′ = v′(~x, ~Ω′, ~Θ′, t) = ω′(~x, ~Ω′, ~Θ′, t) · r′(~x, ~Ω′, ~Θ′, t)
(8.61)
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9. Appendix

9.1. Legendre-Polynomials

The Legendre-polynomials are defined within the interval [−1,+1] by

Pn =
1

2nn!

dn

dxn
(x2 − 1)n, n ∈ N. (9.1)

They represent a complete orthogonal function system with

∫ +1

−1

Pn(x)Pm(x)dx =

{
2

2m+1
für m = n

0 sonst.
(9.2)

Every continuously differentiable function f(x) defined within [-1,+1] can be developed
by Legendre-polynomials according to

f(x) =
∞∑
l=0

flPl(x). (9.3)

The fl are the evolution coefficients. A presentation of the δ−function by Legendre-
polynomials is obtained by

δ(x, x′) =
∞∑
l=0

2m+ 1

2
Pl(x)Pl(x

′) . (9.4)

Important recurrence equations are [42]

(n+ 1)Pn+1 = (2n+ 1)xPn(x)− nPn−1(x)

P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x) , n = 0, 1, 2, ...

(1− x2)P ′n(x) = nPn−1(x)− nxPn(x).

(9.5)
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An integral representation of the Legendre-polynomials is obtained by

Pn(x) =
1

π

∫ π

0

(x+
√
x2 − 1cos(ϕ))ndϕ. (9.6)

Owing to |x+
√
x2 − 1cos(θ)| = |cos(θ) + isin(θ)cos(θ)| 6 1

|Pn(x)| 6 1 (9.7)

follows. These polynomials have their maximum for x = 1, particularly

Pn(1) = 1. (9.8)

dPl(x)

dx
|1 =

l(l + 1)

2
(9.9)

is proved by complete induction.

Proof :

1.P ′0(1) = 0

Assumption:
2.P ′n(1) = n(n+1)

2

=⇒

3.P ′n+1(1) = (n+2)(n+1)
2

wegen (9.5) P ′n+1(1) − P ′n(1) = (n + 1)Pn(1)
q.e.d.
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9.2. Spherical harmonics

The Spherical harmonics [[43] page 224] represent a complete orthogonal, complex
function system on the spherical surface

Plm(~Ω) =eimϕ
(−sin(ϑ))m

l!2l
·
(

(l −m)!

(l +m)!

) 1
2 dl+m(cos2ϑ− 1)l

(dcosϑ)l+m

=eimϕ
(sin(ϑ))−m

l!2l
·
(

(l +m)!

(l −m)!

) 1
2 dl−m(cos2ϑ− 1)l

(dcosϑ)l−m

(9.10)

with

Pl,−m(~Ω) = (−)mP ∗lm(~Ω) (9.11)

and ∫
4π

d~ΩPl′m′(~Ω)P ∗lm(~Ω) = δl′lδm′m
4π

2l + 1
. (9.12)

All continuously differentiable functions on the spherical surface f(Ω) = f(θ, φ) can
be developed according to

f(~Ω) =
∞∑
l=0

m=+l∑
m=−l

flmPlm(~Ω) (9.13)

the flm representing the evolution coefficients. The P ∗lm(~Ω) being complex to Plm(~Ω)

f(~Ω) can be alternatively considered

f(~Ω) =
∞∑
l=0

m=+l∑
m=−l

flmP
∗
lm(~Ω). (9.14)

The spherical harmonics for l = 0, 1 are

P00 =P ∗00 = 1

P1,−1(~Ω) =2−
1
2 e−iϕsin(ϑ), P ∗1,−1 = 2−

1
2 eiϕsin(ϑ)

P1,0(~Ω) =P ∗1,0(~Ω) = cos(ϑ) = P1(~Ω)

P1,1(~Ω) =− 2−
1
2 eiϕsin(ϑ), P ∗1,1(~Ω) = −2−

1
2 e−iϕsin(ϑ) .

(9.15)
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The connection of spherical harmonics and Legendre-polynomials is obtained by

Pl0 = P ∗l0 = Pl. (9.16)

Furthermore the addition theorem

Pl(cos(ϑ)) =
m=+l∑
m=−l

Plm(~Ω
′

)P ∗lm(~Ω) (9.17)

matters with
cos(ϑ) = ~Ω

′

· ~Ω. (9.18)

The δ−function depending on the spherical harmonics may be stated by

δ(~Ω, ~Ω
′

) =
∞∑
l=0

2l + 1

4π

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′

) (9.19)

and

δ(~Ω, ~Ω
′

) =
∞∑
l=0

2l + 1

4π
Pl(~Ω · ~Ω

′

). (9.20)

9.3. Turbulence-functions

Functions of the unit direction vectors ~Ω and ~Θ are represented by a complete or-
thogonal function system meaning an extension of the spherical harmonics. We call
them turbulence functions.

Qlmk(~Ω, ~Θ) =Plm(~Ω)Hk(~Θ)

Plm(~Ω) spherical harmonics∫
2π

Hk′(~Θ)H∗k(~Θ)d~Θ =

{
2π for k’=k
0 else

Hk(~Θ) =eikθ

(9.21)

cos(ϑ) = ~Ω
′

· ~Ω. (9.22)
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with∫
2π

∫
4π

Qlmk(~Ω, ~Θ)Q∗lmk(
~Ω
′
, ~Θ
′
)d~Ω

′
d~Θ
′
=

{
8π2

2l+1
for l = l′;m = m′; k = k′

0 else
(9.23)

Such, suitable distribution functions are described by

ftε(~x, t, ~Ω, ~Θ) =
+∞∑
l=0

+l∑
m=−l

+∞∑
k=−∞

flmk(~x, t)Qlmk(~Ω, ~Θ)

f(~x, t, ~Ω,Θ) =
+∞∑
l=0

+l∑
m=−l

Plm(~Ω)
+∞∑

k=−∞

flmk(~x, t)Hk(~Θ).

(9.24)

Die δ−function depending on the turbulence functions is expressed

δ(~Ω, ~Ω
′

; ~Θ, ~Θ
′

) =
∞∑
l=0

2l + 1

4π

m=+l∑
m=−l

Plm(~Ω)P ∗lm(~Ω
′

)
+∞∑

k=−∞

1

2π
Hk(~Θ)H∗k(~Θ

′

) (9.25)

and such

δ(~Ω, ~Ω
′

; ~Θ, ~Θ
′

) =
1

8π2

∞∑
l=0

(2l + 1)Pl(~Ω · ~Ω
′

)
+∞∑

k=−∞

exp(ik(Θ−Θ
′
)). (9.26)

9.4. Euler-angles as fluctuation properties of the
turbulent particle transport

The angles respectively unit direction vectors ~Ω and ~Θ of turbulent motions are
applied using the turbulence functions. The unit vector ~Ω× ~Θ with ~Ω ⊥ ~Θ depending
on the angles θ, ϕ and ϑ is determined. Initially, the direction vector ~Ω

~Ω
0

=

 0
0
1

 (9.27)

may be given before a rotation. The orthogonal direction vector ~Θ
0
may be descripted

in this starting situation by
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~Θ
0

=

 sinθ
cosθ

0

 (9.28)

The rotation T = T2 ·T1 with

T1 =

 1 0 0
0 cosϑ sinϑ
0 −sinϑ cosϑ

 (9.29)

and

T2 =

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

 (9.30)

results in

T = T2 ·T1 =

 cosϕ sinϕcosϑ sinϕsinϑ
−sinϕ cosϕcosϑ cosϕsinϑ

0 −sinϑ cosϑ

 (9.31)

with the unit vectors

~Θ = T · ~Θ
0

=

 cosϕsinθ + sinϕcosϑcosθ
−sinϕsinθ + cosϕcosϑcosθ

−sinϑcosθ


~Ω = T · ~Ω

0
=

 sinϕsinϑ
cosϕsinϑ
cosϑ

 (9.32)

and

~Ω× ~Θ =

 sinϕsinϑ
cosϕsinϑ
cosϑ

×
 cosϕsinθ + sinϕcosϑcosθ
−sinϕsinθ + cosϕcosϑcosθ

−sinϑcosθ


=

 −cosϕcosθ + sinϕcosϑsinθ
cosϕcosϑsinθ + sinϕcosθ

−sinϑsinθ

 .

(9.33)
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Part III.

Deterministic
continuum-fluctuations and their
stochastic view within the meaning

of an ensemble-theory
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10. Introduction

In part II a probabilistic theory of turbulent particle transport is developed from
a stochastic ensemble consideration of an unlimited number of parallelly existent,
deterministic continuum fluctuations. In this part III the relation of partial
differential equations of deterministic continuum fluctuations to the stochastic
ensemble-counterpart is established. The causal Markov Process (section 4.5)
matters, essentially. Its local description leads to two vector fields with a dual pair of
coupled partial, quasilinear differential vector equations distinguishing between mass
transport and transport of pure motion quantities ∂ ~A/∂t and ~∇ × ~A of fluctuating
vector fields ~A.

Chapter 11: Turbulent motions have the local velocities ~v = ~ω × ~r resulting in a
dual equation system of a vortex field ~ω and a curvature vector field ~b. Including
the underlying momentum equations (not Navier-Stokes-equations) this system is
not yet complete.

Chapter 12: The deterministic transport of pure motion quantities of sufficiently
often continuously differentiable fields ∂ ~A/∂t and ~∇× ~A is examined leading to a pair
of dual coupled vector equations. Depending on interpretation they may be viewed
as deformation fluctuation-equations, as generalisations of the Maxwell Equations
of vacuum or applied as equations of ∂~v/∂t and ~∇×~v of the turbulent velocity field ~v.

Chapter 13: After a discussion of possible momentum equations as foundation for
turbulence-calculations the results of chapter 11 and 12 are combined to a complete
turbulence-equation system. This system consists of 12 equations with 12 unknowns.1
From an initial velocity field ~v(~x, t0) and its partial, temporal derivation ∂

∂t
~v(~x, t)|t0

the further evolution of the velocity field, its related vortex- and curvature fields as
well as the accelleration field ~q operating in the turbulence field may be calculated.2
The accelleration field generally is not conservative meaning ~∇ × ~q 6= 0. Matter
density distributions may be determined via the continuum-equation in the frame

1The Einstein Equations of General Relativity consist of 10 equations. Suitable evolution equations
with initial- and possibly boundary conditions remain troublesome in a 3+1-geometry.

2As there are only motion quantities in this equation system, it is successfully used for evolution
problems in General Relativity.
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of a subsequent evaluation in consequence of thermodynamic state quantities beeing
computable (as far as a local thermodynamic equilibrium is existent).
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11. Deterministic turbulent
mass-transport and its
stochastic formulation

ftε(t, ~x, ~ω,~r) =

∫
~ω′

∫
~r′

Wtε(t, ~x, ~ω,~r, ~ω
′, ~r′) · ftε(~x−∆~x, t− tε, ~ω′, ~r′)d ~ω′d~r′

m
∂

∂t
~ω− ~∇× ~a−1

2
~∇× ~q = 0

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0

11.1. Introduction

A stochastical ensemble-consideration of deterministic fields is understood as the ex-
amination of an unlimited number of comparable, parallelly existent systems, analo-
gously to chapter 4. In this case turbulently moved fluids are examined considering
statistical deliberations and its deterministic counterparts. That a linking of deter-
ministic and stochastic theory may be available and further more that out of this
connection additionally important (sometimes otherwise not known) relations arise
for deterministic formulations, is shown in the following. This is discussed for a
turbulent mass transport.

11.2. The transition: stochastic theory ←→
deterministic theory

Every space-time-point (~x, t) a continuously differentiable fluid element distribution
over the motion quantities ~ωtε and ~rtε is assigned according to
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11. Deterministic turbulent mass-transport and its stochastic formulation

ftε = ftε(~x, t, ~ω,~r). (11.1)

Indexing functions with tε it is automatically assumed that the included motion
quantities (~ω,~r) are assigned to a tε-measurement accuracy. The indexing of the
motion quantities may be omitted in the functions if the functions are accordingly
indexed.

After an execution of a lim tε → 0 process, such as

lim
tε→0

ftε(~x, t, ~ω, ~r) = f(~x, t, ~ω, ~r) (11.2)

f and (~ω,~r) are understood as results of an exact measuring process.

The change of motion quantities in point (~x, t)

(
~ω′tε(~x−∆~x, t− tε), ~r

′
tε(~x−∆~x, t− tε)

)
−→

(
~ωtε(~x, t), ~rtε(~x, t)

)
is controlled by the transition probability density Wtε = Wtε(~x, t, ~ω, ~r, ~ω

′, ~r′). 1

with

lim
tε→0

Wtε =δ(~ω,~r; ~ω′,~r′)

ftε(~x, t, ~ω,~r) =

∫
~r

∫
~ω

Wtε(~x, t, ~ω,~r, ~ω
′,~r′) · ftε(~x−∆~x, t− tε, ~ω′,~r′)d~ω′d~r′

∆~x =tε · ~ω′ ×~r′

. (11.3)

These equations characterize stochastic turbulence of the continuum in the frame of
an ensemble theory and represent a Markov Process with natural causality.

ftε is developed in (11.3) until the 1st order around (~x,t) =⇒

ftε(~x−4~x, t− tε, ~ω
′,~r′) = ftε(~x, t, ~ω

′,~r′)−
∂f ′tε
∂t
· tε−4~x · ~∇ftε(~x, t, ~ω

′,~r′) +O(tε
2)

(11.4)

1The otherwise in distribution theory used test functions in this connection have an immediate
physical meaning with the formulation of the transition probability density.
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with f ′tε = ftε(~x, t, ~ω
′,~r′) and one obtains

∫
~r

∫
~ω

Wtε [
∂f ′tε
∂t

+ ~ω′ ×~r′ · ~∇f ′tε ]d~ω
′d~r′ +O(tε

2) =

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′− ftε
tε

. (11.5)

lim tε → 0 applied to (11.5) leads to

∂f

∂t
+ ~ω ×~r · ~∇f = lim

tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′− ftε
tε

. (11.6)

The right side must contain the characteristics of the turbulent fluid.

lim
tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′− ftε
tε

= F (11.7)

F has to be chosen such, that the deterministic vortex equations result under the
influence of the assumed acceleration field. Further on the ansatz

F =
1

2

[
~ω

ω2
· ~∇× ~q

]
f (11.8)

is shown precisely fulfilling this condition. Thus one obtains

∂f

∂t
+ ~ω ×~r · ~∇f =

1

2

[
~ω

ω2
· ~∇× ~q

]
f. (11.9)

Limiting ourselves to one system of the ensemble the distribution function f degener-
ates to a δ-function.

f → δ(~ω(~x,t),~r(~x,t); ~ω,~r) (11.10)

The indexing of quantities like ~ω(~x,t) by (~x, t) means the vector ~ω in the space-time
point (~x, t) 2 whereas ~ω(~x, t) represents the spatiotemporal field ~ω in dependence on
(~x, t).

It results in the key equation for the transition stochastic-deterministic

∂

∂t
δ + ~ω(~x,t) ×~r(~x,t) · ~∇δ =

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ . (11.11)

2That is the situation considering stochastically.
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Definition of the operator Ξ[...]:
From the vector ~A(~x,t) respectively the scalar function value f (~x,t) existing in the
space-time-point (~x, t) of the system a vector function respectively a scalar function
arises by the operator Ξ

Ξ

[
~A(~x,t)

]
= ~A(~x, t) (11.12)

respectively

Ξ

[
f (~x,t)

]
= f(~x, t) (11.13)

an appropriate field existing around the point (~x, t). The Operator Ξ[...] evokes this
functionality to “life“.
Accordingly the following relationships are noted:

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)d~ωd~r

]
= 1

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~ωd~ωd~r

]
= Ξ

[
~ω(~x,t)

]
= ~ω(~x, t)

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~rd~ωd~r

]
= Ξ

[
~r(~x,t)

]
= ~r(~x, t)

(11.14)

or

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)ω2~rd~ωd~r

]
= Ξ

[
ω2

(~x,t)~r(~x,t)

]
= ω2(~x, t)~r(~x, t). (11.15)

11.3. The deterministic equations of turbulence

From the general momentum equation

∂~v

∂t
+ (~v · ~∇)~v = ~q (11.16)

the vortex equation may be developed using the ~∇×-operator

∂

∂t
~ω− ~∇× (~v × ~ω)− 1

2
~∇× ~q = 0. (11.17)

The relations of deterministic and stochastic description are established the same
vortex equation opening up from the above key equation. In the following the method
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11. Deterministic turbulent mass-transport and its stochastic formulation

is presented designing the dual pair of deterministic vector equations from the key
equation

∂

∂t
δ + ~ω(~x,t) ×~r(~x,t) · ~∇δ =

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ. (11.18)

In this situation the vectors of the motion quantities may be pushed before and after
the differential operators. The Term

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ (11.19)

guarantees the finding of equation (11.17) and its dual one. It is

~v ⊥ ~ω ⊥ ~r. (11.20)

and setting
~a = ~v × ~ω (11.21)

this results in
~r ‖ ~a. (11.22)

Such ~a and ~r are linked as follows3

~r =
~a

ω2
. (11.23)

=⇒
with δ = δ(~ω(~x,t),~r(~x,t); ~ω,~r)

~ω(~x,t) ×~r(~x,t) · ~∇δ = −~r(~x,t) × ~ω(~x,t) · ~∇δ
= −~ω(~x,t) · ~∇×~r(~x,t)δ

= −
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~a(~x,t)δ.

3Symbols as ω, r, a, v etc. always mean amounts of the corresponding vectors.
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Inserting in (11.18) gives

∂

∂t
(
~ω(~x,t) · ~ω(~x,t)

ω2
(~x,t)

δ)−
~ω(~x,t)

ω2
(~x,t)

· ~∇× (~a(~x,t)δ)−
1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ = 0

=⇒
~ω(~x,t)

ω2
(~x,t)

·
[
∂

∂t
(~ω(~x,t)δ)− ~∇× (~a(~x,t)δ)−

1

2

[
· ~∇× ~q(~x,t)

]
δ

]
= 0

=⇒ ∂

∂t
(~ω(~x,t)δ)− ~∇× (~a(~x,t)δ)−

1

2

[
· ~∇× ~q(~x,t)

]
δ = 0

(11.24)

One obtains

Ξ

[∫
~r

∫
~ω

[
∂

∂t
(~ω(~x,t)δ)− ~∇× (~a(~x,t)δ)−

1

2

[
~∇× ~q(~x,t)

]
δ = 0

]
d~ωd~r

]
(11.25)

because integration and differentiation beeing exchangeable follows

[
∂

∂t
Ξ

[
~ω(~x,t)

]
− ~∇×Ξ

[
~a(~x,t)

]
− 1

2
~∇×Ξ

[
~q(~x,t)

]
= 0 (11.26)

and we have the first of the dual turbulence equations

∂

∂t
~ω− ~∇× ~a− 1

2
~∇× ~q = 0 (11.27)

accordingly
∂

∂t
~ω− ~∇× (~v × ~ω)− 1

2
~∇× ~q = 0.

Hereby the connection of stochastics and deterministics is achieved. From the key-
equation above a second equation, the dual one, may be derived.

Back to the initial equation (11.18)

∂

∂t
δ + ~ω(~x,t) ×~r(~x,t) · ~∇δ =

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ

Simple conversions give
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11. Deterministic turbulent mass-transport and its stochastic formulation

∂

∂t

(
~r(~x,t) ·

~r(~x,t)

r2
(~x,t)

δ

)
+~r(~x,t) · ~∇× (~ω(~x,t)δ)−

~r(~x,t) ·~r(~x,t)

r2
(~x,t)

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ = 0

−→ ~r(~x,t)

[
∂

∂t

~r(~x,t)

r2
(~x,t)

δ + ~∇× (~ω(~x,t)δ)−
~r(~x,t)

r2
(~x,t)

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ

]
= 0

(11.28)

Using the curvature vector field of the fluid trajectories ~b = ~r
r2

the equation is
written

∂

∂t
(~b(~x,t)δ) + ~∇× (~ω(~x,t)δ)−

1

2
~b(~x,t)

~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)δ = 0 (11.29)

and applying the operators Ξ arises

Ξ

[∫
~r

∫
~ω

[
∂

∂t
(~b(~x,t)δ) + ~∇× (~ω(~x,t)δ)−

1

2
~b(~x,t)

~ω(~x,t)

ω2
(~x,t)

· ~∇×~q(~x,t)δ = 0

]
d~ωd~r

]
(11.30)

respectively

∂

∂t
Ξ[~b(~x,t)] + ~∇×Ξ[~ω(~x,t)]−

1

2
Ξ

[(
~b
~ω

ω2
· ~∇× ~q

)
(~x,t)

]
= 0. (11.31)

Such the second of the dual turbulence equations is approached

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0. (11.32)

Closing this dual equation system

∂

∂t
~ω− ~∇× ~a− 1

2
~∇× ~q = 0

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0

~v = ~ω ×
~b

b2
, ~a = ~v × ~ω

(11.33)
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further equations are necessary besides the momentum equations. In the case of the
Navier-Stokes-equations

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p +~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

i.e.
~q = −1

ρ
~∇p +~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

this could happen by simultaneously using the known continuity, energy as well as
state equation. But this proves not to be expedient. In chapter 13 the complete
equation system is presented and it is shown that the usual Navier-Stokes-equations
are not warranting the correct momentum balancing in turbulence.
The term

−1

2
~b

[
~ω

ω2
· ~∇× ~q

]
may lead to removable singularities in space-time-points (~x, t) when turning points
occur in the fluid element trajectories ~ω = 0 and ~b = 0 arising simultaneously. In
this case the whole term is calculated from its surroundings. The same shall apply
for the calculation of the velocity ~v. In such cases there is an alternative way shown
in chapter 13, too.
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12. Stochastic and deterministic
general vector fields

ftε(~x, t, ~E, ~B) =

∫
~B

∫
~E

Wtε(~x, t, ~E,~B, ~E
′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

m
∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

12.1. Introduction

Subsequently continuum fluctuations of general 3 dimensional vector fields ~A(~x, t)

with ~∇ × ~A 6= 0 are analysed. They have to be sufficiently often continuously
differentiable. Defining the vector fields ~E and ~B by

~E =∂ ~A/∂t 6= 0

~B = ~∇× ~A 6= 0
(12.1)

and owing to the exchangeability of the operators ∂/∂t und ~∇×

∂~B

∂t
= ~∇× ~E (12.2)

follows. This is a necessary consequence of the condition of the continuous differen-
tiability of ~A(~x, t). This relation is known according to the Maxwell Equations. The
for this purpose dual equation is subsequently beeing looked for. In an analogous
approach derivating the turbulence equations a stochastic continuum process in the
frame of an ensemble theory is formulated such that according to a deterministic
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12. Stochastic and deterministic general vector fields

theory the already known as well as the related dual equation arise with fluctuating
quantities ~E und ~B.

12.2. The Transition: stochastic theory ←→
deterministic theory

This transition takes place in the same way as the derivation of the dual turbulence
equation pair. Every space-time-point(~x, t) a continuously differentiable distribution
density ftε is assigned to the motion quantities ~Etε = ∂ ~Atε/∂t and ~Btε = ~∇ × ~Atε

with

ftε = ftε(~x, t, ~E, ~B). (12.3)

In the with tε or ε indexed functions ftε it is automatically assumed that the
included motion quantities (~E, ~B) are assigned to a tε-measurement accuracy. The
indexing of the motion quantities may be omitted in functions appropriately indexed
themselves.

After the execution of a lim tε → 0-process

lim
tε→0

ftε(~x, t, ~E, ~B) = f(~x, t, ~E, ~B) (12.4)

f and (~E, ~B) are understood in the sense of an exact measurement process.

The stochastic transport of the fluctuation quantities

(
~E
′
tε(~x−∆~x, t− tε), ~B

′
tε(~x−∆~x, t− tε)

)
−→

(
~Etε(~x, t), ~Btε(~x, t)

)
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12. Stochastic and deterministic general vector fields

happens by the transition probability density Wtε = Wtε(~x, t, ~E, ~B, ~E
′
, ~B
′
) with

lim
tε→0

Wtε =δ(~E, ~B; ~E
′
, ~B
′
)

ftε(~x, t, ~E, ~B) =

∫
~B′

∫
~E
′

Wtε(~x, t, ~E, ~B, ~E
′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

∆~x =tε · ~E
′
×

~B
′

B′2
and ~E

′
×

~B′

B′2
= velocity of propagation.

(12.5)

These equations define stochastic continuum fluctuations of the quantities ~E und ~B in
the sense of an ensemble-theory and represent a Markov Process of natural causality.
The test-functions of distribution theory obtain by this formulation of a transition
probability density Wtε an immediate physical meaning.

ftε is developed until the 1st order about (~x,t) =⇒

ftε(t− tε, ~x−4~x, ~E
′
, ~B
′
) = f ′tε −

∂f ′tε
∂t
· tε−4~x · ~∇f ′tε +O(tε

2)

f ′tε = ftε(~x, t, ~E
′
, ~B
′
)

(12.6)

und one gets

∫
~E

∫
~B

Wtε

[
∂f ′tε
∂t

+ ~E′ ×
~B′

B′2
· ~∇f ′tε

]
d ~E′d ~B′ +O(tε

2) =

∫
~B

∫
~E
Wtεf

′
tεd

~E′d~B
′
− ftε

tε
.

(12.7)

By the process tε → 0 Wtε degenerates to a δ-function:

lim
tε→0

Wtε = δ(~E, ~B; ~E′, ~B′) (12.8)

lim tε → 0 applied leads to

∂f

∂t
+ ~E×

~B

B2
· ~∇f = lim

tε→0

∫
~E

∫
~B
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
. (12.9)

Recovering equation (12.2) after the transition to deterministic consideration the
exchange term has to vanish, in this case.
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12. Stochastic and deterministic general vector fields

lim
tε→0

∫
~B

∫
~E
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
= 0. (12.10)

This link is an integral part of the considered stochastic process.

Limiting ourselves to one system of the ensemble the function f(~x, t, ~E, ~B) in the
space-time-point (~x, t) degenerates to a δ−function

f(~x, t, ~E, ~B) −→ δ(~E(~x,t), ~B(~x,t); ~E, ~B)-function. (12.11)

From equation (12.9) arises the key-equation

∂

∂t
δ + ~E(~x,t) ×

~B(~x,t)

B2
(~x,t)

· ~∇δ = 0 . (12.12)

Respectively section 11.2 the Ξ[...]-operator is inserted as follows

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~B, ~E)~Bd~Bd~E

]
= Ξ[~B(~x,t)] = ~B(~x, t)

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~B, ~E)~Ed~Bd~E

]
= Ξ

[
~E(~x,t)

]
= ~E(~x, t)

(12.13)

or

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~b, ~E)

(
B2

E2
·~E
)
d~Bd~E

]
= Ξ

[
B2

(~x,t)

E2
(~x,t)

·~E(~x,t)

]
=
B2(~x, t)

E2(~x, t)
·~E(~x, t),

(12.14)

developing the deterministic equations from the key equation.

12.3. The deterministic fluctuation-equations

The key-equation (12.12) represents the interface for the transition of stochastic to
deterministic consideration. From the perspective of statistics over the states of move-
ment of the parallelly assumed deterministic processes in the respective point (~x, t)

one is confined to a single system and such to a single state of motion (~E(~x,t), ~B(~x,t)).
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12. Stochastic and deterministic general vector fields

In this situation the vectors of the motion quantities may be pushed before and behind
the differential operators

~E(~x,t) ×
~B(~x,t)

B2
(~x,t)

· ~∇δ = −
~B(~x,t)

B2
(~x,t)

× ~E(~x,t) · ~∇δ

= −
~B(~x,t)

B2
(~x,t)

· ~∇× ~E(~x,t)δ

Further more there is

∂

∂t
(
~B(~x,t) · ~B(~x,t)

B2
(~x,t)

δ)−
~B(~x,t)

B2
(~x,t)

· ~∇× (~E(~x,t)δ) = 0

=⇒
~B(~x,t)

B2
(~x,t)

· [ ∂
∂t

(~B(~x,t)δ)− ~∇× (~E(~x,t)δ)] = 0

=⇒ ∂

∂t
(~B(~x,t)δ)− ~∇× (~E(~x,t)δ) = 0.

(12.15)

Now the vector fields of the motion quantities (~E(~x,t), ~B(~x,t)) of the one determinstic
system are created about the point (~x, t) and such the transition to the deterministic
equations of the one system has succeeded.

One obtains

Ξ

[∫
~B

∫
~E

[
∂

∂t
(~B(~x,t)δ)− ~∇× (~E(~x,t)δ) = 0

]
d~Ed~B

]
. (12.16)

As integration and differentiation are exchangeable =⇒

∂

∂t
Ξ[~B(~x,t)]− ~∇×Ξ[~E(~x,t)] = 0 (12.17)

and it results in the 1.st of the dual fluctuation equations

∂

∂t
~B− ~∇× ~E = 0. (12.18)

Hereby the stochastic-deterministic connection is established.

Back to the key-equation (12.12)

∂

∂t
δ + ~E(~x,t) ×

~B(~x,t)

B2
(~x,t)

· ~∇δ = 0
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one obtains by simple conversion

∂

∂t

(
~E(~x,t) ·

~E(~x,t)

E2
(~x,t)

δ

)
+ ~E(~x,t) · ~∇×

( ~B(~x,t)

B2
(~x,t)

δ

)
= 0

∂

∂t

(
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)δ

)
+ ~∇× (~B(~x,t)δ) = 0

(12.19)

and

Ξ

[∫
~B

∫
~E

[
∂

∂t

(
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)δ

)
+ ~∇× (~B(~x,t)δ) = 0

]
d~Ed~B

]
(12.20)

respectively

∂

∂t
Ξ

[
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)

]
+ ~∇×Ξ[~B(~x,t)] = 0. (12.21)

So we have the second of the two dual equations

∂

∂t
(
B2

E2
· ~E) + ~∇× (~B) = 0. (12.22)

The result is recapitulated by the following equation system:

∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

~E×
~B

B2
= propagation speed

(12.23)

with |~E × ~B
B2 | ≤ |~E| · |

~B
B2 |. I.e. E2

B2 is not the quadratic propagation speed. Inter-
estingly, this only becomes clear after the involvement of the stochastic ensemble
theory.

The equation system (12.23) is in such general terms that the physical significance
depends on the interpretation of the starting field ~A, the boundary conditions as well
as on the initial conditions. Hereunder, a deformation vector field, the velocity vector
field of turbulence motions or the fluctuations of any other continuously differentiable
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vector field may be understood. These equations possess with boundary- and suitable
initial conditions exactly one solution after the theorem of Cauchy-Kowalewskaja
[7]. This statement is at first restricted to the calculation of the fields ~E and ~B.
Calculating the field ~A with the mere knowledge of

∂ ~A

∂t
= ~E (12.24)

is not possible in all cases. A negative example is the calculation of ~v with the
knowledge of ∂~v

∂t
related to turbulent velocity fluctuations as shown in chapter 13.

However, in this case these relations are applied completing the turbulence equations.
The particular definition of turbulence fluctuation elements (chapter 3) makes this
problem almost vividly comprehensible.
Considering turbulent motions this can be done from a different perspective. With
the equation system (12.23) the motion quantities

~E =
∂

∂t
~v and ~B = ~∇× ~v

are transported with the propagation speed

~v = ~E×
~B

B2
.

The equation system (11.33) describes the mass transport by the velocity ~v. In
consideration of ~b = ~a

~v2 (11.33) may be formulated omitting the viscosity and
assuming ~∇× ~q = 0 as follows:

∂

∂t
~ω− ~∇× ~a = 0

∂

∂t

(
~a

v2

)
+ ~∇× ~ω = 0

~v = ~ω ×
~b

b2
, ~a = ~v × ~ω, ~v = propagation speed

(12.25)

In doing so ~v ⊥ ~ω ⊥ ~a holds. The equations (12.23) and (12.25) do not formally
differ apart from orthogonality conditions. But it is not expected, that the fluctu-
ations generated by a conservative accelleration field ( ~∇ × ~q = 0) may describe
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hydrodynamic turbulences. This is discussed in chapter 13.

12.3.1. The vacuum Maxwell Equations

The propagation speed having the constant amount of light velocity one obtains
the known equations of vacuum-electrodynamics in the coordinate system of the ob-
server:

∂

∂t
~B− ~∇× ~E = 0

1

c2

∂

∂t
~E + ~∇× ~B = 0 mit ~E ⊥ ~B

~E×
~B

B2
= ~c = propagation speed of light.

(12.26)

Hereby a formal analogy is established between electrodynamics and turbulent fluid
dynamics. It is only based on the analogy of the propagation of the motion quantities
(~E, ~B) and ( ∂

∂t
~v, ~∇ × ~v). But a turbulent mass transport with the local velocity ~v

cannot be sufficiently described in this way as stated in chapter 13.

So the electrodynamic equations of vacuum are generally derived, too. Usually, they
are seen in the above equations with −~E. It is more than pure supposition, that
they describe properties of space-time without a unification of General Relativity
and electromagnetic field in vacuum having succeeded, though many physicists not
least Einstein [11], Jordan [23] and many others having endeavoured.

There is still the explanation of the associated initial field ~A it generally hap-
pening in the frame of vector potential considerations, without recognizing ~A as
definite physical object. Only by a direct comprehension of the vector potential the
electromagnetic field may be explained without means of mechanical quantities.1

1Electrodynamics is introduced in physics via mechanical effects.
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12.4. Surfacelike deformation-fluctuations in
3-dimensional space

Let ~d be a continuously differentiable deformation vector field defining an area and
~b und ~e the derived fields

~e =
∂

∂t
~d, ~b = ~∇× ~d (12.27)

with

~d(x, y, t) =

(
dx(x, y, t),dy(x, y, t),dz(x, y, t)

)
~e(x, y, t) =

(
ex(x, y, t), ey(x, y, t), ez(x, y, t)

)
~b(x, y, t) =

(
bx(x, y, t),by(x, y, t),bz(x, y, t)

)
.

(12.28)

Then the deformation is without loss of generality seen as deformation of the x− y-
area. The equations of motion formally equal the equations of 3-dimensional fluctu-
ations

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed,

(12.29)

only, the operator ~∇× corresponds to

~∇× ~d =

 ∂dz/∂y
−∂dz/∂x

∂dy/∂x− ∂dx∂y

 . (12.30)

The solution uniquely succeeds by the initial conditions ~b(x, y, t0) and ~e(x, y, t0)
according to the theorem of Cauchy-Kowalewskaya [7]. The solution for this area cor-
responds to a partial solution of a 3-dimensional complete solution. Physical material
properties are not explicitly included in these equations. They have to be implicitly
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considered by initial and boundary conditions. Sole precondition is that the appro-
priate materials act continuously. It also means that the physical process has to be
clarified enabling the corresponding initial and border conditions.

12.5. 1-dimensional deformation-fluctuations in
3-dimensional space

Let ~d be a continuously differentiable deformation vector field defining a trajectory
and ~b und ~e the derived fields

~e =
∂

∂t
~d, ~b = ~∇× ~d (12.31)

with

~d(x, t) =(dx(x, t),dy(x, t),dz(x, t))

~e(x, t) =(ex(x, t), ey(x, t), ez(x, t))

~b(x, t) =(bx(x, t),by(x, t),bz(x, t)).

(12.32)

Then the deformation is without loss of generality seen as deformation of the x-
coordinate. The equations of motion formally equal the equations of 3-dimensional
fluctuations

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed,

(12.33)

only, the operator ~∇× corresponds to

~∇× ~d =

 0
− ∂dz/∂x

∂dy/∂x

 . (12.34)
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This leads to the component equations

∂by/∂t =− ∂ez/∂x

∂bz/∂x =∂ey/∂x

∂[(b2/e2) · ey)]∂t =− ∂bz/∂x
∂[(b2/e2) · ez)]∂t =∂by/∂x

~e× ~b/b2 =propagation speed.

(12.35)

The x-component remains constant. The solution uniquely results from the initial
conditions ~b(x, t0) and ~e(x, t0) according to the theorem of Cauchy-Kowalewskaya
[7]. The solution for this 1-dimensional trajectory corresponds to a partial solution
of a 3-dimensional complete solution. Physical material properties are not explicitly
included in these equations. They have to be implicitly considered by initial and
boundary conditions. Sole precondition is that the appropriate materials act con-
tinuously. It also means that the physical process has to be clarified enabling the
corresponding initial and border conditions.
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13. Geometrodynamics of
turbulence

~E +
1

2
~∇~v2 − 2~v × ~ω = ~q

———————————————–
∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F = −2 ~∇× ~ω mit ~F =

4ω2

E2
· ~E

13.1. Introduction

For a fluctuating continuum field

d

dt
~v(~x, t) =

∂~v

∂t
+ (~v · ~∇)~v = ~q(~x, t) (13.1)

may be formally comprehended as a momentum equation. As soon as hydrodynamics
is involved where a local thermodynamic balance is assumed, the Eulerian equations

~q
?
= −1

ρ
~∇p (13.2)

are noted with the indication of the 2nd Newtonian law. They are only justified under
restrictive rules like incompressibility of fluids or 1

ρ
~∇p = ~∇h (h=spec. enthalpy)

and or negligible rubbing viscosity. So only limiting cases of fluid dynamics are
characterized.

But generally, ~∇×~q 6= 0 is to be presumed. ~q is in contrast to Newtonian mechanics
a non-conservative acceleration field. ~q has transversal and longitudinal parts

~q = ~q⊥ + ~q‖. (13.3)
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13. Geometrodynamics of turbulence

The same applies for the velocity field ~v

~v = ~v⊥ + ~v‖ = ~ω × ~R. (13.4)

The disassembly of the velocity field is adequately taken into account by the develop-
ment of the dual turbulence equation system. In the momentum equation (13.1) 12
unknowns are “hiddenly“ contained and with the turbulence equation only 9 coupled
equations are available. For the field ρ~q a disassembly in longitudinal und transversal
part has to be considered, too.

ρ
d

dt
~v(~x, t) = ρ~q = (ρ~q)⊥ + (ρ~q)‖ (13.5)

Using the Navier-Stokes-equations (Appendix A) leads to

ρ~q = (ρ~q)⊥ + (ρ~q)‖
?
= − ~∇p + ρ ·~g + η∆~v + (ξ +

η

3
) ~∇ ( ~∇ · ~v)

=⇒ 1

(ρ~q)⊥
?
= −η ~∇× ~∇× ~v (13.6)

and

(ρ~q)‖
?
=− ~∇p + ρ · ~g + (ξ + η

4

3
) ~∇ ( ~∇ · ~v).

~g =earth acceleration
(13.7)

As turbulent motions of sufficiently high reynolds number create negligible
viscosity effects and on the other hand ~q⊥ represents the decisive propulsion of the
vortex motions turbulences are not correctly calculated by the usual equation system
consisting of Navier-Stokes-equations, equation of continuity and energy equation.
Equation (13.6) can not be correct. ~q‖ contributes nothing to the propulsion of the
vortex motions. The turbulent dissipation can not be attributed to viscosity but
to the matter exchange of the fluid elements and involved thermodynamic changes
of state, if a local thermodynamic state is possible. Then the turbulent dissipation
decisively decomposes the kinetic energy. =⇒

ρ~q = (ρ~q)⊥ + (ρ~q)‖ 6= − ~∇p + ρ ·~g + η∆~v + (ξ +
η

3
) ~∇ ( ~∇ · ~v) (13.8)

1∆~v = ~∇ ( ~∇ · ~v)− ~∇× ~∇× ~v
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13. Geometrodynamics of turbulence

The equations, often called conservation laws [3]( Navier-Stokes-equations, equation
of continuity and energy equation), do not meet these requirements for turbulence
with the exception of the equation of continuity.

13.2. The complete set of turbulence-equations

In the turbulence equations (11.33) the viscous terms according to high reynolds
numbers may be omitted whereas for sufficienly small reynolds numbers (laminar
motions) they obtain significance.

The equation system

∂~v

∂t
+

1

2
~∇~v2 − 2~v × ~ω = ~q (13.9)

∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q (13.10)

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
(13.11)

with

~v = ~ω ×
~b

b2 , ~a = ~v × ~ω, ~∇× ~v ⊥ ~v (13.12)

is not complete and as the Navier-Stokes-equations as momentum balance are refuted,
the usual energy equation, derived from Navier-Stokes-equations and equation of
continuity, is rejected, too. So the customarily for completion used energy equation,
equation of continuity and state equation can not fill this gap.

There is the possibility observing the evolution of the velocity field not only by mass
transport via the equations (13.9), (13.10) and (13.11) but via the progress of their
fluctuation quantities ∂~v

∂t
and ~∇× ~v, too. Assuming the equation system (12.25)

∂

∂t
~B− ~∇× ~E = 0 (13.13)

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0 (13.14)

~E×
~B

B2
= propagationspeed (13.15)

with

|~E×
~B

B2
| ≤ |~E| · |

~B

B2
|
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and
~E =

∂~v

∂t
and ~B = ~∇× ~v, as well as~F =

B2

E2
· ~E,

one obtains the further equation

∂

∂t
~F + 2 ~∇× ~ω = 0 . (13.16)

Equation 13.13 with ~B = ~∇× ~v = 2~ω results in

∂

∂t
2~ω− ~∇× ∂~v

∂t
= 0.

It corresponds to (13.10) on account of

~∇× ∂~v

∂t
= 2 ·

(
~∇× ~a +

1

2
~∇× ~q

)
= 2 · ∂

~ω

∂t

with

~v = ~ω ×
~b

b2
,

~a = ~v × ~ω,

~v ⊥ ~∇× ~v

~E =
∂~v

∂t
~E = 4ω2~F

−1
.

The invers vector respectively the scalar product means ~F
−1

= ~F/~F
2

=⇒ ~F
−1
·~F = 1.

This corresponds to the relation of a curvature vector ~b and its associated radius
vector ~r of a continuously differentiable trajectory in one point (~x, t) with ~b ·~r = 1.

The motion of a turbulence field is characterised by a vortex field ~ω(~x, t) and a
curvature vector field2 ~b(~x, t).

2Generally, one meets in physics curvature tensor fields at least of 2nd degree as in deformation
theory or General Relativity.
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So one obtains the complete equation system

~E +
1

2
~∇~v2 − 2~v × ~ω = ~q

———————————————–
∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F = −2 ~∇× ~ω with ~F =

4ω2

E2
· ~E

. (13.17)

At this a pairwise orthogonality of the vectors (~v, ~ω, ~b) i.e.: ~v ⊥ ~ω , ~v ⊥ ~b , ~b ⊥ ~ω
exists. Pursueing the trajectory of a fluid element beeing possible only after the
calculation of the deterministic turbulence field the trajectory is accompanied by
a frame of ~v, ~ω and ~b except in points where ~ω = 0 and ~b = 0 (turning points).
Nevertheless, in this case ~v 6= 0 has to be otherwise the turbulence has come to an
end.

13.3. Comments on the application of the complete
equation system

On account of the theorem of Cauchy-Kowalewskaja [7] a unique solution is existing.
The equation system may be numerically solved for the fields ~ω, ~b, ~q and ~E = ∂~v

∂t

(this is treated as an independent field as well as ~ω,b und ~q) simultaneously obtaining
the fields ~a and ~v. The special approach of [40] enables 2 times continuously differen-
tiable solutions not meaning analytical results. The order of differentiability may be
principally driven forward. This particularly goes at the expense of the calculation
effort.
Numerically solving this equation system [40] inflexible difference schemes are for-
bidden as beeing usual according to DNS-calculations (Direct Numerical Simula-
tions related to Navier-Stokes-, continuum- and energy equation), as in the above
equation system from the field environment removable singularities of ~v = ~ω × ~b

b2 ,
1
2
~b

[
~ω
ω2 · ~∇ × ~q

]
and (2~ω)2~F

−1
= ∂~v

∂t
in different space-time-points (~x, t) are to be

recognized. This outcome is a result of possible turning points of the fluid element
trajectories leading to simultaneous values of ~ω = 0 and ~b = 0. Die fineness of the
time discretisations is determined by the vortex field ~ω.
The in some turbulence models mentioned space- and time-scaling in this theory is
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led back to the fluctuations of curvature fields ~b and vortex fields ~ω. Quantitative
dependencies become accessible through numerical calculations.
Though friction losses according to heavy turbulent motions (high reynolds numbers)
may be omitted the kinetic energy density may significantly decrease. Thus a part
has to be converted into inner energy of thermodynamics if a local thermodynamic
balance is existent. It is recalled (chapter 3.4), that turbulent fluid motions are char-
acterized the surroundings of fluid elements continuously exchanging their matter and
thus their thermodynamic state quantities, too.
The equation system (13.17) stands out only consisting of motion quantities, i.e. ve-
locities and their temporal and spatial differentiations, a vector curvature field, its
assigned vortex field and an abstract accelleration field ~q. Mass distributions respec-
tively densities and thermodynamic quantities as pressure and inner energy do not
appear. This fact finds its application in the general-relativistic considerations, too.
The density distributions may be calculated by subsequent evaluation via the known
velocity fields and the equation of continuity

∂

∂t
ρ = −~∇ · (ρ~v). (13.18)

The complete turbulence equation system may be solved even if no local thermody-
namics is existent. Then the subsequent evaluation is limited to density calculations.
One obtains the thermodynamic pressure distribution if existent by the subsequently
calculated density field ρ and the accelleration field ~q assuming

(ρ~q)‖ = − ~∇p + ρ~g + (ξ + η
4

3
) ~∇ ( ~∇ · ~v). (13.19)

via Poisson-equation 3 :

∆p = −~∇ · (ρ~q) + ~∇ · ρ~g + ~∇ · (ξ + η
4

3
) ~∇ ( ~∇ · ~v). (13.20)

At high reynolds numbers

∆p = −~∇ · (ρ~q) + ~∇ · ρ~g (13.21)

is certainly sufficient. But it is not obvious, whether (ρ~q)‖ may be represented
this way. Upon positive comparison density- and pressure evolution are determined
without knowledge of a related state equation. Knowing the state equation all
desired thermodynamic state quantities of a single-phase system result. On the other
hand a physical process is to be found to create the used inital conditions.

3The transversal part (ρ~q)⊥ disappears with divergence formation
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The Turbulence depends on an initially assumed motion field(
~ω(~x, t0), ~b(~x, t0),

∂~v

∂t
|t0
)

=⇒ ~q(~x, t0), 4 (13.22)

determining the further course, alone. Evaluating ~q(~x, t0) happens by summation
of the terms in the momentum equation. An interaction of geometrodynamics and
thermodynamics, maybe assumed in accordance with the Navier-Stokes-equations,
does not apply.

13.4. The impossibility of calculating turbulence
fields only knowing ∂~v

∂t (~x, t)

The impression may arise applying turbulence calculations that it is sufficient to use
the equation system

∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

~E×
~B

B2
= propagation speed,

|~E×
~B

B2
| ≤ |~E| · |

~B

B2
|

and
~E =

∂~v

∂t
und ~B = ~∇× ~v, sowie ~F =

B2

E2
· ~E

to determinate the velocity field numerically from the knowledge of ∂~v
∂t
|i by

~v(~x, t)i+1 =
∂~v(~x, t)

∂t
|i∆ti + ~v(~x, t0)i. (13.23)

Usually numerical time-integrations via ∆~v = ∂~v
∂t
·∆t lead in relation to turbulence

calculations firstly to error accumulation for a ~v(~x, t) evaluation (refined methods of
numerical mathematics integrating such vector functions do not help) and secondly
achieve ~∇ × ~v 6⊥ ~v with progressing time evolution. 1st is one reason why weather

4Inserting in equation (13.9)
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forecasts at meteorology are difficult (besides the principally faults of the used
momentum equations). The forcasts are limited to few days. The choice of shorter
time steps does not help. This difficulty does not exist regarding laminar fluid dy-
namics. The reason for this fundamental problem of turbulence is explained as follows:

Solving the equation system (13.17) numerically the pairwise orthogonality of the
vectors ~v, ~ω, ~b (~v ⊥ ~ω , ~v ⊥ ~b , ~b ⊥ ~ω) has to be considered as constraint. For
analytic solutions, which cannot be formulated, these conditions should be fulfilled
by the initial values, alone.
Calculating ~v(~x, t) by ~ω and ~r

~v(~x, t) = ~ω(~x, t)×~r(~x, t) with ~r(~x, t) =
~b(~x, t)

b2

there is a time integration of the velocity field of higher accuracy. It holds

∂~v

∂t
=
∂~ω

∂t
×~r + ~ω× ∂~r

∂t
.

The numerical time evolution of ~vi =⇒ ~vi+1 arises calculating ~vi = ~ωi×~ri by means
of

~ωi+1 =
∂~ω

∂t
|i ·∆ti + ~ωi + ...

and
~ri+1 =

∂~r

∂t
|i ·∆ti +~ri + ...

to
~vi+1 =

(
∂~ω

∂t
|i ·∆ti + ~ωi

)
×
(
∂~r

∂t
|i ·∆ti +~ri

)
+ ...

i.e.

~vi+1 =

(
~ωi×~ri

)
+

(
∂~ω

∂t
|i ·∆ti×~ri+~ωi×

∂~r

∂t
|i ·∆ti

)
+

(
∂~ω

∂t
|i ·∆ti×

∂~r

∂t
|i ·∆ti

)
+ ...

respectively

~vi+1 = ~vi +
∂~v

∂t
|i ·∆ti +

(
∂~ω

∂t
|i×

∂~r

∂t
|i
)
· (∆ti)2+... (13.24)

∂~r
∂t

is derived as follows:
~b = ~r · (~b · ~b) (13.25)
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=⇒
∂~b

∂t
= b2∂~r

∂t
+ 2~r

(
∂~b

∂t
· ~b
)

=⇒
∂~r

∂t
=

[
∂~b

∂t
− 2

~b

b2

(
∂~b

∂t
· ~b
)]
/b2.

In particular space-time points (~x, t) fluid elements may be in the proximity or
direct in a turning point, in which ~ω(~x, t) = 0 as well as ~b(~x, t) = 0 and such
~r(~x, t) = ~b/b2 =∞ holds. So the temporal evolution term of 2nd order is vital for
turbulence calculations. That is why the with (13.23) mentioned velocity integration
is not expedient. Considering the complete turbulence equation set the temporal
velocity integration automatically results in the desired order.

The described link leads to the fact, too: Navier-Stokes equations cannot de-
scribe turbulent fluiddynamics.

13.5. Summary

With the installation of the equation system (13.17) a geometrodynamics of turbu-
lence is expressed only obtaining motion quantities i.e. it only consists of velocities
and their time and space derivatives. A corresponding statement is made for their
initial- and boundary conditions. Special material properties of a fluid may only in-
fluence solutions via initial- and boundary conditions. Therefore it may be important
to formulate the suitable process of the genesis of such conditions.
In the case of fluid turbulence there is no requirement for establishing
chaos theories!

13.6. Appendix A: The basic equations of laminar
fluid-dynamics

In the following, the known and established fundamental equations of laminar fluid-
dynamics are derived and presented.
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13.6.1. The equation of continuity

Beeing ρ = ρ(~x, t) the mass density and ~v = ~v(~x, t) the velocity of the fluid elements
the mass density passing through the surface of a volume per unit time is∮

ρ ·~v · d~f .

On the other hand this corresponds to the mass density decrease of the volume per
time of

− ∂

∂t

∫
V

ρ · dV.

So one obtains
∂

∂t

∫
V

ρ · dV = −
∮
ρ ·~v · d~f .

Using Green’s formula ∮
ρ ·~v · d~f =

∫
V

~∇ · (ρ ·~v) · dV

there is ∫
V

(
∂

∂t
ρ+ ~∇ · (ρ ·~v) · dV

)
= 0

respectively
∂

∂t
ρ+ ~∇ · (ρ ·~v) = 0 . (13.26)

Originating from a constant density ρ = const one obtains

~∇ ·~v = 0. (13.27)

That means, a divergence-free velocity field is the necessary condition of a constant
mass-distribution, but this condition is not sufficient! The equation of continuity
proves to be the only correct conservation equation of the three fundamental fluid-
dynamics equations: equation of continuity, Navier-Stokes-equations and energy equa-
tion. The structure of this equation of continuity may be the formal standard for the
categorisation of scalar conservation quantities at least in continuum physics. In the
following it is shown, that this can not be achieved for the energy equation.

13.6.2. The Navier-Stokes-equations

Considering the influence of viscose friction one usually [25] takes as its starting
point the momentum density conservation. Expediently, the Ricci Calculus is used as
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formulation. ~g means an additional accelleration field, such as the earth acceleration.
These equations finding their empirical confirmation in the laminar or stationary case
are based directly on

ρ ·
(
∂vi
∂t

+ vk ·
∂vi
∂xk

)
= − ∂

∂xk
(pδik − σik) + ρ · gi. (13.28)

The stress tensorσik must consist of a symmetrical tensor whose trace vanishes in the
situation ~v = ~ω×~r with ~ω 6= 0 plus a diagonal tensor. Such a linear composition of
the tensors

∂vi
∂xk

+
∂vk
∂xi

and δik
∂vl
∂xl

(13.29)

is needed with coefficients determined experimentally [25]. σik is the most general
tensor of linear, spatial velocity derivations of 1st order within these conditions:

σik = η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

)
+ ξδik

∂vl
∂xl

. (13.30)

The coefficients η und ξ not essentially changing in the fluid one obtains

∂

∂xk
σik = η

(
∂2vi
∂x2

k

+
∂

∂xi

∂vk
∂xk
− 2

3

∂

∂xi

∂vl
∂xl

)
+ ξ

∂

∂xi

∂vl
∂xl

= η
∂2vi
∂x2

k

+ (ξ +
1

3
η)

∂

∂xi

∂vl
∂xl

.

(13.31)

Because of
3∑

k=1

∂2vi
∂x2

k

= ∆vi (13.32)

and
3∑
l=1

∂vl
∂xl

= ~∇ · ~v (13.33)

the known Navier-Stokes equations

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p+~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v) (13.34)
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are finally achieved with ν = η
ρ
and ζ = ξ

ρ
. This demonstrates the coefficients ν

and ζ not beeing constant coefficients at heavy density fluctuations. On the other
hand the question arises, if the the coefficients η und ξ may be seen as essentialy
constant (prudently not!). Whereby the above derivation of the viscose terms of the
Navier-Stokes-equations for turbulence problems of sufficiently high reynolds numbers
appears dubious. On the other side, numerical examinations [40] show that the viscous
friction in case of heavy turbulence problems is irrelevant. The known considerations
of similarity by the Reynolds law of similarity do not have a sufficient sustainability.

13.6.3. The equation of energy

With the energy-equation of laminar hydrodynamics (not the hydrodynamics of tur-
bulent motion) the kinetic energy of the fluid and its inner thermodynamic ernergy
density are balanced. The derivation essentially follows the presentation of [27]. Here
non adiabatic fluid motions and the friction viscosity are additionally considered. It
is

esum = ekin + ein (13.35)

defined with

∂

∂t
esum = −~∇ · (~v(esum + p)) + ρ ·~v ·

(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

)
+ ~∇λ~∇T .

(13.36)
In the following this connection is derived. Heat radiation is ignored significantly
arising above 500◦C. The following specifications are made:
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Symbol Physical Quantity
ekin = ρ

2
v2 kinetic energy density

ε spec. inner energy
ein = ρε inner energy density
esum = ekin + ein sum of kinetic energy

density and inner en-
ergy density

h = ε+ p
ρ

spec. enthalpy
ρh enthalpy density
s spec. entropy
ρs entropy density
p pressure
T temperature
ρ density
Q spec. heat
λ heat conduction coef-

ficient
~g external mass acceller-

ation field

Eamined is:
∂

∂t
esum =

∂

∂t

(
ρ

2
v2

)
+
∂

∂t
(ρε) (13.37)

First ∂
∂t

(
ρ
2
v2

)
:

∂

∂t

(
ρ

2
v2

)
=
v2

2

∂

∂t
ρ+ ρ~v · ∂

∂t
~v (13.38)

∂

∂t
ρ = −~∇ · (ρ~v) equation of continuity (13.39)

Navier-Stokes-equations:

∂~v

∂t
= −(~v · ~∇)~v− 1

ρ
~∇ p+

(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

)
=⇒ (13.40)

∂

∂t

(
ρ

2
v2

)
= −v

2

2
~∇·(ρ~v)−ρ~v·(~v· ~∇)~v−~v· ~∇p+ρ~v·

(
~g+ν∆~v+(ζ+

ν

3
) ~∇ ( ~∇·~v)

)
(13.41)
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ρ~v · (~v · ~∇)~v = ρ~v ·
[

1

2
~∇v2− ~v × ~∇× ~v

]
=

1

2
ρ~v · ~∇v2 on account of ~v · ~v × ~∇× ~v = 0

(13.42)

dh = Tds+
1

ρ
dp from thermodynamics (13.43)

~∇p = ρ~∇h− ρT ~∇s (13.44)

~∇ · (ρ~v · v
2

2
) =

v2

2
~∇ · (ρ~v) + ρ~v · 1

2
~∇v2 (13.45)

∂

∂t

(
ρ

2
v2

)
=

−~∇ · (ρ~v · v
2

2
)− ρ~v · [~∇h− T ~∇s] + ρ~v ·

(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

) (13.46)

Now ∂
∂t

(ρε) :

∂

∂t
(ρε) = ε · ∂ρ

∂t
+ ρ

∂ε

∂t
(13.47)

on account of

dε =Tds+
p

ρ2
dρ from thermodynamics and

∂

∂t
ρ =− ~∇ · (ρ~v) equation of continuity

∂

∂t
(ρε) = h · ∂ρ

∂t
+ ρT

∂s

∂t
. (13.48)

Adiabatic transport means

ds

dt
=
∂s

∂t
+~v · ~∇s = 0 (13.49)
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Considering non adiabatic transport heat is withdrawn from the Fluid by heat con-
duction. I.e.

ρT
ds

dt
= ρT

∂s

∂t
+ ρT~v · ~∇s = ~∇ · λ~∇T (13.50)

∂s

∂t
= −~v · ~∇s+

1

ρT
~∇ · λ~∇T (13.51)

∂

∂t
(ρε) = −h · ~∇ · (ρ~v)− ρT~v · ~∇s+ ~∇ · λ~∇T (13.52)

On account of

∂

∂t

(
ρ

2
v2

)
=− ~∇ · (ρ~v · v

2

2
)− ρ~v · [~∇h− T ~∇s]

+ ρ~v ·
(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

)
∂

∂t

(
ρ

2
v2 + ρε

)
=− ~∇ · (ρ~v · v

2

2
)− h · ~∇ · (ρ~v)− ρ~v · ~∇h

+ ρ~v ·
(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

)
+ ~∇ · λ~∇T .

(13.53)

follows. Respectively

~∇ · (ρ~vh) = h · ~∇ · (ρ~v) + ρ~v · ~∇h (13.54)

follows

∂

∂t

(
ρ

2
v2 + ρε

)
=− ~∇ · (ρ~v · v

2

2
)− ~∇ · (ρ~vh)

+ ρ~v ·
(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

)
+ ~∇ · λ~∇T

(13.55)

and

∂

∂t

(
ρ

2
v2+ρε

)
= −~∇·ρ~v·(v

2

2
+h)+ρ~v·

(
~g+ν∆~v+(ζ+

ν

3
) ~∇ ( ~∇·~v)

)
+~∇ · λ~∇T

(13.56)

and finally

∂

∂t
esum = −~∇ · (~v(esum + p)) + ρ ·~v ·

(
~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

)
+ ~∇λ~∇T .

(13.57)
Even without external field ~g and without consideration of heat conduction there
is no equation of conservation for the sum of kinetic and inner energy density esum!
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I.e. esum is not a conservation quantity. Energy is lost by fluid motions against non
conservative local forces. A potential representing the seemingly lost energy density
does not exist! But this is neccessary to formulate a real conservation equation. Non
conservative accelleration fields do not permit energy-density conservation. Apart
from this the energy in a point (~x, t) is zero in pure field theories, anyway.

∂

∂t
esum + ~∇ · (esum~v) 6= 0 (13.58)

A conservation of the sum of kinetic and inner energy density had to be represented
by a suitable equation of continuity. In many cases the energy equation is described
in sufficient approximation by

∂

∂t
esum = −~∇ · (~v(esum + p)). (13.59)

Generally, heat conduction can usually be neglected contrary to the energy convection
(adiabatic convection), unless the velocities are small enough.
(Example: thermics in the atmosphere)

13.7. Appendix B

13.7.1. The Helmholtz-decomposition-theorem

It is shown, that every continuously differentiable vector field may be uniquely disas-
sembled in a longitudinal and a transversal part, i.e.

~q(~x) = ~∇Φ(~x) + ~∇× ~A(~x) = ~q(~x)‖ + ~q(~x)⊥. (13.60)

Proof:

Without loss of generality

~q(~x) =

∫
V

~q(~x′)δ(~x,~x′)dV ′

=

∫
V

~q(~x′)∆G(~x,~x′)dV ′ with the Green function G, ∆G = δ(~x,~x′)

=∆

∫
V

~q(~x′)G(~x,~x′)dV ′ ∆ only differentiated by the unslashed ~x.

(13.61)

can be written. Because of
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∆~Q = ~∇(~∇ · ~Q)− ~∇× (~∇× ~Q) (13.62)

follows

~q(~x) = ~∇
(
~∇ ·
∫
V

~q(~x′)G(~x,~x′)dV ′
)
− ~∇×

(
~∇×

∫
V

~q(~x′)G(~x,~x′)dV ′
)
. (13.63)

and

~q(~x) = ~∇
(∫

V

~q(~x′)~∇ ·G(~x,~x′)dV ′
)

+ ~∇×
(∫

V

~q(~x′)× ~∇G(~x,~x′)dV ′
)
. (13.64)

As5
~∇G(~x,~x′) = −~∇′G(~x,~x′) (13.65)

follows

~q(~x) = −~∇
(∫

V

~q(~x′)· ~∇′G(~x,~x′)dV ′
)
− ~∇×

(∫
V

~q(~x′)× ~∇′G(~x,~x′)dV ′
)
. (13.66)

So it results in the longitudinal part

~q‖(~x) = −~∇
(∫

V

~q(~x′) · ~∇′G(~x,~x′)dV ′
)

(13.67)

and the transversal part

~q⊥(~x) = −~∇×
(∫

V

~q(~x′)× ~∇′G(~x,~x′)dV ′
)

(13.68)

respectively

Φ(~x) = −
∫
V

~q(~x′) · ~∇′G(~x,~x′)dV ′ (13.69)

and the vector potential

5respectively G(~x,~x′) = − 1
4π

1
|~x−~x′|
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~A(~x) = −
∫
V

~q(~x′)× ~∇′G(~x,~x′)dV ′. (13.70)
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Relativistic fluctuations
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14. Introduction

In this part results of the turbulence theory are used finding evolution equations
for General Relativity. This possibility decisively follows from the fact that the
background of the above fluctuations are specially assigned geometrodynamics.
Establishing the Einstein Equations suitable evolution equations are not yet found.
Solutions are only known for special cases. To solve these equations further
constraints must be introduced. The complexity of this difficulty is marked by
Mathias Blau[1] with “tremendously complicated set of equations, and trying to learn
and say something about general properties of solutions to these equations is very
challenging“. Moreover, it is basically cloudy how to calculate turbulent cosmological
motions, which can not even be defined in the nonrelativistical case.

The Einstein Equations are

Rµν −
1

2
gµνR = 8π ·GNTµν . (14.1)

Both sides of these equations vanishing after using the divergence operator for Einstein
was an essential criterion deriving his equations. The left side of the equations only
obtains geometrical quantities of Space-Time: metric tensor gµν , Ricci Curvature
Tensor Rµν and the Ricci Scalar R. The right side of the equations obtains besides
a constant the energy momentum tensor Tµν , only. This one is described in relevant
literature for an ideal fluid by the tensor[37]

Tµν = pgµν + (ρ+ p/c2)vµ · vν (14.2)

assuming that the present fluctuation of Space-Time makes no contribution. This
assumption does not present a problem as long as the observed curvatures are only
considered in connection with sufficiently weak fluctuations.

The known energy-, momentum- and continuum equations for an ideal fluid with
laminar flow arise after operating the divergence on the above tensor. For turbulent
fluctuations no Lagrangian is existent. In this case an energy momentum tensor
can not be formulated. The questionable existence of this tensor presents a relevant
problem for the evaluation of the Einstein Equations as Stephen Hawking noted [22]
page 64:
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“ The conditions ... do not tell one how to construct the energy-momentum tensor
for a given set of fields, or whether it is unique. In practice one relies heavily on
one’s intuitive knowledge of what energy and momentum are. However, there is a
definite and unique formula for the energy-momentum tensor in the case that the
equations of the fields can be derived from a Lagrangian.“

By the unification of gravitational and electromagnetic fluctuations found in this trea-
tise it is shown that at first an energy momentum tensor is assigned to gravitational
waves and secondly an even greater importance belongs to the Einstein-Equations.
On the other hand the current formulation of the linearised equation of gravitational
waves is questioned.

The above derived turbulence theory is at first pure geometrodynamics of a contin-
uum uniquely related to turbulently moved matter and secondly, avoiding physical
assumptions, exact with this in mind. Its physical evaluation using the equation
of continuity leads to a smeared matter distribution. The structure of turbulent
geometrodynamics is in essence characterised by two communicating vector fields,
a vortex field and an accompanying vector curvature field. There is a further
geometrodynamics of the continuum, based on fluctuations of deformation vector
fields. This geometrodynamics is described by quasilinear, generalized Maxwell
Equations.
Both concepts of geometrodynamics in Euclidian space may be used for the instal-
lation of evolution equations of General Relativity, as they do not explicitly contain
matter but only motion quantities or their derivatives without using the Einstein
Equations. The motion quantities are mapped into the observation space. The
Einstein Space may be devided into a spatial part with the signature (+,+,+)
and a temporal part with a sinature (−). The spatial part corresponds to a
3-dimensional Riemannian space, called Riemannian hypersurface S. This may be
seen as a deformation of a suitable observation space B or coordinate space. This
flat observation space is abstractly to be seen, as an actual human observer lives in
an at least slightly curved space. The physics considered from such an observation
space allows comparatively simple mathematical formulations.

Such considerations lead at first to evolution equations of turbulently moved
matter by mapping the motion quatities into the observation space and secondly
to gravitational waves from a new perspective interpreting the mapping from the
observation space into the hypersurface as deformation. The constant propagation
speed according deformation fluctuations in chapter 12 led to the linear Maxwell
Equations.
That is why a unification of the Maxwell Field and the gravitational field is only
a small step in mind. The Einstein Equations prove to be more than the key
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14. Introduction

Figure 14.1.: hypersurfaces Si

equations of the macroscopic Space-Time and may be fundamental equations of the
micro-world with natural causality. So the possibility of quantizing the gravitational
field in the sense of quantum electrodnamics seems to be plausible. This possibility
is not used in this treatise.
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15. Evolution of matter
distributions by cosmological
turbulences

The Einstein Equations of General Relativity consist of 10 non linear coupled
equations for a 4-dimensional space. Studying systems of astrophysical relevance
determined by strong and dynamical gravitational fields analytical solutions appear
excluded on one side and known numerical methods prove to be extremely laborious
and complicated on the other side.

The equation system (13.17) succeeds in a drastic facilitation considering cosmological
turbulent motions.

∂~v

∂t
+

1

2
~∇~v2 − 2~v × ~ω = ~q

————————————————————————————————-
∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F + 2 ~∇× (~ω) = 0

with ~v = ~ω ×
~b

b2
, ~a = ~v × ~ω, ~∇× ~v ⊥ ~v,

∂~v

∂t
= ~E, (2~ω)2~F

−1
=

(
∂~v

∂t

)

This is enabled by the fact that the equation system consists of motion quantities
,only, that means velocities and their derivations (no masses or mass densities, an
equation system of pure geometrodynamics). It describes turbulent geometrodynam-
ics in a 3+1-dimensional Euclidian observation space. The motion quantities may
be understood as images of mappings from the hypersurface of the Einstein Space
into the Euclidian Space (the inverse of the mapping from Euclidian Space into a
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15. Evolution of matter distributions by cosmological turbulences

Riemannian space). The accelleration ~q in the Riemannian hypersurface is seen as
the result of the Ricci Curvature of the enfolding Einstein Space. ~v(~x, t0) and ∂~v

∂t
|t0

are used as initial values at time t0. Out of this happen ~b(~x, t0), ~ω(~x, t0) and ~q(~x, t0)
as initial fields related to a unique solution of the suitable Cauchy problem.
From the determined initial conditions(

~v(~x, t0),
∂~v

∂t
|t0
)
−→ ~q(~x, t0)

~v(~x, t0) −→
(
~ω(~x, t0), ~b(~x, t0)

) (15.1)

the evolution of the vector fields:(
~v(~x, t), ~ω(~x, t), ~b(~x, t), ~q(~x, t)

)
(15.2)

uniquely result. The equation system (13.17) describes the turbulent matter fluctu-
ations in Space-Time mapped into an observer space. The motion quantities in the
observer space are uniquely assigned to the matter motions in the Einstein Space.

With the equation system of turbulent geometrodynamics suitable evolution equa-
tions of General Relativity are gained. The smeared density distribution may be
obtained using the equation of continuity

∂

∂t
ρ = −~∇ · (ρ~v). (15.3)

The numerical methods solving this equation system are constituted in [40]. Thereby,
section 13.2 describes a complete evolution system of General Relativity without
using the Einstein Equations and without having to formulate the energy momentum
tensor Tµν for turbulent motions. 1 The precision of the numerical calculations
primarily depends on the quality of the used initial fields.

Regardless of matter fluctuations the geometrodynamics of space fluctuations
is considered. The 4-dimensional geometry of Space-Time is equivalent to the
3-dimensional geometrodynamics of Space. This may be calculated decoupled from
the corresponding matter fluctuations if their sources do not need to be considered
and so as long as the motion quantities are not influenced by processes interfering
the continuous differentiability. In the next chapter the evolution equations of
Space-Time and such the geometrodynamics of the Riemannian hypersurface are
formulated leading to a new perspective of gravitational waves.

1Without the discussed turbulence theory this does not appear to be feasible, too.
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16. Space-Time-fluctuations in
General Relativity

Rµν = 8π ·GN

(
Tµν −

1

2
gµνT

)

16.1. Introduction

Electrodynamics with its Maxwell Equations is the only field theory of classical
physics students of physics are generally faced with in the frame of theoretical physics
(at least in Germany). The Maxwell Equations above are shown formally beeing
a limiting case of classical continuum physics. Because of the constant velocity
of light they were the reason for setting up the Einsteinian Special Relativity.
The adjustment of the electrodynamic field to Space-Time caused many physicists
including Albert Einstein to try an identification of these fields with Space-Time
fluctuations. Obviously, electromagnetic fluctuations are properties of Space-Time
itself, though a prove is missing.

In chapter 12 continuum fluctuations of general vector fields are discussed. Now we
consider deformation vector fields ~d(~x, t) with ~∇×~d 6= 0. They are sufficiently often
continuously differentiable. Defining ~e und ~b by

~e = ∂~d/∂t 6= 0

~b = ~∇× ~d 6= 0
(16.1)

and interchanging the sequence of the operators ∂/∂t and ~∇×

∂~b

∂t
= ~∇× ~e (16.2)

directly follows. So this equation is a necessary consequence of the continuous dif-
ferentiability of ~d(~x, t). The hereto dual equation is found according to chapter 12
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16. Space-Time-fluctuations in General Relativity

with

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed

(16.3)

Assuming the constant speed of light the Maxwell Equations of vacuum1are ob-
tained:

∂

∂t
~b− ~∇× ~e = 0

1

c2

∂

∂t
~e + ~∇× ~b = 0

~e×
~b

b2
= ~c = propagation speed of light.

(16.4)

16.2. Space-Time of General Relativity and its
Riemannian hypersurface

First, the Riemannian hypersurface of Space-Time is considered as deformation of
an Euclidian space. For a precise mathematical definition of the Riemannian space
[33] is noted.

The Riemannian space is generally defined by a manifold, which consists of a
point set, charts or coordinate systems and a symmetrical metric tensor field.
Riemannian space and a suitable Euclidian space are one to one linked by the
coordinate system. The according mapping is in mathematics not explicitly used as
all considerations are abstractly concerned with the connections of the Riemannian
space itself not interesting what kind of picture succeeds in the observational
coordinate space. The metric tensor arises in the point P (~x)∈M with ~x∈E
(Euclidian space) by scalar products of the tangential vectors ~gi.

gij(P (~x)) = ~gi(P (~x)) · ~gj(P (~x)) (16.5)

By free choice of the coordinate system gij(P (~x)) may be determined in one point
(P (~x)). But this does not simultaneously hold for the neighborhood of this point.

1The Maxwell Equations are usually presented by ~e→−~e
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16. Space-Time-fluctuations in General Relativity

The isomorphic mapping from Euclidian space into the Riemannian hypersurface is
brought to physical life when interpreted as deformation of the Euclidian space, both
spaces, Euclidian and Riemannian space, tangentially merging in one point. Here the
deformation vector field ~d = ~d(~x, t) vanishes. These time dependent mappings can
be interpreted as gravitational waves. The Riemannian hypersurface arises from

~y(~x, t) = ~d(~x, t) + ~x . (16.6)

The gradient on the deformed field is described by

~∇~y =

(
∂iyj

)
(16.7)

and detailed

(
∂iyj

)
=

 ∂1y1 ∂1y2 ∂1y3

∂2y1 ∂2y2 ∂2y3

∂3y1 ∂3y2 ∂3y3

 i, j = 1, 2, 3. (16.8)

Defining the spatially tangential vector ~ti with

~ti = ∂i~y = (∂iy1,∂iy2,∂iy3) , (16.9)

one obtains the spatial metric tensor tij = ~ti ·~tj by

(
tij

)
=

(
∂iyj

)
·
(
∂iyj

)T
(16.10)

and

tij = ∂iy1 · ∂jy1 + ∂iy2 · ∂jy2 + ∂iy3 · ∂jy3 (16.11)

as part of the metric tensors of Space-Time

(
gνµ

)
=

(
gµν

)
=


g00 g01 g02 g03

g10 t11 t12 t13

g20 t21 t22 t23

g30 t31 t32 t33

 µ, ν = 0, 1, 2, 3 . (16.12)
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16. Space-Time-fluctuations in General Relativity

The metric-tensor elements tij of the spatial hypersurface are components of the
metric-tensor element set gµν of Space-Time. The corresponding statement does not
hold for the Ricci Curvature Tensor. The Ricci Tensor elements rij of the Riemannian
hypersurface as subspace of Space-Time are not part of the Ricci Tensor element set
Rµν of the overall space.

(
Rνµ

)
=

(
Rµν

)
=


R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

 6=


R00 R01 R02 R03

R10 r11 r12 r13

R20 r21 r22 r23

R30 r31 r32 r33


(16.13)

i.e. rij 6= Rij i, j = 1, 2, 3

Initially, it is the plan to express the Ricci Tensor of Space Time by the Ricci Tensor
of the spatial hypersurface and its time dependent metric tensor

Rij = Rij(rij, tij) i, j = 1, 2, 3. (16.14)

Formulating the energy momentum tensor of the right side of the Einstein equations

Rµν −
1

2
gµνR = 8π ·GNTµν µ, ν = 0, 1, 2, 3

by the related deformation fluctuations using its electromagnetic interpretation the
unification of gravitational and electromagnetic field is outlined in the following chap-
ter.

Originating from the Einstein equations

Rµν −
1

2
gµνR = 8π ·GNTµν (16.15)

one obtains by contraction

trace

(
Rµν −

1

2
gµνR

)
= gµµ

(
Rµµ −

1

2
gµµR

)
= −R = 8π ·GNTµ

µ = 8π ·GNT

(16.16)
an alternative form of the Einstein Equations

Rµν = 8π ·GN

(
Tµν −

1

2
gµνT

)
. (16.17)
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16. Space-Time-fluctuations in General Relativity

16.3. The Ricci Tensor in the origin of a local
inertial-system

The Riemannian curvature tensor Rµ
.ναβ is described in any coordinate system by the

Christoffel symbols

Γµνα =

{
µ
ν α

}
=

1

2
gµλ
[
∂νgαλ + ∂αgλν − ∂λgνα

]
(16.18)

Rµ
.ναβ =

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
+ Γµ

ραΓ
ρ
νβ − Γµ

ρβΓ
ρ
να. (16.19)

In the origin ~x0 of a local inertial system [1] the partial derivatives with respect to
coordinates of the metric tensor gλν vanish such that

Γµνα( ~x0) = 0 (16.20)

and

Rµ
.ναβ( ~x0) =

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
. (16.21)

In the origin of the coordinate system the metric tensor itself equals the Minkowski
tensor.

gµν( ~x0) = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (16.22)

Written out one obtains

Rµ
.ναβ( ~x0) =

1

2
ηµλ

∂

∂xα

[
∂νgβλ + ∂βgλν− ∂λgνβ

]
− 1

2
ηµλ

∂

∂xβ

[
∂νgαλ + ∂αgλν− ∂λgνα

]
(16.23)

=⇒

Rµ
.ναβ( ~x0) =

1

2
ηµλ
[
∂α∂νgβλ+∂α∂βgλν−∂α∂λgνβ

]
− 1

2
ηµλ
[
∂β∂νgαλ+∂β∂αgλν−∂β∂λgνα

]
(16.24)
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=⇒

Rµ
.ναβ( ~x0) =

1

2
ηµλ
[
∂α∂νgβλ + ∂β∂λgνα− ∂α∂λgνβ − ∂β∂νgαλ

]
(16.25)

=⇒

Rµναβ( ~x0) =
1

2

[
∂α∂νgβλ + ∂β∂λgνα− ∂α∂λgνβ − ∂β∂νgαλ

]
. (16.26)

After contraction there is the associated Ricci Tensor

Rµν( ~x0) =
1

2

[
∂µ∂αg

α
ν + ∂ν∂

αgµα− ∂α∂
αgµν − ∂ν∂µg

α
α

]
(16.27)

and as ∂α∂α = � means the D’Alembert-Operator =⇒

Rµν( ~x0) =
1

2

[
∂µ∂αg

α
ν + ∂ν∂αg

α
µ −�gµν − ∂ν∂µg

]
. (16.28)

This result may be obtained by linearization of the Riemannian curvature tensor,
too. Choosing point ( ~x0) as the origin of a local inertial system, linearization is not
necessary.

16.4. The Ricci Tensor of the Einstein Space in
dependence of temporal fluctuations of its
Riemannian hypersurface

The following relations correspond to [26] Landau Lifschitz volume 2 page.308-309.
A time orthogonal coordinate system is always possible. In contrary to [26], we do
not equate the velocity of light with 1.

Def: κij =
∂gij

∂(ct)
(16.29)

rij means the Ricci Tensor of the Riemannian hypersurface.
=⇒
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R00 =− 1

2

∂κii
∂(ct)

− 1

4
κjiκ

i
j

R0i =
1

2

(
κji;j − κjj;i

)
Rij =rij +

1

2

∂κij
∂(ct)

+
1

4

(
κijκkk − 2κki κjk

) (16.30)

i, j, k pass through 1, 2, 3. ”;” means partial derivation, here.

Thus the geometry of Space-Time may be opened up from geometrodynamics of
space. Gravitational waves existing the energy momentum tensor Tµν 6= 0 is given
in the considered Space-Time area even if there is no matter. 2

2in contrary to Penrose [34] page 467 “The energy-momentum tensor in empty space is zero.“
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17. Unification of Maxwell Field
and gravitational field

Figure 17.1.: Maybe, Einstein would have had fun at this theory

17.1. Gravitational waves corresponding to
electromagnetic Fluctuations

The deformation fluctuations of space and its as electromagnetic fluctuations noticed
phenomena are subsequently faced to each other in a limited volume area as fourier
developments . The considerations are performed based on treatments of natural
vibrations of the electomagnetic field in vacuum in accordance to [26]. The usual
electric field ~E is replaced by −~E, without loss of generality. An explicit dependency
of the viewed overall volume in the canonical variables and such in the resulting
energy density and the electromagnetic fields is avoided by modified normalisation
of the canonical variables, in contrast to [26].
In pure field theories energy densities and accellerations should occur as primary
quantities not energies and forces. The energy in one point (~x, t) is always zero but
not the energy density. Analogically, the same is true for the relation of accelleration
and force.
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17. Unification of Maxwell Field and gravitational field

deformation fluctuations electromagnetic fluctuations

From
~d = deformation vectorfield ~A = vector potential
∂
∂t
~b− ~∇× ~e = 0 ∂

∂t
~B− ~∇× ~E = 0

1
c2

∂
∂t
~e + ~∇× ~b = 0 1

c2
∂
∂t
~E + ~∇× ~B = 0

and

~e = ∂~d/∂t 6= 0 ~E = ∂ ~A/∂t 6= 0
~b = ~∇× ~d 6= 0 ~B = ~∇× ~A 6= 0

one obtains

1
c2

∂2~d
∂t2

= ∆~d 1
c2

∂2 ~A
∂t2

= ∆~A

Deformation field and according vector potential field are formally described by

~d =
∑

~k
~d~k =

∑
~k ~a~ke

i~k~r + ~a∗~ke
−i~k~r ~A =

∑
~k
~A~k =

∑
~k
~A~ke

i~k~r + ~A
∗
~ke
−i~k~r

and it follows

~̈d~k + c2k2~d~k = 0 ~̈A~k + c2k2~A~k = 0

with

~e = ~̇d =
∑
~k
~̇d~k =

∑
~k

(
~̇a~ke

i~k~r + ~̇a∗~ke
−i~k~r

)
~E = ~̇A =

∑
~k
~̇A~k =

∑
~k

(
~̇A~ke

i~k~r + ~̇A
∗
~ke
−i~k~r

)

and

~b = −i
∑

~k
~k×

(
~a~ke

i~k~r + ~a∗~ke
−i~k~r

)
~B = −i

∑
~k
~k×

(
~A~ke

i~k~r + ~A
∗
~ke
−i~k~r

)
k1 = 2π·nx

Lx
, k2 = 2π·ny

Ly
, k3 = 2π·nz

Lz
;

~k = (k1,k2,k3)

aki ∼ e−iωki
t, ωki = cki A ~ki

∼ e−iωki
t, ωki = cki

The wave vectors are calculated in a sufficiently great volume V = Lx ·Ly ·Lz.
E = 1

8π

∫
V0

(E2/c2 +B2)dV means the energy of the field in volume V0.

The energy density of the field is E = 1
8π

∑
~k(E2

~k
/c2 +B2

~k
)
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deformation fluctuations electromagnetic fluctuations

Now, the following vectorial quantities (canonical variables) are defined:

~q~k =
√

1
4πc2

(~a~k + ~a∗~k) ~Q~k =
√

1
4πc2

(~A~k + ~A∗~k)

~p~k = −iω~k
√

1
4πc2

(~a~k− ~a∗~k) = ~̇q~k
~P~k = −iω~k

√
1

4πc2
(~A~k− ~A∗~k) =

.

~Q~k

~qki ∼ cos(ωkit), ~pki ∼ sin(ωkit)
~Qki ∼ cos(ωkit),

~P ki ∼ sin(ωkit)

Obviously, they are real and resolved according to complex quantities they give

~akj
= i

kj

√
π(~pkj

− iω ~kj
~qkj

) ~Akj
= i

kj

√
π(~Pkj

− iωkj
~Qkj

)

~a∗kj
= − i

kj

√
π(~pkj

+ iωkj
~qkj

) ~A∗kj
= − i

kj

√
π(~Pkj

+ iωkj
~Qkj

).

Thus one obtains as expansion by characteristic vibrations (in concise presentation):

~d =
√

4π
∑
~k

1
k

(
ck~q~kcos(

~k ·~r)− ~p~ksin(~k ·~r)
)

~A =
√

4π
∑
~k

1
k

(
ck~Q~k

cos(~k ·~r)− ~P~ksin(~k ·~r)
)

~e =
√

4π
∑
~k
c
(
ck~q~ksin(~k ·~r) + ~p~kcos(

~k ·~r)
)

~E =
√

4π
∑
~k
c
(
ck~Q~k

sin(~k ·~r) + ~P~kcos(
~k ·~r)

)
~b = −

√
4π
∑
~k

1
k
~k× [ck~q~ksin(~k ·~r) + ~p~kcos(

~k ·~r)] ~B = −
√

4π
∑
~k

1
k
~k× [ck~Q~k

sin(~k ·~r) + ~P~kcos(
~k ·~r)]

respectively noted for the single modes:

~dkj =
√

4π 1
kj

(
ckj~qkj

cos( ~kj ·~r)− ~pkj
sin( ~kj ·~r)

)
~Akj =

√
4π 1

kj

(
ckj ~Qkj

cos( ~kj ·~r)− ~Pkj
sin( ~kj ·~r)

)
~ekj =

√
4πc

(
ckj~qkj

sin( ~kj ·~r) + ~pkj
cos( ~kj ·~r)

)
~Ekj =

√
4πc

(
ckj ~Qkj

sin( ~kj ·~r) + ~Pkj
cos( ~kj ·~r)

)
~bkj = −

√
4π 1

kj
~kj × [ckj~qkj

sin( ~kj ·~r) + ~pkj
cos( ~kj ·~r)] ~Bkj = −

√
4π 1

kj
~kj × [ckj ~Qkj

sin( ~kj ·~r) + ~Pkj
cos( ~kj ·~r)]

with E =
∑
~k E~k = 1

2

∑
~k(E2

~k
/c2 +B2

~k
) and E =

∑
~k E~k = 1

2

∑
~k

∫
V0

(E2
~k
/c2 +B2

~k
)dV .

respectively E ~kj
= 1

2 (E2
~kj
/c2 +B2

~kj
) and E ~kj

= 1
2

∫
V0

(E2
~kj
/c2 +B2

~kj
)dV .

They may formally considered as running waves moving discrete quantities of har-
monic oscillators with the Hamilton Functions

H =
∑
~k

H~k =
∑
~k

1

2
(p2

~k
+ ω2

~k
q2
~k
), H =

∑
~k

H~k =
∑
~k

1

2
(P2

~k
+ ω2

~k
Q2
~k
) (17.1)

and the oscillator equations

~̈q~k + ω2
~k
~q~k = 0, ~̈Q~k + ω2

~k
~Q~k = 0 (17.2)
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.

H =
∑
~k

H~k H~k =
1

2
(p2

~k
+ ω2

~k
q2
~k
), H =

∑
~k

H~k H~k =
1

2
(P2

~k
+ ω2

~k
Q2
~k
)

(17.3)

17.2. The energy-momentum-tensor of the
electromagnetic field

The energy momentum density tensor for the electromagnetic field (generally called
Energy momentum tensor) in covariant components [38] is written with the choosen
signature (−1, 1, 1, 1)

Tµν =
1

4π

(
FαµFαν −

1

4
gµνFαβFαβ

)
(17.4)

It is symmetric: Tµν = Tνµ.
One obtains the Faraday-tensor of the electromagnetic field from

Fµν = ∂µAν − ∂νAµ µ,ν = 0,1,2,3 (17.5)

and detailed (they are chosen respectively the form of the above Maxwell Equations)

F0i =∂0Ai − ∂iA0 = Ei/c, i = 1,2,3

Fi0 =∂iA0 − ∂0Ai = −Ei/c, i = 1,2,3

F12 =∂1A2 − ∂2A1 = B3

F13 =∂1A3 − ∂3A1 = −B2

F23 =∂2A3 − ∂3A2 = B1

(17.6)

=⇒ Fµν = −Fνµ

∂ρFµν + ∂µFνρ + ∂νFρµ = 0

and in greater detail
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17. Unification of Maxwell Field and gravitational field

∂1F23 + ∂3F12 + ∂2F31 = 0

∂2F30 + ∂0F23 + ∂3F02 = 0

∂3F01 + ∂1F30 + ∂0F13 = 0

∂0F12 + ∂2F01 + ∂1F20 = 0

.

The indices correspond to 0→ ct, 1→ x, 2→ y, 3→ z complying with the following
electrodynamic equations of vacuum1

div ~B = 0 and
∂

∂t
~B− ~∇× ~E = 0.

The expressions of the covariant and contravariant Faraday-tensors considering the
minkowski tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (17.7)

lead to

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0


(17.8)

Fµν =


0 −E1/c −E2/c −E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 . (17.9)

Thus the covariant components of the electromagnetic energy momentum tensor are
written

1the polarity reversal ~E −→−~E recognised
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17. Unification of Maxwell Field and gravitational field

Tµν =
1

4π


Q (

~E
c
× ~B)1 (

~E
c
× ~B)2 (

~E
c
× ~B)3

(
~E
c
× ~B)1 −[

E2
1
c2

+B2
1 −Q] −E1E2

c2 −B1B2 −E1E3
c2 −B1B3

(
~E
c
× ~B)2 −E1E2

c2 −B1B2 −[
E2

2
c2

+B2
2 −Q] −E2E3

c2 −B2B3

(
~E
c
× ~B)3 −E1E3

c2 −B1B3 −E2E3
c2 −B2B3 −[

E2
3
c2

+B2
3 −Q]


(17.10)

with Q =
1

2
(
E2

c2
+B2)

The trace of the electromagnetic energy momentum tensors vanishes

T = 0 (17.11)

and the Einstein Equations simplify to

Rij = 8π ·GNTij . (17.12)

For further considerations the following eigenwave is choosen:

E2 = E3 = B1 = B3 = 0, E1 6= 0, B2 6= 0. (17.13)

=⇒

T00 =
1

8π

(
E2

1

c2
+ B2

2

)
, T01 = T02 = 0, T03 =

1

4π
(
~E1

c
× ~B2) (17.14)

Tik = 0 für i 6= k i,k = 1,2,3 (17.15)

T11 =
−1

8π

(
E2

1

c2
−B2

2

)
, T22 =

1

8π

(
E2

1

c2
−B2

2

)
(17.16)

T33 =
1

8π

(
E2

1

c2
+ B2

2

)
(17.17)
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17. Unification of Maxwell Field and gravitational field

17.3. The quantitative relation of electromagnetic
and gravitational waves

The quantitative connection is achieved via the Einstein Equations

Rµν = 8π ·GNTµν .

The description of a natural oscillation takes place using deformation interpretation
by

~dki =
√

4π
1

ki

(
cki~qkicos(

~ki · ~r)− ~pkisin(~ki · ~r)
)

~eki =
√

4πc
(
cki~q ~kisin(~ki · ~r) + ~p ~kicos(

~ki · ~r)
)

~bki =−
√

4π
1

ki
~ki ×

[
cki~q ~kisin(~ki · ~r) + ~p ~kicos(

~ki · ~r)
]
,

(17.18)

and using the electromagnetic field interpretation by

~Aki =
√

4π
1

k

(
cki ~Q ~ki

cos(~ki ·~)− ~P ~ki
sin(~ki · ~r)

)
~Eki =

√
4πc

(
cki ~Q ~ki

sin(~ki · ~r) + ~P ~ki
cos(~ki · ~r)

)
~Bki =−

√
4π

1

k
~ki ×

[
cki ~Q ~ki

sin(~ki · ~r) + ~P ~ki
cos(~ki · ~r)

] (17.19)

with their corresponding energy density and energy in a volume surrounding the
coordinate origin ( ~x0).

Eki =
1

2

(
E2
ki

c2 +B2
ki

)
Energiedichte

Eki =
1

2

∫
V0

(
E2
ki

c2 +B2
ki

)
dV Energie

(17.20)

.

The metric tensor of an elementary wave with ~q~k ‖ ~ex, ~p~k ‖ ~ey and ~k ‖ ~ez, ~k×~q~k ‖ ~ey
is given by the tangential vectors:

~ti = ∂i~y = (∂iy1,∂iy2,∂iy3) , ~y = ~d + ~x
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17. Unification of Maxwell Field and gravitational field

=⇒
~tz = ∂z~y = (∂zdx,0,1) .

With ~k ·~r = k · z = ωk/c · z one obtains

~tz =

(
−
√

4πωk~q~ksin(ωk/c · z),−
√

4π~p~kcos(ωk/c · z), 1

)
. (17.21)

As searched spatial metric tensor element remains

tzz = 4π

(
ω2
kq

2
~k
sin2(ωk/c · z) + p2

~k
cos2(ωk/c · z)

)
+ 1 (17.22)

with
qk = ukcos(ωkt), pk = vksin(ωkt). (17.23)

The purpose is the evaluation of the equation

Rzz = 8π ·GNTzz. (17.24)

It is appropriate to note, that

Tzz =
1

8π

(
E2

x

c2
+ B2

y

)
=

Ek

4π
. (17.25)

Starting from the Riemannian curvature tensor

Rσ
.ναβ = ∂αΓ

σ
νβ − ∂βΓ

σ
να + Γσ

ραΓ
ρ
νβ − Γσ

ρβΓ
ρ
να. (17.26)

with
Γµνα =

1

2
gµλ
[
∂νgαλ + ∂αgλν − ∂λgνα

]
(17.27)

leads by contraction to the Ricci tensor

Rµν = Rσ
.µνσ = ∂νΓ

σ
µσ − ∂σΓ

σ
µν + Γσ

ρνΓ
ρ
µσ − Γσ

ρσΓ
ρ
µν . (17.28)

The metric tensor after the deformation by the above elementary wave is used in the
time orthogonal coordinate system.

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (17.29)
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17. Unification of Maxwell Field and gravitational field

gµν( ~x0) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 tzz

 gµν( ~x0) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/tzz

 (17.30)

gµν ≈ ηµν + hµν , gµν ≈ ηµν − hµν

|hµν |,|hµν | � 1
(17.31)

The Ricci tensor is typically written in a linear and non-linear proportion with respect
to the Christoffel symbols stripped down.

R(1)
µν ( ~x0) = ∂νΓ

σ
µσ − ∂σΓ

σ
µν , R(2)

µν ( ~x0) = Γσ
ρνΓ

ρ
µσ − Γσ

ρσΓ
ρ
µν (17.32)

Detailed examination of the Christoffel symbols

Γσµσ =
1

2

∑
σ

∑
ρ

gσρ∂σgµρ +
1

2

∑
σ

∑
ρ

gσρ∂µgµρ−
1

2

∑
σ

∑
ρ

gσρ∂ρgµρ (17.33)

1

2

∑
σ

∑
ρ

gσρ∂σgzρ =
1

2
g00∂0gz0︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

1

2

∑
σ

∑
ρ

gσρ∂zgρσ =
1

2
g00∂zg00︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

1

2

∑
σ

∑
ρ

gσρ∂ρgσz =
1

2
g00∂0g00︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

(17.34)

∂zΓ
σ
zσ =

1

2
∂zg

zz∂zgzz (17.35)

∂σΓ
σ
zz =

1

2
∂0g

00[∂z gz0︸︷︷︸
=0

+∂z g0z︸︷︷︸
=0

−∂0gzz] +
1

2
∂zg

zz[∂zgzz + ∂zgzz − ∂zgzz]

=− 1

2
∂2

0gzz +
1

2
∂zg

zz∂zgzz

(17.36)
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17. Unification of Maxwell Field and gravitational field

lead for the linear part to

R(1)
zz ( ~x0) = ∂zΓ

σ
zσ − ∂σΓ

σ
zz = +

1

2
∂2

0gzz. (17.37)

The nonlinear part is determined for the considered elementary wave by the following
steps

R(2)
zz ( ~x0) = Γσ

ρzΓ
ρ
zσ − Γσ

ρσΓ
ρ
zz (17.38)

Γσρz =
1

2
gσσ
[
∂ρgzσ + ∂zgσρ− ∂σgρz

]
(17.39)

Γρzσ =
1

2
gρρ
[
∂zgσρ + ∂zgρz − ∂ρgzσ

]
(17.40)

ΓσρzΓ
ρ
zσ =

1

4
gσσgρρ

[
∂ρgzσ + ∂zgσρ− ∂σgρz

][
∂zgσρ + ∂zgρz − ∂ρgzσ

]
=

1

4
gzz
[
gzz(∂zgzz)

2 + (∂0gzz)(∂zgzz) + (∂0gzz)
2

] (17.41)

Γρρσ =
1

2
gρα
[
∂ρgσα + ∂σgαρ− ∂αgρσ

]
=

1

2
gρρ
[
∂ρgσρ + ∂σgρρ− ∂ρgρσ

] (17.42)

Γσνµ =
1

2
gσα
[
∂νgµα + ∂µgαν − ∂αgνµ

]
=

1

2
gσσ
[
∂νgµσ + ∂µgσν − ∂σgνµ

] (17.43)

ΓρρσΓσzz =
1

4
gρρgσσ

[
∂ρgσρ + ∂σgρρ− ∂ρgρσ

][
∂zgzσ + ∂zgσz − ∂σgzz

]
=

1

4
gzz
[
gzz(∂zgzz)

2 + (∂0gzz)
2

] (17.44)

144



17. Unification of Maxwell Field and gravitational field

=⇒

R(2)
zz ( ~x0) = Γσ

ρzΓ
ρ
zσ − Γσ

ρσΓ
ρ
zz

=
1

4
gzz
[
gzz(∂zgzz)

2 + (∂0gzz)(∂zgzz) + (∂0gzz)
2

]
− 1

4
gzz
[
gzz(∂zgzz)

2 + (∂0gzz)
2

]
(17.45)

R(2)
zz ( ~x0) = Γσ

ρzΓ
ρ
zσ − Γσ

ρσΓ
ρ
zz =

1

4
gzz
[
(∂0gzz)(∂zgzz)

]
(17.46)

The whole tensor element results in =⇒

Rzz( ~x0) = R(1)
zz ( ~x0) + R(2)

zz ( ~x0) = +
1

2
∂2

0gzz +
1

4
gzz
[
(∂0gzz)(∂zgzz)

]
. (17.47)

For the point ~x0 = (0, 0, 0, 0) this means

∂0gzz( ~x0) = ∂zgzz( ~x0) = 0 −→ R(2)
zz ( ~x0) = 0. (17.48)

Thus one gets

Rzz( ~x0) = R(1)
zz ( ~x0) =

1

2
∂2

0gzz( ~x0). (17.49)

Now using
Rzz = 8π ·GNTzz.

the amplitude of the elementary gravitational wave (electromagnetic wave)
gives the quantitative deformation of space by an electrodynamic elemen-
tary wave. Such the importance of the Einstein-Equations for microphysics
is proved.

dk =
2

ω2
k

√
πγEk . (17.50)

with the constant of gravitation γ = 6.67 · 10−11m3kg−1s−2 and Ek = as energy
density. In these considerations the light velocity c does not occur explicitly.

Setting Ek = 1Wsec/m3 and using ω2
k = (2π · ν)2 with ν = 50 this results

in dk = 2.933 · 10−10m. In comparison, the measured atomic radius of H1 is given
by ≈ 2.5 · 10−11m. Obviously, that effect has to be considered in practice.

As Spin 1 is assigned to photons the same has to be assumed for
the graviton. (A photon of giant wavelength from an other perspective, if
it is existent.)
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17. Unification of Maxwell Field and gravitational field

The Einstein Equations maybe achieve much more than describing
cosmological processes!
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18. Summary

The whole relativistic part is determined by the preceding solution of the
problem of turbulence.
The constituted equations of evolution on one side for cosmological turbulent matter
distribution and on the other side for Space-Time (Geometry of Einstein Space) do
not use the Einstein Equations. They are based on different geometrodynamics,
the geometrodynamics of turbulent matter transport and the geometrodynamics of
deformation for the development of Space-Time (alternativly seen as development of
the Riemannian hypersurface in dependence of time). Both equation systems are used
independently from each other and depend on initial conditions especially designed
for them. Both are limited to continuously differentiable processes. Emerging or
collapsing of stars is not considered. In this case the equation systems have to be
supplemented by appropriate source formulations.
The Einstein Equations couple Einstein Space-Time with energy momentum density.
Thus a relation is established between physically totally different processes, which
are treated decoupled in the mentioned evolution equation systems. The Einstein
Equations come into play, when Space-Time fluctuations are related to the energy
momentum density of an electromagnetic field. In literature, even in treatises of
Penrose, the matter free Space-Time has no energy momentum density unless an
electromagnetic field has to be considered. Gravitational waves, identified in this
treatise by electromagnetic waves of very great wave lenghts, are always to be
assumed. So the energy momentum tensor always gets together with one part due to
the gravitational wave and another part due to a matter energy momentum tensor.

Rµν − 1
2gµνR = 8π ·GNTµν

⇑ ⇑
Space-Time Energy-Momentum

m |
Geometrodynamics

of Deformation

c = const

Geometrodynamics

of Turbulence
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18. Summary

Surely, respecting both parts simultaneously is not meaningful in approxima-
tions where Newtonian calculations are sufficient, but near black holes or exploding
stars the energy momentum density of Space Time is not insignificant, probably.

Until now, electromagnetism is not directly understood. It is described with detours
via mechanical effects though for physicists it has manifested in immediate clearness
after more than a century of successful handling. With the described unification
electromagnetism is directly led back to the most fundamental terms of physics, space
and time. The usually discussed gauge transformations are chosen by the observation
space respectivly the coordinate space. The vector potential achieves an absolute
significance.
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