A Neoclassical Model of Nature

J Mark Morris

1. INTRODUCTION

A neoclassical model of nature is proposed, based upon two equal and opposite fundamental particles. These particles may also be considered as conserved excitations.

This model is derived from thought experiment and reinterpretation of modern physics and cosmology.

2. MODEL FOUNDATION AND CONJECTURE

The model is described affirmatively as conjecture. Where interpretations differ from modern physics and cosmology, the mapping is explored, and a foundation is established for further study.

2.1. Electrinos and Positrinos

The model is based on two oppositely charged electromagnetic particles, the electrino ε- and positrino ε+, each with |1/6| charge. These Planck scale indestructible particles carry energy and compose both standard model particles and a universe permeating gas of graviton particles. At extreme high energy, both standard matter and graviton gas decompose into a plasma of electrinos and positrinos. At extreme low energy graviton particles decay into standard matter.

2.2. Electrino/Positrino Plasma Emits/Jets from Black Holes

In a black hole of sufficient energy and conditions, such as an active galactic center SMBH, ε- and ε+ particles are the decomposition products of high energy decay of matter-energy. At very high energy, ε- and ε+ form a plasma that emits via jets from each AGN SMBH. Plasma can escape the black hole because, general relativity does not apply to the plasma state of graviton gas.

2.3. Plasma Decays to Standard Model Particles

As ε- and ε+ plasma, in AGN SMBH emissions or jets, decays via conservative transactions, clusters of ε- and ε+ particles combine to become standard model matter-energy particles. The mapping of ε- and ε+ to key standard model particles is as follows: neutrino 3ε/-3ε+, electron 6ε-, up quark 1ε/-5ε+, down quark 4ε/-2ε+, neutron 9ε/-9ε+, proton 6ε/-12ε+.

2.4. Plasma Cools and Forms a Universe Permeating Gas

As ε- and ε+ plasma cools, it clusters into composite particles with a 6ε/-6ε+ formula, and a spherical orbital structure. The term “graviton” is repurposed as a fitting name for these particles that form a universe permeating gas. Graviton gas has characteristics of a superfluid. The graviton gas creates the spacetime characteristics of general relativity and is the superfluid aether underlying quantum mechanics (aka quantum vacuum) and is the carrier of electromagnetic and gravitational waves.

2.5. Gravitational Wave Energy Heats the Graviton Gas

Matter-energy interacts electromagnetically with local graviton gas to exchange gravitational waves, which spread spherically through the superfluid at the speed of light. This “mass” energy of the continuously refreshed gravitational wave heats the graviton gas. The local temperature (energy) gradient of the gas causes a convective force on standard matter-energy, aka the force of gravity.

2.6. Physics Parameters Run with Gas Temperature (Energy)

Elevated graviton gas temperature (energy) increases its permittivity ε and permeability µ, reducing local speed of light, and causing refraction commonly attributed to curved spacetime “lensing” around dense matter. Increasing permittivity and permeability influence graviton gas and standard matter electromagnetics, resulting in matter compaction and time dilation as described by general relativity. Physics “constants,” also including the fine structure value, can be understood as the low temperature asymptote of these variables.

2.7. Quantum Mechanics

Quantum mechanics describes interactions of standard matter, without describing ε- and ε+ and their role in graviton gas, electrino/positrino plasma, and reactions that consume or produce gravitons. Furthermore, the geometry of graviton gas is expected to inform further development in quantum mechanics.

2.8. Galaxy Rotation Curves

Galaxy rotation curves are ascribed to dark matter in modern astrophysics. In the neoclassical physics model, there are a number of effects that influence galaxy dynamics and will require reconsidering galaxy physics.

First, mass energy is eliminated when matter is deconstructed to constituent ε- and ε+ particles in active galactic SMBH cores as the phase change to plasma occurs. Elimination of matter will directly influence the gravitational attraction of the SMBH on galactic matter.

Second, the emission and jetting of plasma and the subsequent decay and cooling produces new galaxy dynamics. One dynamic of note is outflowing graviton gas. Even though we consider graviton gas as a superfluid, it has drag at very small scales of action. This wind of graviton gas influences galaxy rotation curves.
Third, new matter produced by plasma decay will also influence the galaxy dynamics. Hydrogen and helium are the most abundant products. It is expected that this will contribute to new star formation. Furthermore, some of this newly formed matter may be destined to cycle through the SMBH repeatedly.

2.9. The Shape of the Cosmos
In one variant of the model, the extent of graviton gas superfluid aether is infinite, or so large as to be considered infinite from the perspective of scientific observation.

In another variant, the graviton gas superfluid aether is a bubble with a surface. It stands to reason that a steady state is reached at the surface with outflow of the gas balanced by graviton decay into standard matter-energy. It is an open question if the surface decay process is conservative in the sense that no matter-energy escapes permanently beyond the surface of the cosmos gas bubble.

If the cosmos is a bubble of gas, determining what is beyond the surface will invite many new model ideas, including liquid and solid phases of gravitons, infinite voids, exotic bubble topologies, and many bubble universes.

2.10. Cosmic Recycling
There is a cycle of matter-energy being reduced to $\varepsilon^-$ and $\varepsilon^+$ particle plasma in a galactic black hole, emission/jetting of $\varepsilon^-$ and $\varepsilon^+$ plasma, graviton gas formation and outflow, plasma and gas decay into standard matter-energy, and a journey back to a galactic black hole to be recycled as plasma. This cycle does not require a big bang nor an ever-expanding universe. As a result, science must, at least for the time being, view the age of the universe as unknown.

3. APPLING THE MODEL

3.1. Temperate Matter Zoo
Aside from extreme energy conditions, in the temperate zone outside of stars, black holes, jets, and colliders, there are five particles typically found in nature at the scales we can currently measure. These are the graviton, proton, electron, neutron, and neutrino. Symbolically, we’ll use $g$, $p$, $e^-$, $n$, and $\nu$.

The graviton, $g$, has the formula $6\varepsilon^-/6\varepsilon^+$.

Two gravitons may react to form a proton and an electron.

$$g + g \Rightarrow p + e^-$$

$$6\varepsilon^-/6\varepsilon^+ + 6\varepsilon^-/6\varepsilon^+ \Rightarrow 6\varepsilon^-/6\varepsilon^+ + 6\varepsilon^-/6\varepsilon^+ + 6\varepsilon^-/6\varepsilon^+$$

$$12\varepsilon^-/12\varepsilon^+ \Rightarrow 6\varepsilon^-/12\varepsilon^+ + 6\varepsilon^-/6\varepsilon^+$$

As we see, the equations conserve electrinos and positrinos. Furthermore, note that the anti-electron, aka positron, has a formula of $6\varepsilon^+$ and is mated with a graviton to form a proton. Matter and anti-matter balance perfectly. It may be helpful to visualize a proton as a graviton encapsulating a positron, although the specific geometry is unknown.

Two gravitons may react to form a neutron and a neutrino.

$$g + g \Rightarrow n + \nu$$

$$6\varepsilon^-/6\varepsilon^+ + 6\varepsilon^-/6\varepsilon^+ \Rightarrow 6\varepsilon^-/6\varepsilon^+ + 3\varepsilon^-/3\varepsilon^+ + 3\varepsilon^-/3\varepsilon^+ + 12\varepsilon^-/12\varepsilon^+ \Rightarrow 9\varepsilon^-/9\varepsilon^+ + 3\varepsilon^-/3\varepsilon^+$$

As we see, the equations conserve electrinos and positrinos. Furthermore, note that the anti-neutrino has a formula of $3\varepsilon^-/3\varepsilon^+$ and is mated with a graviton to form a neutron. The neutrino also has a formula of $3\varepsilon^-/3\varepsilon^+$ since it is a Majorana particle. Matter and anti-matter balance perfectly. It may be helpful to visualize a neutron as a graviton encapsulating an anti-neutrino, although the specific geometry is unknown.

3.2. The Extreme Energy Particle Zoo
In stars, black holes, jets, colliders, and perhaps other reactions, high energy can lead to a number of exotic $[n]\varepsilon^-$/$[m]\varepsilon^+$ particles. Many of these are described by the standard model although the electrino/positrinos formulation is missing from the physics. Detailed data on many particles is found in the PDG listings (Tanabashi, 2018). Some decay modes are missing production or consumption of a graviton.

3.3. Reactions that Consume or Produce Gravitons

The modern physics formula for beta decay is:

$$n \Rightarrow p + e^- + \nu$$

However, that formula does not balance electrinos and positrinos. The model predicts the following correction:

$$n + g \Rightarrow p + e^- + \nu$$

We see that this decay reaction consumes a graviton.

A number of other reactions have been found to be missing the expression of gravitons in the reaction formulas. A list of several found follows. The derivation is straightforward.
1. Hydrogen fusion into Deuterium in stage one of Hydrogen Helium fusion in starts up to \( \sim 1.3 \) \( \text{M}_\odot \).
2. CNO cycle in stars over \( \sim 1.3 \) \( \text{M}_\odot \) requires a graviton input to the \(^{15}\text{N} \rightarrow ^{15}\text{C}\) reaction, as well as to the \(^{15}\text{O} \rightarrow ^{15}\text{N}\) reaction.
3. In the bottle vs. beam experiment, there may be a case where a neutron reacts with a graviton to produce an anti-neutrino and return two gravitons to the aether. This decay mode would be counted in the bottle experiment but missed in the beam experiment. This may explain the discrepancy.
4. The LLNL and NIF are pursuing deuterium and tritium fusion which will produce helium, an anti-neutrino and a graviton.
5. Of course, pair production from the quantum vacuum is consuming one or more gravitons.
6. Pf\(^5\) decay modes 1 and 6 produce a graviton, while decay mode 4 consumes a graviton.

4. NEW INTERPRETATIONS OF NATURE

The neoclassical model thought experiment leads to many speculative, but seemingly logical new interpretations that may solve many open problems and issues in physics and cosmology.

4.1. Origin and End of the Universe

The neoclassical model suggests that all AGN SMBH which jet electrino/positrino plasma accomplish what has previously been described as a single big bang. An examination of the big bang timeline appears to be roughly compatible with this jet process. For example, inflation would correspond to superluminal plasma jets. Since general relativity does not apply to the plasma, superluminality is possible. Furthermore, if the universe is a graviton gas bubble, the gas may decay at the surface and lead to in fall of standard matter-energy. Also, what has been interpreted as expansion may simply be the outflow of graviton gas. This new interpretation of a recycling universe will obscure the true age of the universe. How long has the universe cycled? Does the cycling ebb and flow such that the proportion of standard matter vs. graviton gas fluctuates over time?

4.2. Distances, Redshift, Curvature, Spacetime

The neoclassical model provides a physical medium of graviton gas to implement Einstein’s special and general relativity and the curvature of “spacetime”. The causes of redshift around dense matter can now be seen to be related to the gravitational energy of the superfluid, and to be due to variable permittivity and permeability of the gas which changes the speed of light. Furthermore, on a universe scale, outflow of graviton gas would also cause redshift. This may indicate that distances are not as far as have been calculated by modern astrophysics.

4.3. Parity and Charge-Parity Symmetry

With the inclusion of the electrino and positrino particles and the composite graviton particle, observed violations of symmetry will need to be re-examined. Perhaps symmetry may be preserved after all when all of the reactants are considered.

4.4. Reduction of Speculative Physics and Cosmology

The neoclassical model appears to lead to a reset to a many hypothesis in physics and cosmology. No big bang. Singularity = phase change. No wormholes. No MWI. Complete re-evaluation of dark matter and dark energy models. Outflow vs. expansion. No imbalance of matter and anti-matter. No supersymmetry. No holographic universe. No extra dimensions. Each of these areas was addressing a problem that has a more straightforward path to an answer with the neoclassical model.

5. RESEARCH DIRECTIONS

A tremendous amount of research is required to improve the model and its implications for the interpretation of nature. The nature of time and how it is influenced by the characteristics of graviton gas is not yet understood. How do gravitons in reaction assume roles of W, Z, and H bosons? How do photons navigate the graviton superfluid? How to improve general relativity around the extremes of energy where phase change and decay influence behavior. How do large gravitational waves propagate in the superfluid? These and many more questions are open.

6. SUMMARY

A parsimonious neoclassical model of nature is proposed where the electrino \( \varepsilon^- \) and positrino \( \varepsilon^+ \) are the basis of all matter, the carriers of all energy, and form a superfluid gas which permeates most of the universe. At high energies matter and gas change phase to plasma wherein general relativity does not apply. Neither general relativity nor quantum mechanics include the electrino, positrino, nor graviton particles. The neoclassical model informs solutions to many open problems in physics and cosmology. A new narrative emerges that requires recasting and reframing the interpretations of experimental results and theory from physics, cosmology, and astronomy.

7. BIBLIOGRAPHY