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Introduction 

 

The Riemann Hypothesis is one of the most important unresolved problems in Number Theory, 

it was first proposed by Bernhard Riemann, in 1859. For 160 years mathematicians have 

struggled with this problem to no avail. The difficulty of the Riemann Hypothesis is the main 

reason the hypothesis has remained unsolved. Although the Riemann Hypothesis remains 

unsolved, several mathematicians have proven other problems are the equivalent of the Riemann 

Hypothesis. In other words, if any of these equivalent criteria were solved, it would also solve 

the Riemann Hypothesis. Of particular interest to the author is a very elementary equivalent to 

the Riemann Hypothesis, Lagarias’s Elementary Version of the Riemann Hypothesis.  

In 2002, Jeffrey Lagarias proved that his problem is equivalent to the Riemann Hypothesis, a 

famous question about the complex roots of the Riemann zeta function. The beauty of the 

Lagarias’s Elementary Version of the Riemann Hypothesis, is that it is truly an elementary and 

very simple problem compared to the Riemann Hypothesis. The simplicity of Lagarias’s proof is 

what attracted the author to attempt to solve the Riemann Hypothesis. The author was very 

surprised at the simple proof he formulated using the elementary work of Lagarias. The moral of 

this story is that many times elementary or simple proofs exist to complex mathematical 

problems, this is one of those cases. 

 

Abstract 

  

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zero’s only at the 

negative even integers and complex numbers with real part 
1

2
 

The Riemann hypothesis implies results about the distribution of prime numbers. Along with 

suitable generalizations, some mathematicians consider it the most important unresolved 

problem in pure mathematics (Bombieri 2000). 

It was proposed by Bernhard Riemann (1859), after whom it is named. The name is also used for 

some closely related analogues, such as the Riemann hypothesis for curves over finite fields.  
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The Riemann hypothesis implies significant results about the distribution of prime numbers. 

Along with suitable generalizations, some mathematicians consider it the most important 

unresolved problem in pure mathematics (Bombieri 2000). The Riemann zeta function is defined 

for complex s with real part greater than 1 by the absolutely convergent infinite series: 

 

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + ... 

 

The Riemann hypothesis asserts that all interesting solutions of the equation: 

     

ζ(s) = 0 

lie on a certain vertical straight line. 

 

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural 

numbers:  
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Harmonic numbers have been studied since early times and are important in various branches of 

number theory. They are sometimes loosely termed harmonic series, are closely related to the 

Riemann zeta function.  

The harmonic numbers roughly approximate the natural logarithm function and thus the 

associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the 

divergence of the harmonic series to provide a new proof of the infinity of prime numbers. His 

work was extended into the complex plane by Bernhard Riemann in 1859, leading directly to the 

celebrated Riemann hypothesis about the distribution of prime numbers.  

 

Proof 

 

In 2002, Jeffrey Lagarias proved that this problem is equivalent to the Riemann Hypothesis, a 

famous question about the complex roots of the Riemann zeta function. The Lagarias’s 

Elementary Version of the Riemann Hypothesis states that for a positive integer n, let σ(n) 
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denote the sum of the positive integers that divide n. For example, σ(4)=1+2+4=7, and  

σ(6)=1+2+3+6=12. Let Hn denote the n-th harmonic number, for example: 

   

Hn = 1 + 
1
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The unsolved question is does the following inequality hold for all n ≥ 1? 

 

σ(n)  ≤  Hn + ln(Hn)eHn  

 

First we will solve for the smallest numbers: 

 

σ(1)  ≤  H1 + ln(H1)eH1  

σ(1)  = 1 and H1 = 1 , therefore, 

σ(1) = H1 = 1 , which satisfies our inequality. 

 

σ(2)  ≤  H2 + ln(H2)eH2  

σ(2)  = 3 and H2 = 1.5 , therefore, 

σ(2) = 3  ≤  1.5 + ln(1.5)e1.5 

3 ≤  3.31716 

 

σ(3)  ≤  H3 + ln(H3)eH3  

σ(3)  = 4 and H3 = 1.833333333, therefore, 

σ(3) = 4  ≤  1.833333333 + ln(1.833333333)e1.833333333 

3 ≤ 5.62453 

 

σ(4)  ≤  H4 + ln(H4)eH4  

σ(4)  = 7 and H4 = 2.083333 , therefore, 

σ(4) = 7  ≤ 2.083333 + ln(2.083333)e2.083333 
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7 ≤ 7.97798 

 

σ(5)  ≤  H5 + ln(H5)eH5  

σ(5)  = 6 and H5 = 2.283333, therefore, 

σ(5) = 6  ≤ 2.283333 + ln(2.283333)e2.283333 

6 ≤ 10.38226 

 

In 1984, G Robin also proved, unconditionally, that the inequality below is true (see Proposition 

1 of Section 4 of Robin’s work in reference 2):  

σ(𝑛)   ≤   (𝑒 𝛾)𝑛(log log(n)) + 
0.6483𝑛

log log(n)
 

 

holds for all n ≥ 3.  Above, we have already shown the first five σ(𝑛)  ≤ Hn + ln(Hn)eHn , 

therefore, we do not need to address when n < 3 in the following proof. 

The numerical value of the Euler–Mascheroni constant, γ, is: 

 γ = 0.57721566490153286060651209008240243104215933593992 

 

We will prove that: 

 

 

(𝑒 𝛾)𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  Hn + ln(Hn)eHn 

 

(𝑒 0.57721)𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  Hn + ln(Hn)eHn 

 

1.781𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  Hn + ln(Hn)eHn 
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To be conservative, we will choose Hn ≥ e = 2.718282, this is to ensure that ln(Hn) ≥ 1, so that 

we define the region where ln(Hn)eHn ≥ eHn. 

For Hn ≥ e = 2.718282, we will use Hn = H9 = 2.828968 ≥ e then ln(Hn) ≥ ln(e) = 1, which 

means, ln(Hn) ≥ 1, for n ≥ 9. 

Therefore, for Hn ≥ e = 2.718282 

 

Hn + ln(Hn)eHn ≥ Hn + ln(e)eHn = Hn + eHn  ≥ eHn 

Thus for Hn ≥ e, then Hn + ln(Hn)eHn ≥ eHn 

 

Therefore, it will suffice for us to prove that: 

 

Equation 1.                1.781𝑛(log log(𝑛)) +  
0.6483𝑛

log log(n)
   ≤  eHn 

 

Thus, since we have demonstrated our inequality is true for n ≤ 5, later we will need to show it is 

true for 5 ≤ n ≤ 9. 

 

Notice that log log(n) grows extremely slowly, log log(1,000,000,000) = 0.954   

Notice, Hn grows relatively slowly in the exponent value for eHn, for example, H4 = 2.083333 

 

Therefore, eHn = eH4 = e2.083333 = 8.031195, which is large compared to 0.954 

 

As n increases from just 4 to 5, Hn continues to slowly grow in the exponent value for eHn, for 

example, H5 = 2.283333 

 

Therefore, eHn = eH5 = e2.283333333 = 9.809324, which is ten times larger than 0.954 

However, to put the difference between the numbers in a better perspective we must recall that 

from above, 0.954 = log log(1,000,000,000).  Therefore, a much better comparison of the 

growth rate of log log(n) compared to eHn is to compare log log(1,000,000,000) to eH1,000,000,000. 

First, to calculate H1,000,000,000, we will use the approximation formula, as follows: 
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Hn ≈ ln(n) + γ + (1/2n) - (1/12n2) 

H1,000,000,000 ≈ 21.30048 

Therefore, for n = 1,000,000,000 then, 

eHn = e21.30048 = 1,781,072,419 

 

To calculate the actual growth rate comparison, we need to calculate the following ratio: 

 

𝑒Hn

log log(n)
 = 

1,781,072,419

0.954
 = 1,866,952,221 

 

Therefore, eHn has grown 1,866,952,221 as fast as log log(n).  Therefore, although the harmonic 

series Hn grows slowly, still eHn grows extremely fast as compared to log log(n).     

Although we have shown the difference in the growth rate of eHn compared to log log(n), we still 

need to compare the following inequality for n = 1,000,000,000., we do this below: 

 

1.781𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  Hn + ln(Hn)eHn 

 

1.781(1,000,000,000)(0.954) +  
0.6483(1,000,000,000)

0.954
   ≤  21.30048 + (3.0587)eHn 

 

1,699,074,000 + 679,559,748.428 ≤ 21.30048 + (3.0587)(1,781,072,419) 

 

2,378,633,748.428 ≤ 5,447,766,229.296 

 

Thus, we have shown that for, n = 1,000,000,000 that our inequality is true: 

 

1.781𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  Hn + ln(Hn)eHn 
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We will take this a step further and we will calculate H1,000,000,000,001, using the approximation 

formula, as follows: 

 

Hn ≈ ln(n) + γ + (1/2n) - (1/12n2), and γ ≈ 0.57721 

H1,000,000,000,001 ≈ 28.2082 

Therefore, for n = 1,000,000,000,001 then, 

eHn = e28.2082 = 1,781,010,000,000 > 1,781,072,419 (for n = 1,000,000,000) 

This indicates the growth rate for eHn, for 1,000,000,000 ≥ n ≤  1,000,000,000,001 had a growth 

rate of approximately 1,000 for eHn. 

 

Now, for all k ≥ 9, we will prove the above inequality using Mathematical Induction.  Normally 

the base value of 1 is used as the baseline for Mathematical Induction, however, since 9 is the 

baseline for our inequality, 9 will be used as the baseline as follows: 

 

1.781(9)(log log(9)) +  
0.6483(9)

log log(9)
   ≤  H9 + ln(H9)eH9 

 

48.087(−0.0203) +  
5.8347

−0.0203
   ≤  2.828968 + ln(2.828968)e.2.828968 

 

48.087(−0.0203) +  
5.8347

−0.0203
   ≤  2.828968 + (1.0399)(16.928) 

 

-288.3998 ≤ 20.4323 

 

Thus, our inequality for the baseline k = 9, is true.   

To complete our Mathematical induction we will return to equation 1, on page 5, where we 

showed, it will suffice for us to prove that: 

 

1.781𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  eHn 
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Now we will repeat our baseline for k = 9, for the above equation, as follows: 

 

1.781(9)(log log(9)) +  
0.6483(9)

log log(9)
   ≤  eH9 

 

48.087(−0.0203) +  
5.8347

−0.0203
   ≤  e.2.828968 

 

48.087(−0.0203) +  
5.8347

−0.0203
   ≤  1.0399 

 

-288.3998 ≤ 1.0399 

 

Thus, our inequality for the baseline k = 9, is true.   

Next we must assume our inequality is true for all k ≥ 9.  Then, we must suppose it holds for any 

number k ≥ 9.  This supposition is known as the induction hypothesis. We assume it is true, and 

aim to show that our assumption is true: 

 

1.781𝑘(log log(𝑘)) +  
0.6483𝑘

log log(𝑘)
  ≤  eHk 

 

Using the above induction hypothesis, we must show it is true for k +1, that is: 

 

1.781(𝑘 + 1)(log log(𝑘 + 1)) +  
0.6483(𝑘+1)

log log(𝑘+1)
  ≤  eHk+1 

 

1.781(𝑘 + 1)(log log(𝑘 + 1)) +  
0.6483(𝑘+1)

log log(𝑘+1)
  ≤  eHk+1  =  e1/(1+k) eHk 

 

 

(1.781(𝑘 + 1)(log log(𝑘 + 1)) +  
0.6483(𝑘+1)

log log(𝑘+1)
)/ e1/(1+k) ≤  eHk 
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To complete our proof of Mathematical Induction, we prove our induction hypothesis for k +1 by 

graphing the above inequality.  In Figure 1, below we graph eHk showing it is ≥ the left hand side 

of the above inequality, for n ≥ 9.  Figure 1, shows eHk (the orange line has a much steeper 

vertical slope than the left hand side of the above inequality (the blue line), therefore, eHk, will 

grow much faster and continue to grow faster as n approaches ∞. 

This gives us the opportunity to return to our earlier inequalities. 

 

σ(n) < eγ (log log(n)) +  
0.6483𝑛

log log(n)
 , for n ≥ 3  

 

Since, in Figure 1, using induction we have proven, 1.781𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤  eHn 

 

Then it follows that, σ(n) ≤  eHn 

 

And, σ(n) ≤  eHn ≤ Hn + ln(Hn)eHn , for n ≥ 3 

 

Therefore, we have proven that:  σ(n)  ≤  Hn + ln(Hn)eHn , for all n ≥ 1, since we solved for n ≥ 5, 

we just need to also show it is true for 6 ≤ n ≤ 9, which we show below. 

 

σ(6)  ≤  H6 + ln(H6)eH6  

σ(6)  = 12 and H6 = 2.45, therefore, 

σ(6) = 12  ≤ 2.45 + ln(2.45)e2.45 

12 ≤ 2.45 + (0.8961)( 11.5883) 

12 ≤ 12.8343 

 

σ(7)  ≤  H7 + ln(H7)eH7  

σ(7)  = 8 and H7 = 2.5929, therefore, 

σ(7) = 8  ≤ 2.5929 + ln(2.5929)e2.5929 

8 ≤ 2.5929 + (0.9528)(13.3679) 

8 ≤ 15.3298 
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σ(8)  ≤  H8 + ln(H8)eH8  

σ(8)  = 15 and H8 = 2.7178, therefore, 

σ(8) = 15  ≤ 2.7178 + ln(2.7178)e2.7178 

15 ≤ 2.7178 + (0.9998)( 15.1478) 

15 ≤ 17.8626 

 

σ(9)  ≤  H9 + ln(H9)eH9  

σ(9)  = 13 and H9 = 2.8289, therefore, 

σ(8) = 13  ≤ 2.8289 + ln(2.8289)e2.8289 

13 ≤ 2.8289 + (1.0399)( 16.9279) 

13 ≤ 20.4322 

 

Thus, we have proven that:  σ(n)  ≤  Hn + ln(Hn)eHn , for 6 ≤ n ≤ 9, this completes our proof. 

Thus, we have proven Lagarias’s Elementary Version of the Riemann Hypothesis. And since its 

proof is equivalent to Riemann Hypothesis, more importantly, we have also proven the Riemann 

Hypothesis as n approaches infinity. 

 

We now turn our focus towards proving this growth rate in general, for all n.  Returning again to: 

1.781𝑛(log log(n)) +  
0.6483𝑛

log log(n)
   ≤ eHn 

 

All power functions, exponential functions, and logarithmic functions tend to ∞ as x => ∞. But 

these three classes of functions tend to ∞ at different rates. The main result we want to focus on 

is the following one; ex grows faster than any power function while log x grows slower than any 

power function (see reference 4). Notice the right hand side of our above inequality is an 

exponential function, eHn, which grows faster than any power function. The left side of our 

inequality is a combination of logarithmic functions and linear functions, and logarithmic 

functions grows slower than any power function. The linear functions on the left side are very 

small multiples of n, but they still grow much faster than log log(n), however it grows extremely 

slow compared to eHn. Reference 4, provides proof of ex growing the fastest and log x growing 

the slowest, this provides proof of the above inequality for all n ≥ 1.  

Additionally, we know that Hn grows to infinity (which causes eHn to grow to e∞). 
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Figure 1.  Graphical Proof of the Riemann Hypothesis 
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The only question left is does our proof hold when n goes to infinity? In set theory, there are 

multiple infinities. The cardinality or "size" of the set of real numbers  is an infinite cardinal 

number and is denoted by |     |. The real numbers     are more numerous than the natural numbers  

.    . Moreover, R has the same number of elements as the power set of      . Symbolically, if the 

cardinality of      is, denoted as       , then the following inequality holds:     

 

                                                                           = 

 

This was proven by Georg Cantor in his 1874 uncountability proof, part of his groundbreaking 

study of different infinities; the inequality was later stated more simply in his diagonal argument. 

Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if 

and only if there exists a bijective function between them (one-to-one correspondence between 

the sets). 

To prove that when n goes toward infinity the left side of the above inequality below will always 

be greater than the right side of the inequality. The smallest infinity is the “countable” infinity,       

that matches the number of integers. From the above inequality, the mathematical formula below 

holds for       (reference 5). 

 

 

 

Since n is a countable natural number then the left side of the below inequality can no greater 

than  

However, the right side of the inequality is, eHn, and we already know Hn is countable infinity, so 

Hn =    

 

σ(n) < 1.781(log log(n)) +  
0.6483𝑛

log log(n)
 ≤ eHn 

 

Therefore, since e = 2.718281828, we can state the following: 

 

2.7182818      ≥   
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Note that when we state above that e raised to      is ≥ to 2 raised to      we actually mean that that 

they are at least equal to each other, we are not so bold to claim one of these infinites is greater 

than the other. 

This proves that infinity for σ(     ) < e 

Therefore the proof for σ(n)  ≤  Hn + ln(Hn)eHn  has been proven for all n ≥ 1. In other words the 

growth rate of σ(n) can’t reach that of Hn + ln(Hn)eHn even at infinity. In other words, Hn + 

ln(Hn)eHn will always be ahead of σ(n), even at infinity. This thoroughly proves the Riemann 

hypothesis for all n ≥ 1. 

The author must express many thanks to Bernhard Riemann who proposed the Riemann 

hypothesis in 1859. Again, the author thanks Bernhard Riemann for all of his work. Also the 

author wishes to express his eternal gratitude to Jeffrey Lagarias who proved that his Lagarias’s 

Elementary Version is equivalent to the Riemann Hypothesis, a famous question about the 

complex roots of the Riemann zeta function. Without Lagarias work, the author could not have 

proved the Riemann Hypothesis. Additionally, the author would be remiss to not honor Georg 

Cantor for his groundbreaking study of different sizes of infinities, and defining cardinality. 
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