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Summary
This survey treats the Hilbert Book Model Project. The projecterms a weHounded, purely
mathematical model of physical reality. The pobjrelies on the conviction that physical reality owns its
own kind of mathematics and that this mathematics guides and restricts the extension of the foundatior
more complicated levels of the structure and the behavior of physical reality. This results in a model tf
more and more resembles the physical retlidy humans can observe.
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1 The initiator of the project

The Hilbert Book Model Project is an ongoing project. Hans van Leisriiie initiator of this project.
The initiator was born in the Netherlands in 1941. He will not live forever. diagct will contain his
scientific inheritance.

The project is introduced inWikiversity project [1]. In the opinion of thenitiator, a Wikiversity project
is a perfect wapf introducing new science. It especially serves the needs of independent or retired scientif
authors.

The initiator maintains ResearchGate project that considers the Hidst Book Model Project.

TheResearchGate site supports a flexible wagf discussing scientific subjedid] [3].
The initiator has generated some documents that contain highlights as excerpts of the project, and he stored
these papers on his personal e-print archive http://vixra.org/author/|_a | van_leunen [4].

The private websitéttp://www.e-physics.eu contains most documents both in pdf as well as in docx for-
mat[5]. None of these documents claims copyright. Everybody is free to use the content of these papers.

11 Trustworthiness

Introducing n&v science always introduces controversial and unorthodox text. The Hilbert Book Mode!
Project is an ongoing enterprise. Its content is dynamic and is revised regularly.

The content of this project is npeerreviewed It is the task of the author to ensuhe correctness of
what he writes. In the vision of the author, the reader is responsible for checking the validity of what he/s
reads. The peer review process cannot cope with the dynamics of revisions and extensions that beco
possible via publisinig in freely accessible-grint archives. In comparison to openly accessible publication
onthe internetthe peer review process is a rather slow procesgddition it inhibits the usage of revision
services, such as offered Wyra.org and byarxiv.org/

Reviewers are always biased, and they are never omniscient. The peer review process is expensive
often poses barriers tberenewalof science.

One way to check the validity of the text is to bring parts of the text to open scientific discussion site
such afkesearchGate. [2]

The initiator challenges everybody to disprove the statements made in this report. He promises a
fine bottle of XO cognac to anyone that finds a significant flaw in the presented theories.

This challenge stands already for several yefgk Up to so faynobody claimed the bottle.

1.2 The author

Hansis born in Helmond in 1941 and visitdte Endhoven HTS in chemistry from 199B60.

After his military service in 960-1963, Hans started #te Technical Highshool Eindhoven (THE)
which is now calledhe Technical UniversitfEindhoven(TUE) for a study in applied physics.

Hans finished this study in 1970 and then joined Philips Elcoma EOD in the development of imag
intensifier tubes. Later this became a department of Philips Medical Systems division.

In 1987 Hans switched to amternal software house. In 1995 Hans joined the Semiconductor division
of Philips. In this period Hans designed a system for modular software generation.

In 2001 Hans retired.

From 1983 until 2006 Hans owned a software company "Technische en Wetensjieappegram-
matuur" (TWP).

A private website treats my current activitig$§].

| store my papers at a freely accessible e-print archive [4].

To investigate the foundations and the lower levels of physedity, Hans started in 2009 a personal
research project that in 2011 got its current néfme Hilbert Book Model Project

The Hilbert Book Model is a purely mathematical unorthodox antr@eersial model of the founda-
tions and the lower levels of the structure of physical reality.
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13 Early encounters

| am born with a deep curiosity about my living environment. When | became aware of this, | was
astonished why this environment appeared toobeosplicated, and at the same time, it behaved in such a
coherent way. In my childhood, | had no clue. Later some unique experiences offered me some indications.
After my retirement, | started in 2009 a personal research project to discover and fosomlkatf the clues.
The fAHIi |l bert Book Model 6 is the name of my perso

My interest in the structure and phenomena of physical reality started in the third year of my physics
study when the configuration of quantum mechanics confrontetbntée first time with its special ap-
proach. The fact that its methodology differed fundamentally from the way that physicists did classical
mechanics astonished me. So, | asked my very wise lecturer on what origin this difference is based. His
answer wa that the superposition principle caused this difference. | was not very happy with this answer
because the superposition principle was indeed part of the methodology of quantum mechanics, but in those
days, | did not comprehend how that could preseniriai@ cause of the difference between the two meth-
odologies. | decided to dive into literature, and after some search, | encountered the booklet of Peter
Mittel steadt, i P h i ImodsroepPhhi yssci hked P(r1o9b6l 3e)me Tdheirs b o o k
about quantum logic and that appeared to me to contain a more appropriate answer. Later, this appeared a fa
too quick conclusion. In 1936 Garrett Birkhoff and John von Neumann published a paper that described their
di scovery of what gt ZpQuantura lodicéesdincé them e mathemmatidalderminology
known as an orthomodular lattif®). The relational structure of this lattice is to a large extent quite like the
relational structure of classical logic. That is why the duo gave theiralig er y t he name fiqu
This name was an unlucky choice because no good reason exists to consider the orthomodular lattice as &
system of logical propositions. In the same paper, the duo indicated that the set of closed subspaces of a
separable Hibert space has exactly the relational structure of an orthomodular lattice. John von Neumann
long doubted between Hilbert spaces and projective geometries. In the end, he selected Hilbert spaces as th
best platform for developing quantum physical theorienat appears to lmne of the main reasonghy
quantum physicists prefer Hilbert spaces as a realm in which they do their modeling of quantum physical
systems. Another habit of quantum physicists also intrigued me. My lecturer thought me that adbddserv
guantum physical quantities are eigenvalues of Hermitian operators. Hermitian operators feature real eigen-
values. When | looked around, | saw a world that had a structure that configures fromdintieresonal
spatial domain and a ofmtémensional ad thus, scalar time domain. In the quantum physics of that time, no
operator represents the time domain, and no operator was used to deliver the spatial domain in a compact
fashion. After some trials, | discovered a falimensional number system that abpkovide an appropriate
normal operator with an eigenspace that represented the fulllifoensional representation of my living
environment. At that moment, | had not yet heard from quaternions, but an assistant professor quickly told
me about the diseery of Rowan Hamilton that happened more than a century earlier. Quaternions appear
to be the number system of choice for offering the structure of physical reality its powerful capabilities.

The introductory paper of Birkhoff and von Neumann alreadytimeed quaternions. Much later Maria
Pia Soler offered a hard prove that Hilbert spaces can only cope with membprassaiativealivision
ring. Quaternions form the most extensive associative division ring. To my astonishment, | quickly discov-
ered thatphysicists preferred a spacetime structure that features a Minkowski signature instead of the
Euclidean signature of the quaternions. The devised Hilbert Book Model shows that in physicatheality,
Euclidean structure, as well as the spacetime stei@tppear in parallel. Observers only see the spacetime
structure. Physics is a science that focusses on observable information. My university, the TUE, targeted
applied physics, and there was not much time nor support for diving deep into the fundaofejiztdum
physics. After my study, | started a careethi@high-techindustry where | joined the development of image
intensifier devices. There followed my confrontation with optics and with the actual behavior of elementary
particles. See: http://lwwwphysics.eu/# What_image_intensifiers reveal.

In the second part of myareey | devoted my time t@stablisha better way of generating software. |
saw howthe industrywas very successful in the modular construction of hardwiére oftwarewas still




developed as a monolithic system. My experiences in thisateal e p o r Sterg of a WWar Against Soft-
war e Co mphttge/iixrd.oygfabs/1101.006and fAManaging the Softwa
http://vixra.org/abs/1101.0064t taughtme the power of modular design and modular construgtion

Only after my retirement, | got enough time to dive deep into the foundations of physical reality. In 200
after the recovery ddeveredisease, | started my personal research project that in 2011 got its current narr
AnThe Hil bert Book Model . o0 For the rest of his |
at a steady rate.
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2 Intention

Theoretical physics still contains unresolved subjects. These deficiencies adhedte caused by the
way that physics was developed and by the attitude of the physicists that designed the current theory. Scien-
tists take great care to secure the trustworthiness of their work, which ends in the publication of the results.
They take masures to prevent that their publications get intermingled with badly prepared publications or
even worse, with descriptions of fantasies. Forratonthey invented thecientific method7]. In applied
physics,the scientific methodoundson observations. Applied physics flourishes because the descriptions
of observations help to explore these findings, especially when formulas extend the usability of the observa-
tions beyond direct obsation. In theoreticgbhysics this is not always possible because not all aspects of
physical reality are observable. The only way of resolving this blockade is to start from a proper foundation
that can be extended via trustworthy methods that relyedaation. This approach can only be successful if
the deduction process is guided and restricted such that the extensions of the foundation still describe physical
reality. Thus, ifa mathematicaleduction is applied, then mathematics must guide andctekis process
such that mathematically consisteaxtension of the model is again a valid model of physical reality. After
a series of developmesiiepsthis approach must lead to a structure and behavior of the model that more and
more conforms tohe reality that we can observe.

This guidance and restriction are not ssiident. On the other hand, we know that when we investigate
deeper, the structure becomes simpler and easier comprehensitfleal§o,we come to dundamental
structure that gabe considered as a suitable foundation. The way back to more complicated levels of the
structure cannot be selected freely. Mathematics must pose restrictions onto the extensfandditinental
structure. This happens to be true for a foundatiomtaatdiscovered about eighty years ago by two scholars.
They called their discoveryuantum logid8]. The scholar duo selected the name of this relational structure
because its relational structuresembled closely the relational structure of the already known classical logic.
Garrett Birkhoff was an expert in relational structures. These are sets that precisely define what relations are
tolerated between the elements of the set. Mathematiciliribese relational structures lattices)dthey
classified quantum logic as anthomodular lattic§9]. John von Neumann was a broadly oriented scientist
that together with others was searching for a platform that was suitable fioodieéingof quantum mechan-
ical systems. He long doubted between two modeling platforms. One mragative geometryandthe
other was dlilbert spacq10] [11] [12].Finally, he selected Hilbert spaces. In their introductory paper, the
duo showed thatupantum logic emerges into a separable Hilbert space. The set of closed subspaces inside a
separable Hilbert space has exactly the relational structure of an orthomodular lattice. The union of these
subspaces equals the Hilbert space. A separable Hillzext sypplies an underlyinggctor spac¢l3], and
between every pair ofectors,it defines aninner produc{14]. This inner produiccan only apply nhumbers
that are taken from an associative division fitfg] [16]. In a divisionring, every noRzero member owns a
unique inverse. Only three suitable division rings exist. These are the real numbers, the complex numbers,
andthe quaterions. Depending on their dimension these number systems exist in several versions that differ
in the way that Cartesian and polar coordinate systems sequence their nj@8jbers

In the Hilbert space, operators exist that can map the Hilbert space olfitdnitdes way, the operator
can map some vectors along themselves. The inner product of a normalized vector with such a map produces
an eigenvalue. This turns the vector into an eigenvector. Together the eigenvalues of an operator form its
eigenspace. Ta story indicates that mathematics guides and restricts the extension of the selected foundation
into more complicated levels of the structure. It shows that the scholar duo started a promising development
project.

However, this initial development wastrmursued much further. Axiomatic models of physical reality
are not popular. Most physicists mistrust this approach. Probably these physicists consider it naive to suspect
that an axiomatic foundation can be discovered that like the way that a seed @valeertain type of plant,
will evolve into the model of the physical reality that we can observe.
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Most quantum physicists decided to take another route that much more followed the line of the physic
version of the scientific method. As could be su$pe this route gets hampered by the fact that not every
facet of physical reality can be verified by suitable experiments.

Mainstream quantum physics took tleeite [20] of quantum field theory21], which diversified into
guantum electrodynami¢22] andquantum chromodynamig¢&3]. It bases on therinciple of least action
[24], theLagrangian equatiof25] and thepath integra[26] However, none of these theories apply a proper
foundation.

In contrast, the Hilbert Book Model Project intends to provide a purely andasedistent mathematical
model of physical realityl] [20]. It uses the orthomodular lattice as its axiomatic fatiod and applies
some general characteristics of reality as guiding lines. An important ingredient is the modular design of mi
of the discrete objects that exist in the universe. Another difference is that the Hilbert Book Model relies «
the control oftoherence and binding by stochastic processes that own a characteristic function instead of
weak and strong forces and the force carriers that QFT, QED, and QCO2ggB2] [23].

Crucial to the Hilbert Book Model is that reality applies quatemiaidlilbert spaces as structured read
only archives of the dynamic geometric data of the discrete objecesxibtah the model. The model stores
these data before they can be accessed by observers. This fact makes it possible to interpret thédenodel
creator of the univers&he classification of modules as observers introduces two different views; the crea
tor6s view and the observeros view. Time revers
by observers because observetsniravel with the scanning time window.
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3 The Hilbert Book Base Model

The HilbertBook Model Project deviates considerably from the mainstream approaches. It tries to stay
inside apurelymathematical model that can be deduced from the selected foun&asbit designs a base
model that is configured from a huge set of quaterniseparable Hilbert spaces that all share the same
underlying vector space. One of these separable Hilbert spaces takes a special role and acts as a backgrour
platform. It has annfinite dimension,andit owns a unique noeseparable Hilbert space that lesdls its
separable companion. Together these companion Hilbert spaces form the background platform of the base
model. A reference operator manages the private parameter space of each separable Hilbert space. The ele
ments of the version of the number systémat the Hilbert space uses for specifying its inner products
constitute this parameter space. These private parameter spaces float with their geometric center over the
private parameter space of the background platform. Via the applied coordinate siystqgrasameter spaces
determine the symmetry of the corresponding Hilbert space. An elementary module resides on each floating
separable Hilbert space. The eigenspace of a dedicated footprint operator archives the complete life story of
this elementary notule. After sequencing the real parts of these eigenvalues, the archive tells the life story
of the pointlike object as an ongoing hopping path that recurrently regenerates a coherent hop landing loca-
tion swarm. The location density distribution that digss the swarm equals the square of the modulus of
what physicists would call the wavefunction of the elementary module. Mainstream quantum physics calls
the elementary modules elementary particles. They behave as elementary modules, but mainstresam physic
doesnot exploit that interpretation. In contrast, the Hilbert Book Model Project exploits the modular design
of the model.

In fact, the sequencing defines a subspace of the underlying vector space that scans as a function of
progression over the wholeaakel. This scanning window divides the model into a historic part, a window
that represents the current static status quo, and a future part.\ayhtee dynamic model resembles the
paging of a book in which each page tells a univeiisie story of wiat currently happens in this continuum.

This explains the name of the Hilbert Book Model. Together with the requirement that all applied separable
Hilbert spaces share the same vector space the fact that a window scans the Hilbert Book Base Model as ¢
function of a progression parameter results in the fact that these quaternionic separable Hilbert spaces share
the same real number based separable Hilbert space. After sequencing the eigenvalues, the eigenspace of tt
reference operator of this Hilbert spawts as a model wide proper time clock.

In contrast to the Hilbert Book Model, most other physical theories apply only a single Hilbert space that
applies complex numbers for defining its inner product, or they appbchk spacg27], which is a tensor
product of complex number based Hilbert spacdsnfor product of quaternionic Hilbert spaf@8j results
in a real number based Hilbert spacetha Hilbert Book Base Model, the quaternionic separable Hilbert
spaces share the same real number based Hilbert space.

The coherence of the hop landing location swarm that configures the footprint of an elementary module
is ensured by the fact that thechanism that generates the hop landing locations is a stochastic process that
owns a characteristic function. This characteristic function is the Fourier transform of the location density
distribution of the hop landing location swarm. The mechanism teflee effect of the ongoing embedding
of the separable Hilbert space of the elementary module into the backgrousepaoable Hilbert space. A
continuum eigenspace of a dedicated operator registers the embedding of the hop landings of all elementary
modules into this continuum. The continuum corresponds to the dynamic field that physicists call the uni-
verse. This field acts as the living space of all discrete objects that exist in the universe.

310pen questions

The suggested Hilbert Book Base Model ras@ase questions. The fact that the set of rational numbers
is countable is used to suggest that a proper time clock exists and that this clock ticks with a fixed and model
wide minimal period. The Hilbert Book Model does not offer an explanation or astigygtor this minimal
period. The known value of the frequency of the photon that is generated at the annihilation of an elementary
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particle offers some indication. For the electron that means a frequency of adden®. However, this
elementary paitle category exists in three known generations: electron, muon and tau.

Further, it is suggested that the private stochastic process generates a new hop landing location at «
clock tick. It is possible that the stochastic process acts slower tharopez pme clock and its rate differs

for each generation.
Also, the mass of different type categories of elementary particles differs. Currently, the Hilbert Boo

Model has no detailed explanation for that difference.




4 Modeling dynamic fields and discrete sets

The eigenspace of a dedicated footprint opelatarquaternionic separable Hilbert spaee represent
the dynamic geometric data of the peikke object that resides on this Hilbert space. The eigenspace of
operators in a quaternionic nseparable Hilbert space can, in addition, represent the ptescrof a dy-
namic continuum. We already met the eigenspace of the reference operator, which represents the private
parameter space of the Hilbert space. In the separable Hilbert space this eigenspace is countable and contain
only the rational values ofieé version of the quaternionic number system that the separable Hilbert space can
apply as eigenvalues. In the nseparable Hilbert space, the eigenspace of the reference operator also con-
tains all the limits of the congruent seriesrafional values. Casequently, this eigenspace is no longer
countable. In each of the applied Hilbgpacesit is possible to use the reference operator to define a category
of newly defined operators by taking for each eigenvector of the reference operator a new eggératalu
equals the target value of a selected quaternionic function for the parameter value that equals the correspond-
ing eigenvalue of the reference operator. In the quaternionic separable Hilbert space the new eigenspace
represents the sampled field tietlescribed by the selected quaternionic function. In the quaternioric non
separable Hilbert space the new eigenspace represents the full continuum that is described by the selectec
guaternionic function. Continuum eigenspaces can represent the matheetpticalent of a dynamic phys-
ical field. The private parameter space of a quaternionic Hilbert space represents a flat field. The dynamics
of a field can be described by quaternionic differential equations.

Quaternionic second order partial differenggluations describe the interaction between gikatac-
tuators and a dynamic field. Physical fields differ from mathematical fields by the fact that the value of the
physical field is represented in physical units. All basic fields obey the same quatethiterential and
integral equations. The basic fields differ in their start and boundary conditions.

41 Quaternionic differential cal cul us

The first order partial differential equations divide the change of a field in five different parts that each
repreent a new field. We will represent the field change operator by a quaternionic nabla operator. This
operator behaves as a quaternionic multiplier.

A quaternion can store a tirsgamp in its real part andtlireedimensionakpatial location in its imag-
inary part. The quaternionic nalla acts as a quaternionic multiplying operator. Quaternionic multiplication
obeys the equation

c=c 4 ab (a _’%(-l-b ﬂa» +Harb=<#,£)3- ab ab at (411)
The ° sign indicates the freedom of choice of the handedness of the product rudgistsivhen
selecting a version of the quaternionic number system. The first order partial differential follows from

The spatial nable is wel-known as the del operator and is treated in det&liknpedia [30] [31]
a S N - .- -
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cle -
The differentialby describes the change of fieyd . The five separateerms in the first order partial

differential have a separate physical meaning. All basic fields feature this decomposition. The terms may
represent new fields.

f=0y (.8 (4.1.4)

f=Dy +& ° DRE B (4.15)
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Bf is the gradient off .
(B, f)is the divergence of .
B 3f isthe curl of f .

The conjugate of the quaternionic nabla operator defines another type of field change.
p=p - (4.1.6)

z=pralk = r)s . =0 p @ (4.17)

42 Fi el d excitations
Field excitations are solutions of second order partial differential equations.

One of the second order partial differential equtions results from combining the twofirst -order partial differ-

ential equations £ = Dyand £ = b

=P/ =P =P = K -
z=Dj QAE W = )P+ B( pye) w2
=(2 P (+. B)p
Integration over the time domain results in the Poisson equation
r=(®py (42.2)

1
Under 1isotropic conditions, a verf;ancti;)rpq—eaq:bfahb S «

affected field. This solution is the spatial Did(cﬁ) pulse response of the field under strict isotropic con-

ditions.

1 (d- ) w2
q_ ql ‘q_a'B L.
Lo 1 S| =~_(q-5') -
<D,@—‘q_a < ’D\_ﬁg-_a'> ’\q—-%f % da q) (4.2.4)

Under these conditions, the dynamic sphericat@uésponse of the field is a solution of a special form
of theequation(4.2.1)
(B8 .0)p 4p@ a)-(g 9 (4.2.5)

Here q( ) is a step function and(ﬁ]) Is a Dirac pulse responf&3] [34].
After theinstant/ ', this solution is described by




y = — (4.2.6)

The normalized vectai can be interpreted as the spin of the solution. The spherical pylsasesacts
either as an expanding or as a contracting spherical shock front. Over time this pulse response integrates intc
the Greends function. This means that the expandi
field. Subsequentlythe front spreads this volume over the field. The contracting shock front collects the
vol ume of the Greenbds f unc ttisignin equatidrf4.8.5) selects betvwweeno u t
injection and subtraction.

Apart from the spherical pulse response equdddh5) supports a ondimensional pulse response that
acts as a ondimensional shock front. This solution is described by

Y :f(‘q 6\ & ¢ ?ﬁ) (42.7)

Here, the normalized vectdican be interpreted as the polarization @& $olution. Shock fronts only
occur in one and three dimensions. A pulse response can also occur in two dimensiortbat case, the
pulse response is a complicated vibration that looks like the result of a throw of a stone in the middle of a
pond.

2
Equations(4.2.1) and (4.2.2) show that the operatorﬁi;—zand <E3, TE) are valid second order patrtial

differential operators. These operators combine in the quaternionic equivalentvaivthequatiof35].

._ay

J 8%72 { o) >E)% (4.2.8)

This equation also offers onedimensional and threedimensional shock fronts as its solutions.

= f(‘q_a; Oj(f -)) (42.9)
a- d
y :f(‘q 6\ ¢ ¢ -)) (4.2.10)

These pulse responses do not contain the normed veddmartfrom pulse responses, the wave equa-
tion offers waes as its solution81 [35].
By splitting the field into the time-dependent part T(¢)and a location dependent part,A(q) , the

homogeneous version of the wave equation can be transformed into titelmholtz equation[36].

2
%:< Dl =iy (42.11)
y (@, )=AQT( ) (4212)
1T 1~ -
-F - W
T A< %) PA (4.2.13)
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(B, DA WA (4.2.14)

Thetime-dependenpart T(¢) depends on initial conditions, or it indicates the switch of the oscillation
mode. Theswitch of the oscillation mode means that temporarily the oscillation is stopped and instead ¢
object is emitted or absorbed that compensates the difference in potential eneriggailibedependent
part of the field A(g) describs the possible oscillation modes of the field and depends on boundary condi

tions. The oscillations have a binding effect. They keep the moving objects within a bounde{Bi@gion
For three-dimensional isotropic spherical conditions, the solutions have the form

A(r.g, )= ; I'a'.{(%h(kr)) B, Y"( ,67)}/ (4.2.15)

I1=0m =1-

Here j, and Y| are the spherical Bessel functions, and Y,m are the spherical harmonics [38] [39]. These

solutions play a role in the spectra of atomic modules.
Planar and spherical waves are the simpler waveolutions of equa-
tionFout! Verwijzingsbron niet gevonden.

y (4, f)=exp[ﬁ(R,(fq g) - wt )} (42.16)
y (4, 9= exp{ﬁ(l?,(a: ff) ! +)} (42.17)
- o

A more general solution issauperposition of these basic types.

The paper treats quaternionic differential equations more extensively in chépter 1
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5 Photons

Photons are objects that still offer significant confusion among physicists. The mainstream interpretation
is still that phaoons are electromagnetic waves [40]. This interpretation conflicts witknthenbehavior of
photons. Photons that are emitted by a nearby star can be detected by a human eye. Since the space betwe:
the star and the earth does not contaaneguideswaves cannot do this trick. Electromagnetic fields require
the nearby presence of electric charges. Both conditions forbid that photons are implemented by electromag-
netic waves.

51 Photon structure

Photons are ondimensional objects that are strings of equidistant energy packages, such that the string

obeys the EinsteiRlanck reléion
E=tn (5.1.1)

The energy padges are implemented by edinensional shock fronts that possess a polarization vec-
tor.
52 On-di mensi onal pul se responses

Onedimensional pulse responses that act asdimensional shock fronts and possess a polarization
vector are solutions of treguatian (4.2.5) and are described by tlequation(4.2.7).

Y :f(‘q -6'\ & ¢ ?ﬁ) (5.1.2)

During travel, the front f (q) keeps its shape and its amplitude. So also, duringramgetrips, the

shock front does not lose its integrity. The -@lm@ensional pulse response represantsnergy package that
travels with speed c through its carrier field. The energy of the package has a standard value.

In theanimationof this left handed
circular polarized photon, the black 3
rows represent the moving shock fror
[41]. The red line connects the vectd
that indicate the amplitudes of the sq
arate shock fronts. Here the picture
aguidedwave is borrowed to show th
similarity with suchEM waves.How-
ever,

photons are not EM waves!

53 Photon integrity

Except for its speed, the photon emitter determines the properties of the photon. These properties are its
frequency, its energyndits polarization. The energy packages preserve their own integrity. Theydtavel
constant speed and follow a worldlifhoton emission possesses a fixed duration. It is not an instant process.
During emissionthe emitter must not move and can only rotate around the direction of travel. Failing these
requirements will compromise the integrity of the photon and make itssifple for adistanttiny absorber
to capture the full photon. In thahsethe energy packages will spray and fly to multiple locations. Conse-
quently, they will actike dark energy objects.

The absorption of a photon by an atom requires an incredibiagiprecision of the emitter. fiact,
this emission can only be comprehended when it is interpreted as the time reversal of the corresponding



https://en.wikipedia.org/wiki/Circular_polarization

emission process. If the absorbing atom cannot cope with the full energy of the photon, then it might abs
only part of the energy packages of the photon. The rest will stay on its rolésextabsorber. Absorbing
individual energy packages will resultanincreasen the kinetic energy of the absorber. Absorbing the full
photon or a part af will resultin an increase the potential energy of the absorbdsually, this results in

a higher oscillation mode of one or more of the components of the absorber.

54 Li ght

Light is a dynamic spatial distribution of photons. Often the location density distribution of photons
owns a Fourier transfornn that casglight may show wave behavidthotons are ondimensionaparticles
that featureprivate frequency and energyingle photons do not show wave behavior. Photons and light
waves will feature different frequencies.

55 Opti cs

Optics is the science of imaging distributions of particles that can be characterized by a location dens
distribution and a corresponding Fouti@nsform of that location density distributidiven though photons
have a fixed notzero spatial length, optics will treat these particles as {likmbbjects. Another name for
the location density distribution is point spread function (PSF). Anoiere for the Fourier transform of
the PSF is theptical transfer functiof(OTF) [42]. Apart from a location density distribution, the swarm of
the particles is also characterized oy angular distribution and by an energy distributionthia caseof
photonsthe energy distribution iglsoa chromatic distribution.

A linearly operating imaging device can be characterized by its point spread function or alternatively |
its OTF. This point spread function is an image of a pdiké object. The FSF represents the blur that is
introduced by the imaging device. For a homogeneous distribution of particle properties, the OTF of a ch:
of linearly operating imaging devices equalsthepecotiu of t he OTF6s of t he se

The imaging properties of an imaging device may vary as a function of the location and the orientatic
in the imaging surface.

Without the presence of the traveling particles, the imaging devices keep their OTIRag&mares and
patterns of apertures feature an OTF. That OTF handles single particles similarly as this feature hanc
distributions of particles.
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6 Modular design and construction

The discrete objects that exiatthe universeshow a modular design. In modular configurations, ele-
mentary particles behave as elementary modules. Together they constitute all modules that exist in
universe. Some modules constitute modular systems.

Also, photons show a modular structure.

6.1 EIl emeynwtmaodul es

6.1.1 Symmertelyat ed charge

Elementary modules are very complicated objects that reside on a private platform, which posses:
some of the characteristic properties of the elementary module. These properties establish the type
elementarymodule.

Elementary modules reside on a pt Hilbert space, which uses a selected version of the quaternionic
number system to specify its inner products. Consequently, the operators in this Hilbert space apply memt
of this version to specify its eigenvalues. The eigenspace of this opeflgitsréhe properties of this version.
Thus, the eigenspace of the reference operator reflects the symmetry of the Hilbert space. Its geometric ce
floats over the background parameter space. The symmetry is defined relative to the symmetry of the be
ground platform. Mathematics can compare these differewbes the axes of the Cartesian coordinate
systems in these parameter spaces are parallel to each other. The model afpide tiesoremand the
Gauss theorerto determinethe effect of the symmetry differencgk3] [44]. See section 16.3 he only
freedoms that are left are the locations of the geometric centers pdithmeter spaces and the way that the
elements of the versions of the number systems are sequenced along the axes. These restrictions redu
list of symmetry differences to a short list. It means that the elementary modules exist in a small number
differentsymmetryrelatedcategories. The symmetry difference is represented by a symraktigd charge
that resides at the geometric center of the private parameter space. The opposed restrictions that deter
the allowable versions of the quatemim number system restrict the list of valuessgimmetryrelated
chargedo -3, 2, 10, 1# 2,+. The isotropic symmetry differences are represented3)p, 8

The symmetryrelated charges correspondsigmmetryrelatedfields. At the location of theharge,a
source or a sink generates a corresponding potential.

The anisotropic differences spread over the three coordinate axes and are indicated by corresponc
RGB color charges. If we extend this distinguishing to the real @ixine parameter spaces, then the anti
color charges add to the three RGB color charges. Further, the product rule of the quaternions introdu
diversityin the handiness of the version of the number system. The polar coordinate system also allows"
polar angle and the azimuth to run up or down. The range of the polar angladeins. The range of the
azimuth is 2 radians. This freedom of choice adds to the freedom that is left by the Cartesian coordina
system.

The first conclusion is that elemany modules exist in a short list of categories that differ in their sym-
metry-related properties, in their angular range properdéiegin their arithmetic properties.
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6.2 Modul ar configuration

The elementary modules can combine into composed modules. Baalgles combine into modular
systems. However, not all modules can compose with arbitrary other modules. For example, sygametry
lated charges that have the same sign will repel each other, while syrnet@tied charges with @ifferent
sign will attract. Composition applies internal oscillation of the components of the module. This is explained
in the next section. Only elementary modules with the proper angular symmetry can take part in the modular
composition process. These elementarydules are called fermions. The other elementary modules are
called bosondnside a composed moduleyfions cannot share the same oscillation mode and cannot share
the same angular properties, such as spin. The binding via internal oscillation reugpbeed by the at-
traction that is caused by deformation of the embedding fidgldsymmetryrelatedcharges also influence
the efficiency of the bondl'he anisotropic elementary modules cannot themselves deform the embedding
field. They must first comhbe into colorless hadrons before their combination can deform the embedding
field. Physicists call this phenomenon color confinement.

The hop landings of isotropic elementary modules can produce spherical pulse responses that deform
the embedding fieldSimilarly, the hop landings of hadrons can produce such spherical pulse responses.

621 Open question

The Hilbert Book Model does not explain why fermions feature an exclusion principle, while bosons do
not possess such property. This phenomenon determinsfribire of atoms and is known as the Pauli
exclusion principle.




63 St ochastic control

For each elementary module, a private stochastic process generates the hop landing locations in the
going hopping path that recurrently regenerates the coheretdrgipg location swarm that constitutes the
footprint of the elementary module. Only for isotropic elementaogdulesthe hop landings can deform the
embedding field. The footprints of anisotropic elementary modules must first combine into colorless hadro
before these footprints can deform the embedding field. This phenomenon is known as color confinemen

The type of stochastic process that generates the footprint of elementary modules owns a character
function that equals the Fourier transformtioé location density distribution of the coherent hop landing
location swarm. It is possible to interpret the stochastic processpasia Poisson point processi 3 [45].

The intensiy function of this process is implemented by a spatial point spread function that equals the loc
tion density distribution of the generated hop landing location swalhma. eigenspace of the footprint
operator archives the target values of a quaternionictifin, whose spatial part describes the point spread
function. A cyclic random distribution describes the real parts of these target values. After sequencing the
real parts, the eigenspace describes the ongoing hopping path of the elementary module.

Thelocation density distribution can be interpreted as a detection probability density distribution. If i
has a Fourier transform, then a kinduofcertainty principleexists between theatdard deviation of the
detection probability density distribution and the standard deviation of the modulus of this Fourier transfor
[46]. If the standard deviation of the modulus of this Fodrarsformincreases, then the standard deviation
of the cetection probability density distribution decrea&ewd vice versa)

Thesecondype of stochastic process controls composed modules. This process also owns a charac
istic function. This characteristic function is a dynamic superposition of the akrastictfunctions of the
components of the module. The superposition coefficients act as displacement generatosgajnttiese
coefficients control the internal positions of the components. Irmas these components perform their
own oscillationmode. All modules attach an extra displacement generator to their characteristic functior
This displacement generator determines the location of the full module.

This analysis tells that the characteristic functions, which reside in Fourier space define the constituti
of the module. In Fourier space spatial locality has no meaning. It means that the components of a moc
can be far apart. The phenomenon isvkmasentanglemen7]. Only the attracting influences of potentials
can keep components closely together.

63.1 Superposition

The way that superposition is implemented in the Hilbert Bdolel explains the most important dif-
ference between classical physics and quantum physics. Superposition of field excitations occurs in Fou
space and is controlled by the characteristic functions of stochastic processes. Color confinement inhibits
generation and subsequent superposition of the field excitation for quarks. They must first combine ir
colorless hadrons before they can generate the required pulse responsdsisAlsmbination is controlled
by oscillations that are managed by tharacteristic functions of the corresponding stochastic processes.
Since the definition of a composed module is defined in Fourier siha@decation of the components of the
modules in configuration space is not important for this definition. Thisitefirdoes not depend on this
location. Entanglement is the phenomenon that allows components of a module to locate far apart. This
becomes observable when these components possess exclusive properties.

632 Open questions

The Hilbert Book Model offers ndetailed explanation why the ongoing embedding of elementary mod-
ules is represented by a private stochastic process that owns a characteristic function. Similarly, the Hilk
Book Model offers no explanation for the fact that binding of modules insidpas®ed modules is controlled
by a stochastic process that owns a characteristic function that is a dynamic superposition of the character
functions of its components. In effect, this means that the HBM does not explain why superposition of mo
ules is @fined in Fourier space.
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64 Benefits of modul ar design and constru

Modular design hides relations that are only relevant inside the module from the outside of the module.
In thisway, themodulardesign reduces the relational complexity of the constmuof composed modules.

This is further improved by the possibility to gather relations in standard interfaces. This standardization
promotes the reusability of modules. The fact that composed modules can be generated from lower level
modules has aenomously beneficial effect on the reduction of the relational complexity of the modular
composition process.

By applying nodular designthe creator has prepared the universe for modular construction, which is a
very efficient way of generating new objedtiowever, modular configuration of objects involves the avail-
ability of modules that can be joined to become higher level modules or modular systems. This means that
enough resources must be available at the proper place and the proper time. The geharatamule out
of composing modules makes sense when the new module has a profitable functionality. An advantage can
be that the new module or modular system has a better chance of survival in a competitive environment. In
that case, stochastic modulasim can easily win from monolithic desidgvolution can evolve with a pure
stochastic modular design. However, as soon as intelligent species are generated as modular systems, the
these individuals can take part in the control of evolution by intelligen@ular design. Intelligent modular
design and construction occur much fasit@n stochastic modular design and constructitmwever, intel-
ligent modular design and construction only occur where intelligent species exist. These locations are not
widespead in the universe.

641 Modul ar hierarchy

The modular hierarchy starts with elementary modules. Elementary modules exist in several types that
differ in their basic properties.

These basic properties are their symmetttgted charge, their spiandtheir regeneration cycle.

642 Compound modul es

Compound modules aoemposeemodules for which the geometric centers of the platforms of the com-
ponents coincide. The charges of the platforms of the elementary modules establish the binding of the
corresponding platfons. Physicists and chemists call these compound modules atoms or atorj#8Jions

In free compound modules, the symmaeatelated charges do not take part in the oscillations. The targets
of the private stochastic processes of the elementary moduleatesdiliis means that the hopping path of
the elementary module folds around the oscillation path and the hop landing location swarm gets smeared
along the oscillation path. The oscillation path is a solution of the Helmholtz eq{&gijoizach fermion
mug use a different oscillation mode. A change of the oscillation mode goes together with the emission or
the absorption of a photon. The center of emission coincides with the geometrical center of the compound
module. During the emission or absorption, tiseillation mode and the hopping path halt, such that the
emitted photon does not lose its integrity. Since all photons share the same emission duration, that duration
must coincide with the regeneration cycle of the hop landing location swarm. Absaatioot be inter-
pretedso easily In fact, it can only be comprehended as a {imersed emission adDtherwise,the
absorption would require an incredible aiming precision for the photon.

The type of stochastic process that controls the binding of aoenp®appears to be responsible for the
absorption and emission of photons and the change of oscillation modes. If photons arrive with too low
energy, then the energy is spent onkimetic energy of the common platform. If photons arrive with too
high erergy, then the energy is distributed over the available oscillation maxlgthe rest is spent on the
kinetic energy of the common platforrar it escapes into free spadée process must somehow archive the
modes of the components. It can apply thegte platform of the components for that purpose. Most proba-
bly the current value of the dynamic superposition coefficient is stored in the eigenspace of a special
superposition operator.




6421 Open questions

The Hilbert Book Model does not reveal the fadetails of the photon emission, and consequently it does

not reveal the fine details of photon absorption.
643 Mol ecul es

Molecules are conglomerates of compound modules that each keep their private geometri¢ddtenter
However, electron oscillations are shared among the compound modules. Together with the sggametry
latedchargesthis binds the compound moduleso the molecule

644 Consciousness and intelligence

In the Hilbert Book Model, all modules are consideredctaaa observers. That does not mean that these
modules reacto the perceived information in a conscious or intelligent way. In the hierarchy of modular
systems, compared to intelligence, consciousness already enters at lower levels of cofBplepaty.
However, consciousness cannot be attributed tdimimy modular systems. Primitive life forms have prim-
itive degrees of consciousness.

Intelligent species show sakflection and can create strategies that guardtiiprcommunity or their
sociakcommunity. Conscious species can also develop such guarding measures, but that is usually a re
of trial and error instead of a developed strategy. The strategy is then inherited via genes.

For intelligentspeciesthe modular design strategy of the coeatan be an inspiration.

Modular design is superior to monolithic design.

Modular construction works economically with resources.

It is advantageous to have access to a large number and a large diversity of suitable modules.
Create moduktype communities

Type communities survive far longer than the corresponding individual modules.

Members must guard their module type community.

Type communities may inhe@ind cultivateghe culture of their members.

Modular systems must care about the type communitieshich they depend.

Modular systems must care about their living environment.

Darwinds statement t sueivemushberepladed byre statemier thait thiei d
moduletype community survives that cares best for its members, its re=s®and its environment.

= =4 =4 -4 4 48 -9 -2 -5 -9

In modern human activity hardware is often designed and constructed in a modular way. In contra
software is typically designed and constructed in amodular way. In comparison software is far less
robust than hardware.




7 Dark objects and progression zigzag

The effects of the shock fronts that are causegulses are so tiny that no measuring instrument will
ever be able to detect the presence of the single shock fronts. Thus, these field excitations can rightfully be
called dark objects or more in detail dark energy and dark matter [52] [53]. Thests blejgome noticeable
in huge coherent ensembles that may contain abétlénents. The orgimensional shock fronts combine
in photons,andthe spherical shock fronts combine in the footprints of elementary particles. They can ex-
change roles in pair pduction and pair annihilation events. fedaserversthese events pose interpretation
problems. However, the model can interpret these events as time reversal that converts a particle into its
antiparticle or vice versa. This interpretation relies omthssenergy equivalence and on the fact that during
the conversion each omtmensional shock front is exchanged against a spherical shock front. In this
interpretationelementary particles can zigzag through the time domain. This vision suggestateataig
particles never die, but at the utmost change the direction of their life story and turn into its antiparticle. The
conversion does not happen instantaneously. It takes the full regeneration cycle of the hop landing location
swarm of the elementaparticle. Theuniversewide proper time clock ticks with a frequency of about®10
ticks per second and the regeneration then takes ab@urdper time clock ticks.

In huge numbers, spurious dark objects may still cause noticeable influences. Tokdaalomatter
around galaxies is known to produce gravitational lensing effects.

Even though the Hilbert Book Model does not consider the shock fronts as the lowest level of modules,
the shock fronts together constitute all discrete objects that exighéuniverse.

The Hilbert Book model considers elementary modules as the lowest level modules. They are compli-
cated constructs that consist of a quaternionic separable Hilbert space, a selected version of the quaternionic
number system and a privachastic process that generates their life story.




8 Gravity

Mainstream physics considers the origin of the deformation of our living space as an unsolved proble
[54]. It presents the Higgs mechanism asetkiglanationvhy some elementary particles gie¢ir mass [55]
[56]. The Hilbert Book Model relates mass to deformation of the field that represents our universe. Th
deformation causes timautualattraction of massive objects [57].

81 A deforming field excitation

A spherical pulse response is a solution of a homogeneous second order partial differential equation 1
was triggered byan isotropic pulse. The corresponding field equation and the corresponding solution ar

repeated here.
(E)rE? {,E)))ﬁ) apl@ q)-(g (8.1.1)

Here thet sign represents time inversion.

f(ja-af (¢ )7
y = — (8.1.2)
- d
The spherical pul se response integrates over
function is a soltion of the Poisson equation.
r= < ko) }py (8.1.3)
The Greenb6s function occupies some vol ume.
. 1
9(0) =——= (8.1.4)
g- 9

This means that locally the pulse pumps some volume into the field, or it subtracts volume out of t
field. The selection between injection and subtraction depends on the sign in the step futiaieqguation
(8.1.1). The dynamics of the spherical pulse response shows that the injected volume quickly spreads o
the field. Inthe caseof volume subtraction, the front first collects the volume and firallgtracts it at the
trigger location. Gravitation considers the case in which the pulse response injects volume into the field.

Thus, locally and temporarily, the pulse deforms the fehdithe injected volume persistently expands
the field.

This paper pstulates that the spherical pulse response is the only field excitation that temporarily
deforms the field, while the injected volume persistently expands the field.

The effect of the spherical pulse response is so tiny and so temporarily that no instrument can e
measure the effect of a single spherical pulse response in isolation. However, when recurrently regener:
in huge numbers in dense and coherent swanmptlse responses can cause a significant and persistent
deformation that instruments can detect. This is achieved by the stochastic processes that generate the
print of elementary modules.

The spherical pulse responsessdraightforwarccandidate$or what physicists call dark matter objects.

A halo of these objects can cause gravitational lensing.

82 Gravitation potenti al

The gavitation potential that an elementary module causes can be approached by the convolution of
Greends function of the field and the | ocation
approximation is influenced by the fact that tleéodmations, which are due to the individual pulse responses
quickly fade away. Further, the density of the location distribution affects the efficiency of the deformatior




The Greends functi on -lkepslsewhobeeesponsdl@mnasseobitsdwh. We f a
know how to compute thmass of a distribution of point mas$b8]. At some distance of the center of the
swarm,the gravitation potentiatan be approximated §§9]

Gm

g(r)° —~ (8.2.1)

wheremis the mass of thebjectandr equals the distance to tleenterof mass Here we omit the
physical unitsG is the gravitational constanthe fact that alistribution of pointlike masses cause the
gravitation potential makes this simple approximation possible.

More exactly, the gravitation potential of the elementary module can be approximated by taking the
convolution of the location density distributiohthe hop landing location swarm. If we do this for example
for a Gaussian location density distribution, then the convolution resy@8]in

o ERF(r)
g(r)° Gm .

(82.2)

Where ERF(r) is the wellknown errorfunction. Here the gravitation potential is a perfectly smooth

function that at some distance from the center equals the approximated gravitation potential that was de-
scribed above in equatidB.2.1). The convolution oy offers an approximation because this computation
does not account for the influenaigthe density of the swarm and it does not compensate for the fact that the
deformation by the individual pulse responses quickly fades away. Thus, the exact resudisdap the
duration of the recurrence cycle of the swarm.

In theexample we apply a normalized location density distribution, thetactual location densitglis-
tribution might have a higher amplitude.

This might explain why some elementary module tygpastin three generatiorié1] [62] [63].

ERF(r)/rand 1/r

83 Regeneration

The generation of the hopping path is an ongoing process. The generated hop landing location swarm
contains a huge number of elements. Each elementary module type is controlled by a corresponding type of
stochastic process. For the stochastic processtlomliyourier transform of the location density distribution
of the swarm is important. Consequently, for a selected type of elementary module, it does not matter at what
instant of the regeneration of the hop landing location swarm the location dertsibutic is determined.
Thus, even when different types are bonded into composetliles there is no need to synchronize the
regeneration cycles of different types. This freedom also means that the number of elements in a hop landing
location swarm mayitfer between elementary module types. This means that the strength of the deformation
of the embedding field can differ between elementary module types. The strength of deformation relates to
the mass of the elementary modules according to for(8ld4).
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The requirement for regeneration introduces a great mystery. All generated mass appears to dilute a
and must be recurrently regeneratéhis fact conflcts with the conservation laws of mainstream physics.
The deformation work done by the stochastic processes vanishes completely. What results is the ongc
expansion of the field. Thus, these processes must keep generating the particle to which tgeyheelon
stochastic process accurately regenerates the hop landing location swarm, such that its rest mass stay
same.

Only the ongoing embedding of the content that is archived in the floating platform into the embeddir
field can explain the activityfahe stochastic process. This supposes that at the instant of creation, the creat
already archived the dynamic geometric data of his creatures into the eigenspaces of the footprint operat
These data consist of a scalar tistamp and a thredimensonal spatial location. The quaternionic eigen-
values act as storage bins.

After the instant of creation, the creator left his creation aldhe. set of floating separable Hilbert
spaces, together with the background Hilbert space, act asanlgae@po#ory. After sequencing the time
stamps, the stochastic processes read the storage bins and trigger the embedding of the location intc
embedding fieldn the predetermined sequence

831 Open question

If the instant of archival proceeds the passagbhefvindow that scans the Hilbert Book Base Model as
a function of progression, then the behavior of the model does not change. This indicates a freedom of
model.

84 1l nertia

The relation between inertia and mass is complid@4j[65]. It assumes that a fielgexists that tries
to compensatéor the change of the field when its vector part suddenly changes with time.

This special field supports the hop landing location swarm that resides on the floating platform. It reflec
the activity of the stochastic proceaadit floats with the platfornover the background platform. It is char-
acterized by a mass value and by the uniform velocity of the platform with respect to the backgrour
platform. The real part conforms to the deformation that the stochastic process causes. The imaginary |
conforms to thespeed of movement of the floating platforithe main characteristic of this field is that it
tries to keep its overall change zero. We xétle deformation field

The first order change of a field contains five terms.hdatatically, the statement that in first approxi-
mation nothing in the fieldcchangesindicates that locally, the first order partial differentilx will be

equal to zero.

z= Bx =, E)X< 5 a>DXQ +B +B 0 (84.1)
The terms that are still eligible for change ntogfether be equal to zero. These terms are.

bx + B G (84.2)

In the following text plays>? the role of the vector field aii plays the role of the scalar gravitational
potential of the conS|dered object. We approximate this potential by usmglé&B.2.1).

|
The new fieldx = 17 Vv |conS|ders ainiformly moving mass as a normal situation. It is a combination

of the scalar potential_ and the uniform speed.
r




. . em _ i .
If this object accelerates, then the new flekri,v | tries to counteract the change of the figldy
l !

compensating this with an equivalent change of the real_rBadf the new field.According to equation
r
(8.4.2), this equivalent lsange is the gradient of the real part of the field.

a (8.4.3)

I
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This generated vector field acts on masses that appear in its realm.
Thus, if two masseBl andM, existineachothe6s nei ghbor hood, then any
will cause the gravitational force

F(,-F,) ma -—mmZ(? ) (8.4.4)
r

. 3
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The disturbance by the ongoing expansion of the field suffices to put the gravitational force into action.
The description also holds when the figldiescribes aonglomerate of platforms arf@ represents the mass

of the conglomerate.
In compound modules such as ions and atoms, thexfieléd component oscillates with the deformation

rather than with the platform.

Inertia bases mainly on the definition of mass that applies to the region outside the sphere where the
gravitation potenti al behavestheafmmuta,hemabplieseFurma, fun
r

it bases in the intention of modules to keep the gravitation potential inside the mentioned sphere constant. At
least that holds when this potential is averaged over the regeneration periodcasétibhe overall change
z of the deformation fieldequals zero. Next, the definition of the deformation field supposes that the swarm

which causes the deformation moves as one unit. Further, the factlifaséhe solutions of the homoge-
neous second order partial differential equation can superpose in new solutions of that same equation.

The popular sketch in which the deformation of our living space is presented by smooth dips is obviously
false. The sty that is represented in this paper shows the deformations as local extensions of the field, which
represents the universe. In batketchesthe deformations elongate the information path, but none of the
sketches explain why two masses attract eachr.oflve above explanatidoundson the habit of the sto-
chastic process to recurrently regenerate the same time average of the gravitation potential, even when that
averaged potential moves uniformly. Without the described habit of the stochastic pranessasyould
not exist.

Similar tricks can be used to explain the electrical force from the fact that the electrical field is produced
by sources and sinks that can be described by th




9 In the beginning

Before the stochastic processes started their action, the content of the universe was empty. It was repre-
sented by a flat field that in its spatial part was equal to the parameter space. In the beginning, a huge number of
these stochastic processes started their triggering of the dynamic field that represents the universe. From that
moment on the universe started expanding. This did not happen at a single point. Instead, it happened at a huge
number of locations that were distributed all over the spatial part of the parameter space of the quaternionic
function that describes the dynamic field.

Close to the begin of time, all distances were equal to the distances in the flat parameter space. Soon, these
islands were uplifted with volume that was emitted at nearby locations. This flooding created growing distances
between used locations. After some time, all parameter space locations were reached by the generated shock
waves. From that moment on the universe started acting as an everywhere expanded continuum that contained
deformations which in advance were very small. Where these deformations grew, the distances grew faster than
in the environment. A uniform expansion appears the rule and local deformations form the exception. Defor-
mations make the information path longer and give the idea that time ticks slower in the deformed and expanded
regions. This corresponds with the gravitational red-shift of photons.

Composed modules only started to be generated after the presence of enough elementary modules. The

generation of photons that reflected the signatures of atoms only started after the presence of these compound
modules. However, the spurious one-dimensional shock fronts could be generated from the beginning.

This picture differs considerably from the popular scene of the big bang that started at a single location.




10 Life of an elementary module

An elementary module is a complicated construct. First, the pantisides on a private quaternionic
separable Hilbert space that uses a selected version of the quaternionic number system to specify the innet
products of pairs of Hilbert vectors and the eigenvalues of operators. The vectors belong to an underlying
vectorspace. All elementary modules share the same underlying vector space. The selected version of the
number system determines the private parameter space, which is managed by a dedicated reference operato
The coordinate systems that sequence the elemetite parameter space determine the symmetry of the
Hilbert space and the elementary module inherits this symméteyprivate parameter space floats over a
background parameter space that belongs to a background platform. The background platforarable sep
Hilbert space that also applies the same underlying vector space. The difference in symmetry between the
private parameter space and the background parameter space gives rsantoedryrelated(electric)
charge and a related color charge. Thextelc charge raises a correspondaygnmetryrelatedfield. The
corresponding source or drain locates at the geometric center of the private parameter space.

The eigenspace of a dedicated footprint operator contains the dynamic geometric data tegquafter s
ing of the timestamps form the complelige-storyof the elementary module. A subspace of the underlying
vector space acts as a window that scans over the private Hilbert space as a function of a progression param
eter that corresponds with the axed timestamps. This subspace synchronizes all elementary modules that
exist in the model.

Elementaryparticlesare elementary modulesndtogether these elementary modules form all modules
and modular systems that exist in the universe.

The complicated structure of elementary modules indicates that these particles never die. This does not
exclude the possibility that elementary modules zignag over the progression parameter. Observers will
perceive the progression reflection instants as pair creation and pair annihilation events. The zigzag will only
become apparent in the creator s Vvi ewrecuffdntlysec- on |
reated. Its platform persists.

Probably the zigzag events correspond to an organized replacement of quaternions by two complex num-
bers or its reversal as is described in the Calliekson doubling [77].

A private stochastic process widlcurrently regenerate the footprint of the elementary module in a cyclic
fashion. During &ycle,the hopping path of the elementary module will have formed a coherent hop landing
location swarm. A location density distribution describes this swarmldd@ion density distribution equals
the Fourier transform of the characteristic function of the stochastic process that generates the hop landing
locations. The location density distribution also equals the squared modulus of the wavefunction of the par-
ticle. This stochastic process mimics the mechanism that the creator applied when he created the elementary
module. The stochastic process also represents the embedding of the eigenspace of the footprint operator intc
the continuum eigenspace of an operahat resides in the neseparable companion of the background
platform. This continuum eigenspace represents the universe.

The differences between the symmetry of the private parameter space and the background parameter
space give rise tsymmetryrelatedcharges that locate at the geometric center of the private parameter space.
These charges give risesgmmetryrelatedields. Via the geometric center of the platform, thr@sametry
relatedfields couple to the field that represents the universe.

The knetic energy of the platform is obtained from the effects ofdamensional shock fronts. In many
casesthese energy packages are combined in photons.




11 Relational structures
Lattice theory is a branch of mathematics [66].
l1l1Latti ce
A lattice is a set of elements, b, ¢, ... thatis closed for the amnectionss& andc . These connections
obey:
1 The set igartially ordered
o This means thawith each pair of elements, bbelongs taan elemert, such tha@ E C

ando E c.
1 The set is aa=half lattice.
o This means that with each pair of elemeatpan elemenf exists, such that=a 4b.
1 The setis ac half lattice.
0 This means that with each pair of elemeatpan elemenfexists, such that=a (b.
1 The setis dattice.
0 This means that the set is bothmahalf lattice and ac half lattice.

The following relations hold in a lattice:

afb =b A& (11.1.1)
(a/Eb) /£ =2 (B & (1112)
aAaCh) = (11.1.3)
aCb=b @ (11.1.4)
(aCh)Cc=a (b ¢ (11.15)
aC(am) = (11.1.6)

The lattice has partial order inclusion e :
aEbUaAb == (111.7)

l12Lattice types
A complementary latticeontains two element$and €,andwith each elemem, it contains a comple-
mentary element’ such tha[67]:

asEd =n (112.1)
asEn =n (112.2)
ase =a (11.2.3)
aCa =e (11.24)
aCe =c (1125)
acn =a (11.2.6)

An orthocomplemented latticeontains two element$and € ,andwith each elemerd, it contains an
elementa" such tha{68]:




aCa —e (11.2.7)

afEa =n (11.2.8)
(a) =a (11.2.9)
aBEbUb Ea (11.2.10)

€ is theunity element Nis thenull elementof the lattice

A distributive latticesupports the distributive lawWg9]:

a/bCc fa & (& ¢ (11.2.11)

aC(bA/A) fa § (& ¢ (11.2.12)
A modular latticesupportg70]:
(amb)Qa®) = (& (@ W (11.213)

Every distributive lattice is modular.
An orthomodular latticesupports insteaf¥1]:
There exists an elemen such that

aEcU(aCh &£ = (@ ¢E(C ¢ (11.2.14)
where d obeys:
(aCh) A =d (11.2.15)
a/d =n (11.2.16)
bAEd =n (11.2.17)
(aE g)and bE9 Ud E¢ (11.2.18)
In anatomic latticeholds[72]
Hp g {x 3{x pE xYp (11.2.19)
fa'g {x f(a xi(d gAEAN dokx a Pl (220
p is an atom
11.3We | | known | attices

Booleanlogic, also called classical logibas the structure of an orthocomplemented distributive and
atomic latticg73] [74].

Quantum logichas the structure of an orthocomplemented weakly modular and atomic[i&ilice

It is also called anrthomodular lattice[71].




12 Quaternions

Quaternions were discovered by Rowan Hamilton in 1843 [77] [#8Er, in the twentieth century
guaterniongell in oblivion.

Hilbert spaces can only cope with number systems whose merobara flivisions ring14]. Quater-
nionic number systems represent the most versatile division ring. Quaternionic number systems exist in mi
versions that differ in the way that coordinate systems can sequence them. Quaternions can store a com|
tion of ascalar timestamp and a thregimensional spatial location. Thus, they are ideally suited as storage
bins for dynamic geometric data.

In this paper,we represent quaternioh by a onedimensional reapart §, and a threelimensional

imaginary partj . The summation is commutative and associative

The following quaternionic multiplication rule describes most of the arithmetic properties of the quater
nions.

c=¢ € ab (a a%(ﬂ) H%) +rarb=<a,af)o- ab ab at (12.1.1)

The ° sign indicates the freedom of choice of the handedness of the product rule theatists when selecting a
version of the quaternionic number system.

A quaternionic conjugation exists

q*:(q _I_q)* g [0 (12.1.2)
(ab) =5 4 (12.1.3)
The norm|q| equals
d=JF a9 (12.1.4)
gi=t =9 (12.1.5)
q
& g
q=|qexpgg o (12.1.6)
&
% is the spatial direction df.

A quaternion and its inverse can rotate a part of a third quaternion. The imaginary part of the rotat
guaternion that is perpendicular to the imaginary part of the first quaternion is rotated over an angle tha
twice the angle of the argument between the real part and the imaginary part of the first quaternion. This
makes it possible to shift the imaginary part of the third quaternion to a different dimension. For that reasc
must; = 44.

Each quaternion C can be written as a product of two complex numbers a and b of which the imaginary base
vectors are perpendicular




c=(a w=i)(n b)) q

. N _ N L (12.1.7)
=ah {3 B)i (& B}j abk ¢ i ¢ ¢l

il

a = lalexplig) The transform u."m-l rotates the

imaginary part f of 5 around an axis
along the imaginary part a of a over
an angle 2¢ that is twice the
argument ¢ of « in the complex field
spanned by @ and 1

1 means perpendicular
|| means parallel




13 Quaternionic Hilbert spaces

Around the turn of the nineteenth century into the twentieth century David Hilbert and others developed the
type of vector space that later got Hilbert's name [12].

The Hilbert space is a specific vector space because it defines an inner product for every pair of its member
vectors [13].

That inner product can take values of a number system for which every non-zero member owns a unique
inverse [14]. This requirement brands the number system as a division ring [14].

Only three suitable division rings existeE
1 The real numbers

1 The complex numbers
1 The quaternions

Hilbert spaces cannot cope with bi-quaternions or octonions
13.1Bra's and ket 's

Paul Dirac introduced a handy formulation for the inner product that applies a bra and a ket [78].

The bra <f | is a covariant vector, and the ket | g) is a contravariant vector. The inner product <f |g)
acts as a metric.
For bra vectors hold

(fl+(gl %9l (| (F ¢ (13.1)
((f+gl) hl & (g )+ (f=g 1 (1312)

For ket vectors hold

[f)+lo) 9) [4) [F 9 (13.13)
(If+9) 0 [#) (e B)}|f =g B (13.14)
For the inner product holds
(fl1g)=(gl f) (13.15)
For quaternionic numbers a and o hold
(aflg)=(gl af) #(glf) ® =é&flg (13.1.6)
(f1bg)=(f|g) ¢ (13.1.7)

((a+ Bflg) =4flg) +¢flg) (= a)¥blg (13.1.8)

Thus
alf) (13.1.9)




(af|= a(f| (13.1.10)

|ag)=|0) ¢ (131.11)

We made a choice. Another possibility would(af |= & f| and|ag)= a|g)

In mathematics a topological space is called separable if it contains a countable dense subset; that is, there
exists a sequence {| f, >}': of elements of the space such that every nonempty open subset of the space con-
i= o

tains at least one element of the sequence [11] [79].

Its values on this countable dense subset determine every continuous function on the separable space un
[80].

The Hilbert space u is separable. That means that a countable row of elements {| fn>} exists that spans the
whole space.

If <fm | fn> = d(m, n) [1 if n=m; otherwise 0], then {| fn>} is an orthonormal base of Hilbert space u.

A ket base

—

|k>} of n is a minimal set of ket vectors |k> that span the full Hilbert space n.

f). ) . L
Any ket vector | > in U can be written as a linear combination of elements of {| k)} .

| f)=alk)(k| f) (13.1.12)
k
A bra base {<b|} of ndis a minimal set of bra vectors <b| that span the full Hilbert space nd.

Any bra vector < f | in ndcan be written as a linear combination of elements of {<b|} .
(f]=a (fIb)(b| (13.1.13)
b

Usually, a base selects vectors such that their norm equals 1. Such a base is called an orthonormal base
13.20per ator s

Operators act on a subset of the elements of the Hilbert space.

f
An operator L is linear when for all vectors| > and |g> for which L is defined and for all quaternionic
a b

and

af)+L| &) |f) avg) ohf) |a#+) B|=) h gk as21)

numbers

The operator B is colinear when for all vectors | f> for which B is defined and for all quaternionic num-

bersd@ there exists a quaternionic number § such that
aB|f)=B|f) g &8  Ufy (1322)

If |a) is an eigenvector of the operator A with quaternionic eigenvalue &@ ,
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Alg)=|ga

then | ba) is an eigenvectasf A with quaternionic eigenvalue bta.

Nod=Ad b4d ab=ab* |

AN is the adjoint of the normal operator A

(flAg)=( A g %g| A

ArA= A

(A+B)" =& B’

(AB) = B*A’

lfA= A then Aisa self-adjoint operator.

A linear operator L is normal if LL exists and LLA =L £

For the normal operator N holds

(NfINg)=(NN'f| g £ f| NN'g

Thus

N =

NNA= NN =N N <+T\| N | #f

N is the Hermitian part of N .

N is the anti-Hermitian part of N .

For two normal operators A and B holds

AB=AB {AB AB AB A

For a unitary transformationU holds

(13.2.3)

(13.2.4)

(13.2.5)

(13.2.6)
(13.2.7)

(13.2.8)

(13.2.9)

(13.2.10)

(13.2.11)

(13.2.12)

(13.2.13)

(13.2.14)

(13.2.15)




(Uf |Ug) =(f | g) (13.2.16)

The closure of separable Hilbert space n means that converging rows of vectorsofu AT T OAOCA O A
n 8
1321 Operator construction

| f><g| IS a constructed operator.
la)( f]=( f)(g|)" (132.17)
For theorthonormal base{|q >} consisting of eigenvectors of theferenceoperatoy holds
(G | ) =, (132.18)

The reverséraket method enables the defimt of new operators that are defined by quaternionic

functions.
N

(g1F Iy =& {(gla)F(@)(q|n)} (13.2.19)

i=1

The symboF is used both for the operaferand the quaternionic functioﬁ(q). This enables the
shorthand

F*la)F(q)(q| (13.2.20)
It is evident that ‘
F** |a)F (a)(ql (132.21)
For reference operatBr holds
R=[a)a(q| (132.22)

If {|q>} consists of all rational values of the version of the quaternionic number system thatHapplies then

the eigenspace of R represents the private parameter space of the separable Hilbert spaceH. It is also the pa-
rameter space of the function F (q) that definegsheoperator in theformula(13.2.20).

133Noseparabl e Hil bert space

Every infinite dimensional separable Hilbert space H owns a unique non-separable companion Hilbert space
‘H . This is achieved by the closure of the eigenspaces of the reference operator and the defined operators. In
this procedure, on many occasions, the notion of the dimension of subspaces loses its sense.

Gelfand triple and Rigged Hilbert space are other names for the general non-separable Hilbert spaces
[81].

In the non-separable Hilbert space, for operators with continuum eigenspaces, the reverse bra-ket method
turns from a summation into an integration.

(glF IM* /i 9 F(a)(a }dvd (1331)

Here we omitted the enumerating subscripts that were useddauhtable base of the separable Hilbert
space.
The shorthand for theperatoi- is now




F 2 |q)F(a)(q (1332)

For eigenvectors |q> the function F (q) defines as
F(a)=(alFo i f{ aRadfF(a) dl ¢ dv o' (1333)

The reference operatorRthat provides the continuum background parameter space as its eigenspace follows
from

(9IRMH* /o) ff o B} avar (133.4)

The corresponding shorthand is
R|g)a(q (13.35)

The reference operator is a special kind of defined operator. Via the quaternionic functions that spec
definedoperatorsjt becomes clear that every infinite dimensional separable Hilbert space owns a uniqu
nonseparable companion Hilbert space ttaat be considered to embed its separable companion.

The reverse bracket method combines Hilbert space operator technology with quaternionic function tt
ory and indirectly with quaternionic differential and integral technology.




14 Quaternionic differential calculus
The quaternionicanalysis is not so well accepted as complex function analysis [29]

141Fi el d equations

Maxwell equations apply the three-dimensional nabla operator in combination with a time derivative that
applies coordinate time. The Maxwell equations derive from results of experiments. For that reason, those equa-
tions contain physical units.

In this treatment, the quaternionic partial differential equations apply the quaternionic nabla. The equations
do not derive from the results of experiments. Instead, the formulas apply the fact that the quaternionic nabla
behaves as a quaternionic multiplying operator. The corresponding formulas do not contain physical units. This
approach generates essential differences between Maxwell field equations and quaternionic partial differential
equations.

The quaternionic partial differential equations form a complete and self-consistent set. They use the proper-
ties of the three-dimensional spatial nabla.

The corresponding formulas are taken from Bo Thidé's EMTF book., section Appendix F4 [31].

Another online resource is Vector calculus identities [32].

The quaternionic differential equations play in a Euclidean setting that is formeddnfiruum qua-
ternionic parameter space and a quaternionic target space. The parameter space is the eigenspace of th
reference operator of a quaternionic ts@parable Hilbert space. The target space is eigenspace of a defined
operator that resides in theime Hilbert space. The defined operator is specified by a quaternionic function
that completely defines the field. Each basic field owns a private defining quaternionic function. All basic
fields that are treated in this chapter are defined in this way.

Physical field theories tend to use a fieurclidean setting, which is known as spacetime setting. This is
because observers can only perceive in spacetime format. Thus, Maxwell equations use coordinate time,
where the quaternionic differential equations psoper time. In botbettingsthe observed event is presented
in Euclidean format. The hyperbolic Lorentz transform converts the Euclidean format to the perceived
spacetime format. Chapter 8 treats the Lorentz transform. The Lorentz transform inttimdeciisition and
length contractionQuaternionic differential calculus describes the interaction between discrete objects and the
continuum at the location where events occur. Converting the results of this calculus by the Lorentz transform
will describe the information that the observers perceive. Observers perceive in spacetime format. This format
features a Minkowski signature. The Lorentz transform converts from the Euclidean storage format at the situation
of the observed event to the perceived spacetime format. Apart from this coordinateansformationthe per-
ceived scenés influencedby the fact that the retrieved information travels through a field that can be
deformed and acts as the living space for both the observed event and the obsesegudély, the infor-
mation path deforms with its carrier field and this affects the transferred information.dhapierwe only
treat what happens at the observed event. So, we ignore the Lorentz coordinate transfaenare not
affected bythedeformationf the information path.

The Hilbert Book Model archives all dynamic geometric data of all discrete creatures that exist in the
model in eigenspaces of separable Hilbert spaces whose private parameter spaces float over the backgroun
parametespace, which is the private parameter space of theseparable Hilbert space. For example, ele-
mentary particles reside on a private floating platform that is implemented by a private separable Hilbert
space.

Quantum physicists use Hilbert spaces for the modeling of their theory. However, most quantum physicists
apply complex-number based Hilbert spaces. Quaternionic quantum mechanics appears to represent a natural
choice. Quaternionic Hilbert spaces store the dynamic geometric data in the Euclidean format in quaternionic
eigenvalues that consists of a real scalar valued time-stamp and a spatial, three-dimensional location.

In the Hilbert Book Model, the instant of storage of the event data is irrelevant if it coincides with or precedes
the stored time stamp. Thus, the model can store all data at an instant, which precedes all stored timestamp
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values. This impersonates the Hilbert Book Model as a creator of the universe in which the observable events
and the observers exist. On the other hand, it is possible to place the instant of archival of the event at the instant
of the event itself. It will then coincide with the archived time-stamp. In both interpretations, after sequencing the
time-stamps, the repository tells the life story of the discrete objects that are archived in the model. This story
describes the ongoing embedding of the separable Hilbert spaces into the non-separable Hilbert space. For each
floating separable Hilbert space this embedding occurs step by step and is controlled by a private stochastic
process, which owns a characteristic function. The result is a stochastic hopping path that walks through the
private parameter space of the platform. A coherent recurrently regenerated hop landing location swarm charac-
terizes the corresponding elementary object.

Elementary particles are elementary modules. Together they constitute all other modules that occur in the
model. Some modules constitute modular systems. A dedicated stochastic process controls the binding of the
components of the module. This process owns a characteristic function that equals a dynamic superposition of
the characteristic functions of the stochastic processes that control the components. Thus, superposition occurs
in Fourier space. The superposition coefficients act as gauge factors that implement displacement generators,
which control the internal locations of the components. In other words, the superposition coefficients may install
internal oscillations of the components. These oscillations are described by differential equations.

142Fi el ds

In the Hilbert Book Model fields are eigenspaces of operators that reside in the non-separable Hilbert space.
Continuous or mostly continuous functions define these operators, and apart from some discrepant regions, their
eigenspaces are continuums. These regions might reduce to single discrepant point-like artifacts. The parameter
space of these functions is constituted by a version of the quaternionic number system. Consequently, the real
number valued coefficients of these parameters are mutually independent, and the differential change can be
expressed in terms of a linear combination of partial differentials. Now the total differential change df of field f

equals

of =2 o +Biax Moy ok (14.2.1)
W K M A
. . N f fuf .
In this equation, the partial differentials —,—,——,—— are quaternions.
WK oyhy

The quaternionic nabla B assumes the special condition that partial differentials direct along the axes of the

Cartesian coordinate system. Thus

T O

b=gé— = i+" |+ K+ (14.2.2)
o W OB XU yH oz

The Hilbert Book Model assumes that the quaternionic fields are moderately changing, such that only first
and second order partial differential equations describe the model. These equations can describe fields of which
the continuity gets disrupted by point-like artifacts. Spherical pulse responses, one-dimensional pulse responses
and Green's functions describe the reaction of the field on such disruptions.

143Fi el d equations

Generalized field equations hold for all basic fields. Generalized field equations fit best in a quaternionic
setting.

Quaternions consist of a real number valued scalar part and a three-dimensional spatial vector that repre-
sents the imaginary part.

The multiplication rule of quaternions indicates that several independent parts constitute the product.

c=g 4 ab (7 3Jtb H +ab<{ ap-,ab #b & (1431)




The ° indicates that quaternions exist in right-handed and left-handed versions.

The formula can be used to check the completeness of a set of equations that follow from the application of
the product rule.

We define the quaternionic nabla as

paifH BB W oo (1432)
K oyzg
pitH _H_ ¥ (1433)
fx p oz
p, 1 & (14.3.4)
m;

f=f+ F= DJ%% B @E)y*) ., :<yE) > -yD ¥ D yi (1435)

f=BDy (B (14.36)
f=Dy +&% °BDRE B (143.7)
Further,
jc:)yr is the gracent of J/,
<E3,)7> is the divergence of
D ¥ is the curl ofy

The changeby divides into five terms that ead¢tasa separate meaning. That is why these terms in
Maxwell equations get different names and symbols. Every basic field offers these terms!

E=-§ -y (14.38)
B= Dby (14.3.9)

It is also possible to construct higher order equations. For example

J=bB8 -H (14.3.10)

The equation (14.3.6) has no equivalent in Maxwell's equations. Instead, its right part is used as a gauge.
2

Two special second-order partial differential equations use the terms — and < Qy
e ~ =\ 0
F=ito {7 P)EY (14.3.11)
i W y
e - -\ 0
r=its 4 p)ay (143.12)
i e y

The equatiorf{14.3.11) is the quaternionic equivalent of the wave equgtdai.




The equatiorf14.3.12) can be divided into twérst-orderpartial differential equations.

c=b;, =B =0b, =)p, + N &) gé o +<",”§) E(14.3.13)
This composes fron€ = Djand; = By

—-<D i's the quaterniloemmite retqus vagd emdt owrf doA

The operato% +<#D#§3 does not yet have an accepted name.

The Poisson equation equals

r :<"Eﬂ/'3 y (14.3.14)
A very special solution of this equationist@& e e n 0 s q—_lfauoﬁtbetaffected field
b- 1~, = (ql) (14.3.15)
a-9° - q
<E3,TE>% <”,6@;> :*;@ 4 4 q)  (14316)
d- d 9 -q 6-
The spati al i ntegral over Greends function

IS
(1431)of fers a dynamic equivalent of the Greend

written as
_ f(\q- af <t -t))

y — (143.17)
a-
A one-dimensional type of shock front solution is
y = F(‘q E\ e ¢ )’) (14.3.18)
The equatior{14.3.11) is famous 6r its wave type solutions
bRy £.D)p - (14.3.19)
Periodic harmonic actuators cause the appearance of waves,
Planar and spherical waves are the simpler wave solutions of this equation.
”,t:exp[ﬁ k(1 -6 -Wl‘)}
d (q ) ( (q q) (14.3.20)
exp{n(R,(q- q) wt +)}
y(a, )= _ (14.321)

The Helmholtz equation considers the quaternionic function that defines the field separable [36].




y(a.9)=A9 T(q) (14.322)

(5. BA_p, BT _ K2 (14323)
A T

<£3, ”E) A =IEA (14.3.24)

b BT =KT (14.3.25)

For three-dimensional isotropic spherical conditions, the solutions have the form

A(r.q, )= a a{(aimh(kr)) B, Y"( ,67)} (14.3.26)

I=0m =1-

Here j, and Y, are the spherical Bessel functions, and Y|m are the spherical harmonics. These solutions
play a role in the spectra of atomic modules [38] [39].

A more general solution is a superposition @sth basic types.

(143120f fers a dynamic equivalent of the Greenos
written as

y = _ (14.3.27)
a- d

A one-dimensional type of shock front solution is
y=Ff ( a et ')r) (14.3.28)

Equation(14.3.12) offers no waves as part of its solutions.

f
Duringtravel,the amplitude and the lateral directiTnffr‘ of the onedimensional shock frontrefixed.

The longitudinal direction is along—— .
a- q

The shock fronts that are triggered by pdiké actuators are the tiniest field excitations that exist. The
actuator must fidill significant restricting requirements. For example, a perfectly isotropic actuator must
trigger the spherical shock front. The actuator can be a quaternion that belongs to another version of the
quaternionic number system than the version, which dlckdgyound platform applies. The symmetry break
must be isotropic. Electrons fulfill this requirement. Neutridosot break the symmetry but have other
reasons why they cause a valid trigger. Quarks break symmetry, but not in an isotropic way.
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15 Line, surface and volume integrals

151Li ne i ntegrals
The curl can beresented as a line integfab]

(B 3y,n) im e @ 7, o) (15.1.1)
A OQAC
152Sur face integrals

With respect to a local part of a closed boundary that is oriented perpendicular to vector 1i the partial differ-
entials relate as

Py = (f,p) b PR N, TEm, g F (15.2.1)

This is exploited in the surfacevolume integral equations that are known as Stokes and Gauss theores8]
[44].

A Py f =Onyds (15.2.2)
A (Bufdv =o(n 7S (152.3)
A /Y ©n 7§ (15.2.4)
A v AV =Ony d§ (1525)
This result turns terms in the differential continuity equation into a set of corresponding integral balance

equations.
The method also applies to other partial differential equations. For example

B3 &) Ep(, ) B (U@ )y(mH - (1526)
r“j ® 6 o)} av ?{”(ﬁy)hjs ?{(”) PRE (152.7)

One dimension less, a similar relation exists.

i@ *an))ds =(af) (152.8)

153Usi ng vol ume i nt esgrmanaderityeoh adtegeesr mi n e

In its simplest form in which no discontinuities occur in the integration domain W the generalized Stokes
theorem runs as
Fiw=
w

M=o ! (15.3.1)
nw W
We separate all point-like discontinuities from the domain Wby encapsulating them in an extra boundary.

Symmetry centers represent spherically ordered parameter spaces in regions H: that float on a background

parameter space R . The boundaries |.1HnX separate the regions from the domain H : The regions H :are plat-

forms for local discontinuities in basic fields. These fields are continuous in domain W -H .




N
H=JH,) (15.3.2)
=1

X
The symmetry centers " are encapsulated in regions H : and the encapsulating boundarleHnX is not part

of the disconnected boundary, which encapsulates all continuous parts of the quaternionic manifold W that exists
in the quaternionic model.

ndw= = WﬁN. (153.3)

W-H H W 1 poW k=L

In fact, it is sufficient that |J|'|nxsurrounds the current location of the elementary module. We will select a

boundary, which has the shape of a small cube of which the sides run through a region of the parameter spaces
where the manifolds are continuous.

If we take everywhere on the boundary the unit normal to point outward, then this reverses the direction of

X
n

the normal on HH:which negates the integral. Thus, in this formula, the contributions of boundaries {uH } are

subtracted from the contributions of the boundary M V. This means that M V also surrounds the regions {HHS(}

This fact renders the integration sensitive to the ordering of the participating domains.

Domain Wcorresponds to part of the background parameter space R . As mentioned before the symmetry
X

centers " represent encapsulated regions {IJH:} that float on the background parameter space R . The Car-

X
tesian axes of ~ " are parallel to the Cartesian axes of background parameter space R . Only the orderings along
these axes may differ.

X
Further, the geometric center of the symmetry center ~"is represented by a floating location on parameter
spaceR .

X
The symmetry center ~"is characterized by a private symmetry flavor. That symmetry flavor relates to the
Cartesian ordering of this parameter space. With the orientation of the coordinate axes fixed, eight independent
Cartesian orderings are possible.

The consequence of the differences in the symmetry flavor on the subtraction can best be comprehended

when the encapsulation |.1|'|nX is performed by a cubic space form that is aligned along the Cartesian axes that
act in the background parameter space. Now the six sides of the cube contribute differently to the effects of the

encapsulation when the ordering of H : differs from the Cartesian ordering of the reference parameter space R

. Each discrepant axis ordering corresponds to one-third of the surface of the cube. This effect is represented by
the symmetry-related charge, which includes the color charge of the symmetry center. It is easily comprehen-
sible related to the algorithm which below is introduced for the computation of the symmetry-related charge. Also,
the relation to the color charge will be clear. Thus, this effect couples the ordering of the local parameter
spaces to the symmetry-related charge of the encapsulated elementary module. The differences with the
ordering of the surrounding parameter space determines the value of the symmetry-related charge of the object
that resides inside the encapsulation!

154Symmetry fl avor
The Cartesian orderingf its private parameter space determines the symgrflavor of the platform
[18]. For that reason, this symmetry is compared with the reference symmetry, which is the symmetry of the
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background parameter space. Four arrows indicate the symmetry of the platform. The background is ref
sented by:
LN .
Now thesymmetryrelatedcharge follows in three steps.
1. Count the difference of the spatial part of the symmetry of the platform with the spatial part of the
symmetry of the background parameter space.
2. If the handedness changes freo L, then switch theign of the count.
3. Switch the sign of the result for aiparticles.

Symmetry flavor

Ordering sequence Handedness Color Electric Symmetry type

xyzU Right/Left charge charge
*3

41t R N +0 neutrino
L4 B N} L R T1 down quark
1 ng =} L G 1 downquark
4t L B 1 down quark
*43 1 R B +2 up quark
‘A d) R G +2 up quark
2331 R R +2 up quark
A g L N T3 electron
*41 8 R N +3 positron
I8 L R T2 Anti-up quark
2318 L G T2 antiFup quark
Al B L B T2 antiup quark
*433 R B +1 antidown quark
I8 R R +1 antidown quark
338 R G +1 antrdown quark
3449 L N 70 anti-neutrino

The suggested particle names that indicate the symmetratgperrowedfrom the Standard Model.
In the table, compared to the standard model, some differences exist with the selection optieeliaate.
All considered particles are elementary fermions. The freedom of choicepoltheoordinate systemight
determine the spifl9]. The azimuth range is\2adiansandthe polar angle range Asradians. Symmetry
breaking means a difference between the platform symmetry and the symmetry ok¢inedrat Neutrinos
do not break the symmetry. Instead, they may cause conflicts with the handedness of the multiplication rt

155Deri vation of physical | aws
The quaternionic equivalents of Ampere's law are
J1 PB =P JUn!B 3 E (155.1)
AP nds o BE) =3I pFEE o (1552)
S C S

The quaternionic equivalents of Faraday's law are:
DB=DCy) =ED:BUM .5 2 DE (155.3)
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HEd)= [PHmHdS ={ B @ (1554)

J=DfB B FD=27j-VE (155.5)

S

A@Y A ds o(7/l)  =(V r{F d (1556)

S

The equation$15.5.4) and(15.5.6) enable thelerivation of thd_orentz force[82].
PD3E = -B (15.5.7)

d ~ | R — - _ d .
— A(Fin) ds= < K. f> ds+—  (B4).fp ¢ (1558)
dr s to) d t$)
The Leibniz integral equation states [83]
d . /5 .
dt n(ﬁ(fo)’”>d5
) . (15.5.9)

with X =B and <D’ B> 0 follows
dFB d ~ | = N - N N ~ -
== A (Al).n)ds = (HghD oS © "Gy {81 9
- d g, ) ¢or
v ) ° (15.5.10)
= -@(E(6).d) © @(¢) B o.di)
C(to) c( ¢)
The electromotive force (EMF) € equals [84]
e= @ F(IO),dT> = ng
c)\ 9 L= g (155.11)
=@ E(l‘o)’d|> +O ﬁ( 8 B( o d|>
C(to) c( ¢)

F=qE v B (155.12)
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16 Polar coordinates
In polarcoordinatesthe nabla delivers different formulas.

V=y, +f +y g+ (16.1.1)
_. 1 ~ 1 .
By, 2or 3 B0y 4 i (16.1.2)
r g " rsing W
- 1ury) 1 sin 1
<D, >=—2 () — Hlysin g d (16.1.3)
r’r r sing Hg rsin g p
sy o1 Aulysing W, 0
b — & ')
rsinge W g MJj =
a a yy, 00
& M — 60
dal w, 2 %2
Faing 1/ T (16.1.4)
& o)
g —
+1§ﬁ“(ryq) W, 9
re U (£
“2@2% 8 “Si%ﬂ 8 2
(B, By 1o w1 ¢ e (16.15)
’ r’ u r?sing g resi g o
In pure spherical conditions, the Laplacian reduces to:
<E3f y %ﬁgézl (16.1.6)

ryeae WM

The Gr e e n 0bturs thellocationi density distribution of the hop landing location swarm of an elemen-
tary particle. If the location density distribution has the form of a Gaussian distribution, then the blurred function

is the convolution of this location density distribut
1 a r?
r(r)= - EXPp—— (16.1.7)
(s\/2é ¢ 25
The shape of the deformation of the field for this example is given by:
a r
ERFx —=
T(r)=—-=% s2 (16.1.8)
4pr

In this function, every trace of the singularityof t he Greends function has dis
bution and the huge number of participating hop locations. This shape is just an example. Such extra potentials
add a local contribution to the field that acts as the living space of modules and modular systems. The shown




extra contribution is due to the local elementary module that the swarm represents. Together, a myriad of such
bumps constitutes the content of the living space.




17 Lorentz transform
17.1The transform

The shock fronts move with speed C. In the quaternionic setting, this speed is unity.
X+y + @’ (17.1.1)

Swarms of spherical pulse response triggers move with lower speed V .

For the geometric centers of these swarms still holds:

X+y 47 €t ¥ y¥ 27+¢F (17.12)

If the locations {X, Y, Z} and {X', Y, Z} move with uniform relative speed V, then

ct'=ctcosh(w) -xsintf uy (17.13)

x'= xcosh(w) -ct sinif uy (17.1.4)
cost{n) = 22 +2exr( - czc_ 7 (17.15)
sinh(w) = exp(1) -2ex;( g \/sz_ = (17.16)
cosh(w)’ - sinff ' = (17.1.7)

This is a hyperbolic transformation that relates two coordinate systems.

This transformation can concern two platforms P and P' on which swarms reside and that move with uni-
form relative speed .

However, it can also concern the storage location P that contains a timestamp ¢ and spatial loca-
tion {X, Y, Z} and platform P' that has coordinate time tand location {X', Y, Z} .

In this way, the hyperbolic transform relates two individual platforms on which the private swarms of individ-
ual elementary particles reside.

It also relates the stored data of an elementary particle and the observed format of these data for the ele-
mentary particle that moves with speed relative to the background parameter space.

The Lorentz transform converts a Euclidean coordinate system consisting of a location {X, Y, Z} and proper

time stamps [ into the perceived coordinate system that consists of the spacetime coordinates {X', Y,z Ct} in

which t'plays the role of proper time. The uniform velocity V causes time dilation Dt' =D—[ and length

1-

Om‘ <l\.)

contraction DL' = 1 —




17.2Mi nkows ki metric
Spacetime is ruled by the Minkowski metric.
In flat field conditions, proper timeis defined by
.o o\/CZtZ- N _yz 7
c

(17.2.1)

And in deformed fields, still

d¢=Ccd? =¢dt dx dy di (172.2)

Here ds is the spacetime interval amid is the proper time intervatlt is the coordinate time interval

17.3Schwar zschild metric

Polar coordinatesonvertthe Minkowski metrido the Schwarzschild metri¢he proper time interval
df obeys [ 89] [90]

22_°£~ _é-rs_li 2(. ‘2
c2dt -% r gdt2 1%?— dgz r’fd § sind (17.31)

Under pure isotropic conditions the last term on the right side vanishes.

In the environment of a black hole, the formtilastands for the Schwarzschild radius.
P = 2GM

S C2

(173.2)

The variable equals thalistance to the poidike masdV .




18 Black holes

Black holes are regions from which nothing, not even photons can escape. Consequently, no informat
exists about the interior of a black hole. Only something is known about the direct environment of the bla
hole [86].In this section we try to follow the findings of mainstream physics.

18.1Geomet ry

Mainstream physics characterithee simplest form oblack holesby a Schwarzschild radiu$87] [88]
It is supposed to bike radius where the escape speed of massive objects equals light speed. The gravitatic
energyU of a massive object with magsin a gravitation field of an object with mabk is

GMm (18.1.1)
-

U =

In nonvrelativistic conditions,tte escape velocity follows from the initial energy/ of the object with
mass/m and velocityv. At the lorder, the kinetic enggy is consumed by the gravitation energy.
GMm

Yo\ - =) (18.1.2)

To

This results irescape velocity,

(18.1.3)

It looks as if the Schwarzschild radius can bamed by taking the speed of light for the escape velocity.
Apart from the fact that this condition can never be tested experimentally, this violates ttetatioity
conditions. If we replacezmv by the energy equivalent of thest masanc?, then the wrong formula for
the Schwarzschild radius results.

We try another route and use the fact that photons cannot pass the Schwarzschilbhséetalsof the
escape velocity of massive objeatge investigate the gravitational redshift of photons.

Due to gravitation,hte frequency of photors with original frequency?, changeswith the distancer
to a point mash .
2GMm a, T
m=hp ——= h 0@ = (18.1.4)
rc c T
Formula(18.1.4) describes the gravitationaddshiftof photons. The radius at which the frequendyas
redwced to zero is the Schwarzschild radlys
P = 2GM

S C2

(18.15)

182The border of the black hol e
According to mainstream physicerfa nonrotating neutral black hole, photons cannot pass the sphere
with the Schwarzschild radiug, . The reasoning used the fact that the frequency of the photons reduces t

zero at this border. The problem with this reasoning is thdtegency reduction does not affect gérergy
of the energy packagé#sat constitute thphotons
That is easily cured by replacing frequency reduction by energy reduction.



http://jila.colorado.edu/~ajsh/bh/schwp.html

E=E M5 g9 & (18.2.1)
Ic C r

This also works for the orgimensional shock frats that constitute the photdih.also means that one
dimensional shock fronts and spherical shock fronts cgass this radius of this spheFérst, we casider
what happens if a spherical pulse response injects geometric volume into the region of the black hole.
Spherical shock fronts can only add volume to the black hole when their actuator hovers over the region
of the black hole. The injection increasee Schwarzschild radius. The injection also increases the vhass
. An increasen the Schwarzschild radius means an incréaslee geometricvolume of this sphere. This is
like the injection of volume into the volume of the fighét occurs via the pulses that generate the elementary
modules. However, in thisasethe volume stays within the Schwarzschild sph&oeording to the formula
of the Schwarzschild radius the volume of the enclosed sphere is not proportional tostioé tin@sphere.
The mass is proportional to the radiisbothcasesthe volume of the field expandsut something different
happens
The HBM postulates thahe geometriccenter of an elementary module cannot enter the region of the
black hole. Thigneans that part of the active region of the stochastic process that produces the footprint of
the elementary module can hover over the region of the black hole. In this aegilap,the pulses can
inject volume into the black hol@therwisethe stochatic processannotinject volume into the black hole.
According to the HBM,heblack holeregioncontains unstructuregeometriocvolume. No modules exist
within that sphere.

183An alternative explanati on

The two modes in which spherical pulse responaasoperate offers a second interpretation. This ex-
planation applies the volume sucking mode of the spherical pulse response. This mode removes the volume
of the Greenods function from the | ocal fiemtbd t ha
continuum, such that only the rational value of the location of the pulse results. A large series of such pulse
responses will turn the local continuum into a discrete set of rational location values. Thus, within the region
of the blackholg thepulsegurn the continuum field into a sampled fieldnside that discrete set, oscillation
is no longer possible and shock fonts do not occur. The elementary particles cannot develop in that region.
However, the pulses appear to extend the black holerremt in a similar way as the volume injection
pulses in empty space would do. In both cases, these pulses can extend the mass of the region. But in the
black hole region the mass increment is proportional to the radius of the sphere, while in fréeespass
increment is proportional to the injected volur&so, this second approach does not give a proper explana-
tion for the different increase of the volume of thiack holeregionwith the increase of its mass

In the next chapter a more sensible explanation is given that introduces mixed fields, which contain
closed regions, which do not contain a continuum, but instead a compact discrete set bhratibees.

184The Bekenstein bound

The Bekenstein bound relates the Schwarzschild black hole to its entropy.

s¢KERy o KER_2 &M (18.3.1)
hc hc hc

This indicates that thentropy Sis proportional to the area of the black hole. This only holds for the
entropy at the border of the black hole.




19 Mixed fields

Usually a dynamic field is a continuum eigenspace of a normal operator that resides in a quaterniol
non-separable Hilbert space. In a quaternioni@saiple Hilbert space the field is countable and is a sampled
field that consists only of the rational target values of the quaternionic function that defines the eigenspse
of the operator. This function uses the eigenspace of the reference operatpa@srieter space.

If the set of rational numbers in a version of the quaternionic number system is convoluted with tf
Greendés function of a quaternionic field, then
sults. Thus, adding the geometrico | ume o f the Greenbdés function
environment into a continuum. In reverse, sucking the volume in the surround of a rational number that
embedded in a continuum will turn the rational number into its naked value. Thislgdrappen at a border
that separates the continuum from a discrete set. It will move the rational number from the continuum to 1
discrete set.

It is possible to define functions that are continuous in most of the parameter space, but that takes o
discrete values in one or more closed regions of the parameter space. In-depam@ble Hilbert space, the
closed region corresponds to a subspace that encloses a separable Hilbert space. The surface that en
the closed region must be a continuunewdver, its interior only contains a discrete set. All converging
series of elements of this set must, if the limit exists, have this limit in the enclosing surface. This surface |
a minimal area that corresponds to the geometric volume of the encdgsea. MWe can interpret the shift
of a rational number from a discrete set to a nearby continuum as the embedding of a separable Hilbert sj
into a nonseparable Hilbert space. The reverse of this procedure is also possible.

A mechanism that injects geetnic volume into this region must steal this volume from the surrounding
continuum. If this mechanism applies pesited pulses, then the injection inserts a rational number and the
corresponding geometric volume increases. This inserted geometric vdiates to the volume of the
Greenb6és function of the continuum. We wuse the
relation is not proportionality. This is explainedBy r kK ho f f B%[90].h eor em

In its simplest shape the region is a sphere and the radius of the sphere is proportional to the mass o
region.

Shock fronts and waves cannot pass the border of the enclosed region and cannsidexikis region.

The enclosed region deforms the continuous part of the field. This deformation relates to the geomet
volume of the enclosed region and thus relates to the number of injected rational numbers. The deforma
corresponds to the masmoperty of the enclosed region. According to equaf®.1), the massV/ deter-
mines the gravitation potential energy of masat distantr from the centerof the region.

u(r)® —G'\r/'m (19.1.1)

Due to gravitation, a photon that started from a long distance and approaches the region the contai
energy reduces when the gravitation potential increases. Photons are strings of equidisiammsienal
shock frontsAt a huge distance from the centeof the black hole,the energy of the onedimensional

shock front equals amassenergy equivalert E, = mc. At theborder of the black holethe gravitation
potential energyreduces the total energyof the energy packagé¢o zero.
mMG
E=mc
;

€ (19.1.2)

The equivalent mass m plays no role in the value of the computation of the radius of the black ho
Thus the border of simpleblack hole is given by
_GM

f
bh
c2

(19.1.3)



https://en.wikipedia.org/wiki/Birkhoff%27s_theorem_(relativity)

The energy of the standard energy packages chargaith distance r from the center of the black
hole as

A& MG §6_4, r
E=E, S 2 50% b (19.1.4)
¢ ¢cr = ¢ r
For photons the initial energy is E, = hr,. The photon energy changes proportional with the en-
ergy of the onedimensional shock fronts.
E=E g -
(o r

h, 1

1-O: O
g_)o

"
- (19.15)
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Mainstream physics sees the border of the black hdaleaSchwarzschild radiuk
r = 2GM (19.1.6)

S C2

At that radius the packages are no longer capable to transfer kinetic energy.

19.10pen gquestions
The Hilbert Book Modelises a different radius for the border of a black hole the&chwarzschild

radius that mainstream physics uses. The difference is a factor two.

Mixed fieldscan contain regions that only contain a set of rational quaternions. The region is encapsu-
lated by a surface that represents a continuum. This border separates the discrete region from a continuum.
The encapsulated region behaves as a black hole. Thewrontcan contain a series of such regions. It is
not clear whether and how these regions can merge.

It is possible that the continuum is surrounded by a continuous border that separates it from a discrete
region. This discrete region can contain a sesfaggions that are surrounded by a continuous border and
that contain a continuum. In this way a multiverse can be established.

Inside the discrete regions. information transfer is blocked




20 Material penetrating field
20l1Fi el d equations

Basic fields can penetrate homogeneous regions of the material. Within these regions, the fields get crum-
pled. Consequently, the average speed of spherical fronts, One-dimensional fronts, and waves diminish, or these

vibrations just get dampened away. The basic field that we consider here is a smoothed version y'  of the original
field /' that penetrates the material.

f=Dy +& °BDRE B (20.1.1)

J=9y +% °B3C B (20.1.2)
The first order partial differential equation does not change much. The separate terms in the first order dif-
ferential equations must be corrected by a material-dependent factor and extra material dependent terms appear.

These extra terms correspond to polarization P and magnetization M of the material, and the factors con-
cern the permittivity € and the permeability /77 of the material. This results in corrections in the E and the B

1
field and the average speed of one-dimensional fronts and waves reduces from 1 to T
er
D=eE # (20.1.3)
O
H=—B -M (20.1.4)
m
r,= (",@} (20.15)
ro= A D) (20.1.6)
J=DPM +P (20.1.7)
JJ=DPH - (20.1.8)
r :1<_:E£> :{)‘ -|f-/ (2019)
e
ji=lpg. ®EB J Jd 20.1.10
p m f (20.1.10)
B I o
f=E-B= =(D -P]) - Mt 20.1.11
S(D -P) - W (20111)

The subscript ,signifies bounded. The subscript ¢ signifies free.

The homogeneous second order partial differential equations hold for the smoothed field)/ .

{8 ("B o (20.1.12)




202Poi nting vector

The Poynting vector represents the directional energy flux density (the rate of energy transfer per unit area)
of a basic field. The quaternionic equivalent of the Poynting vector is defined as:

S=E 3H (20.2.1)

Uis the electromagnetic energy density for linear, nondispersive materials, given by

(E,B)+ (8 A

u= (202.2)

uﬁl: (j@ <ff,f5> (20.2.3)




21 Action

The set of basic fields that occur in the model form a system. These fieldstiateadmite number of
discrete locations. TreymmetryrelatedA*fields always attach to the geometrical center of a dedicated sym-
metry center. TheCfield attaches at a stochastically determined location somewhere in the vicinity of this
geometric center. However, integrated over the regeneration cycle of the corresponding particle the avera
attachment point coincides with the geometric centereo$yimmetry center. Thus, in these averaged condi-
tions the two fields can be considered as being superposed. In the averaged modielthbas weak
extrema. Thea*fields always have strong extrema. In the averaged mode the fieldan be superposed
into a new field F that sharesthe symmetry center related extrema.

The path of the geometric center of the symmetry center is following the least action principle.
This is not the hopping path along which the coesponding particle can be detected.

The coherent location swarn{aix} also represents gpath, which is ahopping path. Its coherence
means that the swarm owns a continuous location density distribution that characterizes this swarm.
A morefar-reachingcoherence requirement is that the characterizing continuous location density dis-
tribution also has a Fouriertransform. At first approximation the swarm moves as one unit. The swarm
owns a displacement generatorThese facts have much impact on the hopping path and on the move-
ment of the underlying symmetry center. The displacement generator that characterizesag of the
dynamic behavior of the symmetry center is represented by the momentum operatqy. This displace-

ment generator describes the movement of the swarm as one unit. It describes the movement of the
platform that carries the elementary particle. On theplatform, the hopping path is closed. In the em-
beddingfield, the platform moves.

We suppose that momentump is constant during the particle generation cycle. Every hop gives a

contribution to the path. These contributions can be divided into three steps per contributing hop:
1. Change to Fourier space. This involves inner produ@ ||6>

2. Evolve during an infinitesimal progression step into the future.
a. Multiply with the corresponding displacement generatoip

b. The generated step in configuration spacis (&.,- ).
c. The action contribution in Fourier space i$p, &,,- &).
d. This combines in a unitary factoexp((p 3., - §))

3. Change back to configuration space. This involves inner prodL(crb

a+1>
a. Thecombinedterm contributes a factor(d | p)exp({ p.a.,- 2))( Ha.) -

Two subsequent steps give:
(a|p)exp((Pay- 2)(Pla.)(a.lp) exd(pa, -B)( H.)  (2111)
The terms in the middle turn into unity. Theother terms also join.
(ap)exp((P.as- 2) exd{Pae -2y bay)
=(alp)exp((P.a. -2)(Hae)

Over a full particle generation cycle with N steps this results in:

(21.1.2)




O (a|p)exp({ p.a.- @) (Ha,)
:<51|*>exp€(NfJ,aq -*q>)<”d”¢}> (21.13)
:(air)expg%(bfﬂ %) oHa)
=(a|p)exp(L)(Pla)
Ldt :iz'i (P.3. -2) EndY #44
L:<|5, ﬁ) (21.15)

L is known as the Lagrangian.
Equation (21.1.5) holds for the special condition in whichp is constant.If p is not constant, then

the Hamiltonian H varies with location.

o ) (21.16)
MG
HH G (21.17)
MR,
K o (21.1.8)
MG,
V1
—= P 2119
MG ( )
H_ b (21.1.10)
V14 i
dpL _
— == (21.1.11)
drug m
2
H+L  4n (21.1.12)

Here we used proper tinferather than coordinate tinte

This procedure derives the Lagrangian and the Hamilton equations from the stochastic hopping path.
Each term in the series shows that the displacement generator forces the combination of terms to generate
a closed hoppinggth on the platform that carries the elementary particle. The only term that is left is the
displacement generation of the whole hop landing location swarm. That term describes the movement of
the platform.

In mainstream physics applies the Lagrangianhasbise of the path integral. In the Hilbert Book
Model, the Lagrangian results from the analysis of the hopping path.




22 Dirac equation
In its originalform, the Dirac equation for the free electron and the fiestronis formulated by using
complex number based spinors and matifi@g§[92]. That equation can be split into two equiasipone for
the electron and one for tipesitron The matrices implement the functionality of agoiaternionic number
system. Biquaternions do not form a division ring. Thus, Hilbert spaces cannot cope wgitfaternionic
eigenvalues. The Dirac equatiplays an important role in mainstream physics.
221The Dirac equation in original for ma
In its original form, the Dirac equation is a complex equation that uses spinors, maamcgsartial

derivatives.
Dirac was searching for a split of the KlgBordon equation into two first order differential equations.

wt gt gt

- f 2211
oK yp Zp N
of =(® P (-, D) D mf (2212)

Herem:(ap<-ﬁ,*E>)i s the doAl embert operator.

Dirac used a combination of matrices and spinors in ordegach this result. He applied the Pauli
matrices in order to simulate the behavior of vector functions under differen{@gijon

The unity matrix| and the Pauli matrices,, 5, £are given by

_el 0g _0el g O -k gl O

| = = Z . sy = &, 2213
© 1% T80 WT ¢ W1 (2213)

Herei =+/ 4. For one of the potential orderings of the quaternionic number system, the Pauli matrice
together with the unity matriXdelate to the quaternionic base vecrs

1Y 1iYis,jYi sk Yi (22.1.4)

This results in the nitiplication rule
5:8- 5,152 38 S5-§, 5 ;.5 52 - (22.15)
§,9% 5,5 ,¢ 5 (22.1.6)

The different orderig possibilities of the quaternionic number system correspond to different symmetry
flavors. Half of these possibilities offarrighthandedexternal vector product. The other half offeleti-
handedexternal vector product.

We will regularly use:

i(s,B) =" (22.1.7)
With
pp= 4 f (22.1.8)
follow
P ie mE (22.1.9)

(ps)= 4 (22.1.10)




222Di racb6s formul ati on

The original Dirac equation uses 4x4 matriégésand 5 .

d and p are matrices that implement th&-quaternion arithmetic behavior including the possible
symmetry flavors obi-quaternionic number systems and continuums.

(22.2.1)

a,=g Eis. (22.2.2)

=80 % @‘—ié'0 « 2223
’ 253 0 H g? 0 (2229
51 0
p=8 (22.2.4)
0 -1
b b=l (22.25)

The interpretation of the Pauli matricesaagpresentationf a special kind of angular momentum has
led to thehalf-integereigenvalue of the corresponding spin operator.

Diracds selection | eads to
(p-(@p -md{ j & (22.2.6)
{j} is a fourcomponent spingwhich splits into
(p-(a.p) -tmg 4 © (222.7)
and
(p-(a.p) +mg 4 & (22.2.8)
* ande aretwo component spinors. Thtise original Dirac equation splits into:
(B, - "Bimc)j, 0 (22.2.9)
(B, - "Bimc)j, 0 (22.2.10)

This split does not lead easily to a second order partial differential equation that looks like the Klein
Gordon equation.

223Rel ati vistic formul ati on

|l nstead of Di r ac Gssallyahe retivistia formdlaton museda t i o n
That formulation applies gamma matrices, instead of the alpha and beta matrices. This different choic
influences the form of the equations that resuthe two-componenspinors.
e0 s, g 0 i
=2 =i (22.3.1)
278s, 0o R 0




0 s, g .60 |
s . 2232
% g'sz 0 H g’] 0 ( )
g _e0 s, g_IEO k (2233)
’ gs; 0 H @-R 0 -
el 0
=4 2234
T 1 ( )
Thus
= A #n2,3
In= & # (22.35)
%= b
Further
=i 91 (22.3.6)
g5 = glgsg‘gf 0 .
The matri¥ antrcommutes with all other gamma matrices.
Sever al di fferent sets of gamma matrices are
the form
(igD"-mc){ J e (223.7)
More extened:
a u W W m G,
=+ + +w—9 — {5 2238
g@om gTﬂ 2'9;“ 3_zguih g} Q ( )
& M, /- Mm@y,
—+ — 6 0; 2239
G, (g9 — £}/ (2239)
a, e 0 sPY o 1a0 §
0 , < 1e0
% 1§+e o (s.5) ul%l Og g_’g,g@: (22.3.10)
: & <5, > po U & gl
o8 0 &ﬁo ) %ﬂ L& é'pﬂ@ (22.3.11)
y 6 , Faglie 3
Eo -1l &ogn ok §Y Y
. . - - m .
|§/A+ B, £/ C (223.12)
. . - - m .
|§/B B/, ™ i O (22.3.13)

Also, this split does not easily lead to a second order partial differential equation that looks like the Klei
Gordon equation.




224A better choice
Another interpretation of the Dirac approach replacasithr :

ay5m+ g +219§/:f 3—g$?] ) 0 (224.1)
A W, Mpy
WRREP
3 e 5.D) @ g
20 1 &+e 0 (s8) oM 120 %’3 e (22.43)
ggl 0 g<§’”> DO th 0~ & gsl:lu
ae 1 80 ) *’aﬂ 1 €0 é'pf?@ 2244
24 o&%boah 01 g4 1 e
| &/’ﬁbfs %1 [ o (22.4.5)
iﬁ/’A- . %1 /o (22.4.6)

This version invites splitting of the foucomponent spinor equation into two equations ti@o-
componenspinors:

a M +pp =M,

éé Y /93 0 Ia (22.4.7)
a -0 m .

géﬁ DJQA :—h- Js (22.4.8)

This looks far more promising. We can insert the right patthefirst equation into the left part of the
second equation.

Zai;& DS% + P, gr—r:f: Ja (22.4.9)
;@%+<qu§)/§,; % A (22.4.10)
?@é&*b 8-%1 - P gr;f J (22.4.11)
2@3{1—;(*9*#)/% % Jo (22.4.12)

This is what Dirac wanted to achieve. The two first order differential equations couple into a second
order differential equatigrbut that equation is netjuivalent taheKlein Gordon equationit is equivalent
to theequation(4.2.1).




The nabla operator acts differently onto twe-componenspinors;/ ,andy ;.

225The Dirac nabl a
The Dirac nabledD differs from the quaternionic nalda.

poyt H_H H-p (225.1)
o oYz

=P - (225.2)

PB =D D =0(b (225.3)

p=pi L, _H_H B 5y (225.4)
iu o yzg

D'=iD - (2255)

DD'=DD = -9 B -)D B : (22.5.6)




23 Low dose rate imaging

The author started heareer inthe high-techindustry in the development of image intensifier devices.
His job was to helpo optimizethe imaging quality of these image intensifier devices. This concerned both
image intensifiers for night vision applications anthy image mtensifiers that were aimed at medical ap-
plications. Both types of devices target low dose rate application conditions. These devices achieve image
intensification in quite different ways. Both types can be considered to operate in a linedhe/agre
describedqjualification of the image intensifier aided recognition capabilipossible becauseiman image
perception is optimized for low dose rate conditions.

At low doserates the author never perceived waves in the intensified images. Atrtiust he saw hail
storms of impinging discrete particles and the corresponding detection patterns can simulate interference
patterns. The conclusiosithat the waves that might be present in the observed image are probability waves.
Individual photons are pegived as detected quanta. They are never perceived as waves.

231l ntensi fied I mage perception

When | entered my new job, the head of the department confronted me with a remaikiblaship
that observers of intensified images had discovered and that he used in order to optimize the imaging quality
of image intensifier devices. It appeared thatceptibility increases whehe doserate increases. It also
increased when the surface of the observed detail increases. As expeatezhses when the object contrast
increases. Temporal integration also had a positive effatteqerceptiorof relatively static objects. Phos-
phors that are applied as scintillators aw electronto-photon convertors cause a significant temporal
integration. The rate at which the perceptibility increases seems to indicate that the perceived quanta are
generated bgpatial Poisson point processes. Thus, increasing the quantum detection capability should be
the prime target of the image intensifier developers. However,-fayXmage intensifiers increasing gamma
guantum detection capability usually conflicts witleging sufficient imaging sharpness for perceiving small
details. Thus, the second level target for image intensifying devices is getting the imaging sharpness at an
acceptable level. The variance of the quantum intensification factor reduces the sigise tatioandthat
effect must be compensated by increasing the dose rate. This is unwanted. thertesintunintensifica-
tion must be high enough in order to trigger the image receiver.

In the intensification chajralso some attenuations take platlkese attenuations can be represented by
binomial processes. For example, photocathodes and scintillation layers do not reach the full hundred percent
detection capability. In addition, input windows and input screens just absorb part of the impiragitay qu
A primary Poisson process combines with one or more binomial processes in order to form a new Poisson
process that offers a lower quantum production efficiency. A very important binomial process is represented
by the spatial spread function that e tresult of imaging blur. Imaging blur can be characterized by the
optical transfer function, which is the Fourier transform of the spatial spread function.

Anotherimportantfact is that not only the existence of an object must be decided by the retawer
detected object must also be recognized by the receiver. For intensified image recognition some very com-
plicated processes in the visual trajectory of the receiver become decisive. The recognition process occurs in
stagesandat everystagethe signal to noise ratio plays a decisive role. If the level of the signal to noise ratio
is too low, then the signal transfer is blocked.

24 Human perception

241l nf or mati on encoding

With respect tahevisualperceptionthe human visual trajectory closely resembitesvisual trajectory
of all vertebrates. This was discovered by Hubel and WEEiI4gl They got a Noble price for their work.

The sensitivity of the human eye covers a huge range. The visual trajectory implements several special
measures thdielpto extendthat range. At high dosatesthe pupil of the eye acts as a diaphragm that partly
closes the lens and, in this way, it increases the sharpness of the picture on the retina. At saids tose




cones perform the detection job. The cones are sensit colors and offer a quick response. In unaided
conditions, the rods take over at low dose ratedthey do not differentiate between colors. In contrast to
the cones the rods apply a significant integration time. This integration diminishes fie=bf quantum
noise that becomes noticeable at low dose rates. The sequence of optimizations does not stop at the retir
the trajectory from the retina to the fourth cortex oflthen several dedicated decision centers decode the
received image Yoapplying masks that trigger on special aspects of the image. For example, a dedicat
mask can decide whether the local part of the image is an edge, in which direction this edge is oriented
in which direction the edge moves. Other masks can distemar spots. Via suchasks the image is
encoded before the information reaches the fourth cortex. Somewheretiaj¢btory the information of

the right eye crosses the information that is contained in the left eye. The difference is useduot eonstr
threedimensionalision. Quantum noise can easily disturb the delicate encoding process. That is why tf
decision centers do not pass their information when its signal to noise ratio is below a given level. That le
is influenced by the physicahd mental condition of the observer. At low dose rates, this signal to noise ratio
barrier prevents a psychotic view. The higher levels of the brain thus do not receive a copy of the image t
was detected at the retinastead that part of the brain ceives a set of quite trustworthy encoded image
data that will be deciphered in an associative Wag.expected that other parts of the brain for a part act

in a similar noise blocking way.

The evolution of the vertebrates must have installed thisadehgsual data processing subsystem in a
period in which these vertebrates lived in rather dim circumstances, thibetsual perception of low dose
rate images was of vital importance.

This indicates that the signal t o noiasignificana t i
influence on the perceptibility of the low dose image. At high daiss the signal to noise ratio hardly plays
a role. In thoseonditions therole of the spatial blur is far more important.

It is fairly easy to measure the signal to noise ratio in the visual channel by applying a DC meter and
RMS meter. However, at very low dose rates, the damping of both meters might pose problems.ciat qui
becomes apparent is the relation of the signal to noise ratio and the number of the quanta that participat
the signal. The measured relation is typical for stochastic quantum generation processes that are classifie
Poisson processes.

It is also easy to comprehend that when the signal is spread over a spatial region, the number of qua
that participate per surface unit is diminishing. Tispstial blur has two influences. It lowers the local signal
andon the otherhand it increases the iegration surface. Lowering thegnal decreases the number of
guanta. Enlarging the integratiearfacewill increase the number of involved quanta. Thus, these two effects
partly compensateach other. An optimum perceptibility condition exists that meémthe signal to noise
ratio in the visual trajectory.

24.2B 1| ur

The blur is caused by the Point Spread Function. This function represents a spatially varying binom
process that attenuates the efficiency of the original Poisson process. This creatBeigsmwprocess that
features a spatially varying efficiency. Several components in the imaging chain may contribute to the Po
Spread Function such that the effective Point Spread Function equals the convolution of the Point Spri
Functions of the congments. Mathematically it can be shown that for linear image processors the Optice
Transfer Functions form an easier applicable characteristic than the Point Bymmeaidnshecause the Fou-
rier transform that converts the Point Spread Function into thtecdD Transfer Function converts the
convolutions into simple multiplications.

The Optical Transfer Function is influenced by several factors. Examples are the color distribution, tf
angular distribution and the phase homogeneity of the impinging radiatsmyveiling glare may hamper
the imaging quality.




243Det ecti ve ogquwantum efficie

The fact that the signal to noise ratio appears to be a deciding factor in the perception process has led to
a second way of characterizing the relevant influences. The Detective Quantum Efficiency (DQE) character-
izes the efficiency of the usage of @éneilable quanta. It compares the actual situation with the hypothetical
situation in which all generated quanta would be used in the information channel. The measured signal noise
ratio is compared to the ideal situation in which the stochastic genisratBoisson procesandno binomial
processes will attenuate that primary Poisson process. This means that blurring and temporal integration must
play no role in the determination of the idealized reference detector that is used in specifying thedlDQE an
the measuredievice will be compared to quantum detectors that will capture all available quanta. It also
means that intensification processes will not add extra relative variance to the signal of the idealized detector.
The application omicrochanneplates will certainly add extra relative variance. This effect widd@unted
for as a deterioration of the detection efficiency and not as a change of the stochastic process from a Poisson
process to an exponential process. Mathematically this is aprodddure, but it is a valid approach when
the measurements are use@valuate the perceptibility objectiyel

244Quantum Physics

The fact that the objective qualification of perceptibility can be performed by the Optical Transfer Func-
tion in combination wth the Detective Quantum Efficiency indicates that the generation of the quanta is
governed by a Poisson process that is coupled to a series of binomial process and secondary Poisson pro
cesses, where some of the binorpialiceses are implemented by spatiPoint Spread Functioysndothers
are spatially uniform attenuators.

The processes that generate the primary quanta are considered to belong to the category of the inhomo-
geneous spatial Poisson point processes. These are processes that are applbaiigms that produce
the locations of elementary particlesthey are processes that control the distribution of photons during the
emission of these information messengers.




25 How the brain works

25.1Pr eprocessing

A study on how the environment is observed and interpreted should start with an investigation of hc
the sens®rgans and the brain cooperate. Between the segs@s and the brain exists a series of pre
processors that encode and-prerpret the inconmg signals. This process also performs some noise filter-
ing, such that later stages of the processing are not bothered by misinformation. For that reasen the |
processors act as decisioaners where the signal transfer is blocked when the signal teen@itio stays
underneath a given leva,g,2 . 3 ( Cr o Ehe level inay diffea iw different persgnn thisway, the
visual trajectories run via a creeser to the cortex. The cresser encodes and adds depth information.
After a series of adtional preprocessingtepsthe signal arrives in the fourth cortex layer. Here about four
squaranillimetersis devoted to the direct environment of each receptor of the fovea. &r¢hia complete
geometric encoding of the local geometry and dycaraf the perceived picture is presented. This includes
whether the detected detail is a line or an edge or another form, in which direction it is positioned and whet|
the detail moves. (See the papers of Hubel and Wiesel aistrad trajectory and theésual cortex for more
detailed information)94].

252Pr ocessing

Thus, the brain does not work with a pictorial copy of the picture that is received on the fovea. In furth
steps the encoded map is interpreted. That part of the brain tries to assoeialetalls of the map with
remembered and recognized iteMéen dynamics isonsideredthen it must also be considered that the
eyes are continuously scanning the input scene.

253l mage intensification

| studied visual perception because | needed this tofgpseful measuring standards for night vision
and Xray imaging equipment (~1975). Many of the known visual illusions are due to tpegoessing in
the visual trajectoryThe viewing chain includes lenses, image intensifier tubes and either a carttera o
human visual system. This last component includesybball The object is noisy and can be considered as
a Poisson proces¥Vith respect to the noise, the optical components in the imaging chain act as binomié
processes or as generalized PoigsatessesTheir point spread functions act as integration area. Image
intensification is usually a Poisson process, but channel plates are characterized by an exponential distr
tion rather than by a Poisson distribution. Chains that include Poiss@spescand binomial processes can
be considered as one generalized Poisson prdogsging chains that include channel plates are more diffi-
cult tocharactere.

2541 maging quality characteristics

When the imaging chain can be characterized by a Poissasprdicen its quantum detection efficiency
can be characterized by the Detective Quantum efficiency (DQE). Its optical imaging quality can be chare
terized by the Optical Transfer Function (OTF). With inhomogeneousifigiging it is sufficient to use th

modul us, the Modul ation Transfer Function (MTF)
components of the imaging chain.
255T ha svodnnoi sy I mages

The intensification of image intensifiers is such that at low radiation levels thet auye is formed
by large numbers of separate light dots that together give the impression of a snowy picture. The vis
trajectory contains a sequence of-precessors that each performs a part of the encoding of the object. At
its input, the visual caex gets an encoded image rather than an optical image of the perceived scene. Tl
encoded image is further encoded and interpreted in channels higher in the brain. This is done by associe
the elements of the encoded image that is entering the esdekwith already existing informatioriThe
folded visual cortex offers about four squardiimetersfor the encoding of the environment of each separate
receptor in the fovea. The ppeocessors act as decisiceners. When the offered signal to neigatio is too




low, then nothing is passed. This is a general principle in the encoding process and also governs the associa-
tion of encoded data in other parts of the brain.

The research resulted in a significant contribution of our laboratory to the world standardsrfeashe
urement of the OTF and the DQE.

256l nf ormation association

The associative nature of the process is commodllfé&inds of objects and parts of objects. That in-
cludes objects that did not enter through one of the sengsss. Foexample a house is rtostored in the
brain as a complete concept. It is stored as a series of details that can be assitlcittedconcept. I&
sufficient numberof these details ardetectedthen a decisiorener in the brain decides that the whole
concept is presentn lthisway, not only a particular house can be recognibed the process can alsec-
ognize a series of objects that resemble the original house. It classifies houses. By adding details that can be
associateavith it, the concept of a house can be widkriéhe resulting informatiome., the information that
passed the decisiarener, is used for further reasoning. Together with othetiails the same details can
also be used to detect other concepts by a different association. When the assoctilbpraduces too
much noise, then the information is not prodyeetifurther reasoning is neither disturbed nor triggered by
this fact.High enough in the hierarchy individuals can be discerfied.brain is not static. The network of
communication piéis and decisionenersis dynamically adapted whangingneeds.

25.7Noi se filter

The decision level for the signal to noise ratio may vary from person to person. If the level becomes too
low, thenthe person may start hallucinating. Further, the level may be influenced by body owned messenger
stuff, drugs, poisongndmedicines.

25.8Re ansion g

The brain is capablef performingcomplex reasoningdowever it must be trained to perform the rea-
soning in a logical way. For example, it must learn that the start from a false presumption can cause the
deduction of any conclusion, just or falseh® a path of reasoning is helpful, then it is stored in a similar
way as an observation. Not the reasoning itself is stored, but the details that are part of the reasoning path.
Also, here association of the details and a suitable noise threshold plagieitThe reasoning can be iden-
tified as a theory and its concept can be widened. The brain can also generate new details that together with
existing details can act as a reasonable th&brgn noise can generate such signbllese detailgan be
perceived as a dream or as a hewly invented theatgpind®nwhether the theory is accepted as realistic.
That means that the brain must be capable of testing the realism of a theory. This testing can be improved by
training. The brain can fget stored details and stored concepts. This holds for objects as well as theories.
Valuable concepts are regularly refreshed and become better remembered.

2590t her speci es

Hubel and Wiesel did their experiments on several kinds of vertebrates, such ashgs)dfats and
humans. Their main target was visual perception. Where the handling of the signals of sense organs in the
brains is quite similar for all vertebrates, the handling of paths of reasoning by humans is superior in com-
parison to other vertebrate

2510 Humans

Humans have an advantage over other vertebrates. Apart from direct observation the theories and the
concepts of things can also be retrieved by communication with other parties. This occurs by education,
discussion, reading books, papers ornais, seeing films or videos or surfing the internet. These media can
also act as a reference medium that extends the storage capacity of the brain.




2511 Science

Mathematics is a particularly helpful tool that extends the capability of the brain to perfoomingas
in a logical and precise way. Physics extends this capability furtheafatuson observables. Philosophy
addsselfreflectionand focuses on the why and how of existence. Every branch of science adds to the caf
bilities of the individuals and tthe effectiveness of the community.

2512 Physi cal real ity

Our brain haéimited storagecapaity. We cannot comprehend things that have an enormous complexity.
However we can detect regularities. Our brain is optimized to detect regularities. The lawsio$ pipyear
regularly in our observations or can be deduced from regularly returning observations. More complex lay
are derived using tools and in combination with other people. Nature is not only controlled by laws. It is al:
controlled by boundary cortthns. These boundary conditions may be caused by the influence of items tha
lay beyond the reach of our direct observations. The number and complexity of boundary conditions 1
outgrowthe number of recognized laws of nature. The laws of nature plalg arour theories. However,
the boundary conditions play a much smaller role. This is because the laws of nature that we detect tre
simplified version of the environment. In trabstractionthe boundary conditions play mealrole. This is
anothereason why our theories differ from physical reality.

2513 Theori es

These deliberations learn that theories are a product of our mind. They can be used as a looking g
that helps in the observation and interpretation of physical reality. However, ieisdafgerpret the theories
as or as part of physical reality. When a theory fits, then it is congruent, to some extent, with physical reali
That does not say that we as human beings and the environment from which we take our observations are
part d reality. It says that what our brain produces is another thing than physical reality.

2514 I nventions of the human mind

Infinity is typically an invention by the human mind. There exist strong indications that nature does nc
support infinity. In the samgerse unlimited precision real numbers are prohibited in the physical universe.
However, we can embed the results of our observations in a model that includes infinities and unlimit:
precision. Foexampleclassical mechanics and field theories use theseapts. Quantum mechanics shows
us that as soon as we introduce unlimpegtision we are immediately confronted wikkeisenbertg uncer-
tainty principle. We need infinity and unlimited precision in order to resolve the paradoxes that otherwis
creep inb our theories. We use theories that are in direct conflict with each other. One forbids; ithfenity
other theory uses and requires it. This says at least one thing; none of the theories describes physical re
correctly. Thusnone of the theories can replace the concept of physical ré&tlityit appears useful to use
bothviews side by side. It means that great care must be taken with the interpretation of the theories.

2515 Hi story

Mathematical theories and physical theota®d to build upon the results of other exact theories. After
somegenerationsa very complex building is obtained. Aftemaile, it becomes humanly impossible to
check whether the building elements are correct and whether the binding is done c&wectiyplex exact
theories should be questioned.

25.16 Dr e ams

In this sense, only when we study our own dreams, fantasies or theories, then we observe these it
and the dreams; fantasies and theories become part of "physical'rHaliky theory is congruenvith a part
of physical reality, it will become useful as a view on physical reality.




2517 Addendum

| measured/calculated only up to the fourth layer of the visual cortex. Hubel and Wiesel did the pinching.
We did perception experiments and developed ailtldnuipment that worked optimally with that part of
the visualtract During thatinvestigation several disciplines that were considered advanced at that time
(19701987) were used and expanded. &mmpletogether with WolfgangVittensteinl wrote mest of the
STANAG on the measurement of the optical transfer function (OTF and its modulus the MTF) of electron
optical appliances. Later | took this NATO standard to the ISO standardization committee that transferred it
into an equivalent standard for agati equipmentNext, | was also involved in raising the corresponding IEC
and DIN standards. Parallel to this | also took part in the creation of the IEC and DIN standards for the
measurement of the detective quantum efficiency (DQE). The research wfiiiag channel starting from
the radiation source and ending in the visual cortex resulted in a useful perception model that we used to
improve our products. The standardized measuring methods enabled us to communicate the superior imaging
quality of our poducts to our customers in a reliable and trustworthy way.

Personallyit offered me deep insiglmto the relation between optics and quantum physics. | learned to
handle Fourier transformisto an environment where the idealized Fourier theory doefnbhe measured
multidimensional Fourier transform has a restricted validity not only due to the spatiahif@mity of the
imaging properties. The measuring result also depends on the angular and chromatic distribution of the radi-
ation and on the lmogeneity of that radiation. Part of the imaging chain consisted of glass lenses. Another
part contained electron lenses dier plates. Intermediate imaging surfacessistof phosphors that con-
vert gamma quanta or electrons into light flashes. Otméaices are covered with photocathode layers that
convert detected quanta into electrons, which are sent into the electron optical lens system until they reach
the phosphor layer. The investigated appliances were image intensifier tubes for night visosegand
X-ray image intensifier tubes that are used in medical diagnostic equipmentwayhigot adeepinsight
into the behaviorof quanta and experienced out of first hand &ldt information comes to us in the form
of a noisy cloud of quant@nly in massesthese quanta can be interpreted esntinuous wave of radiation.






















