Abstract
A capacitive power transfer system is designed by placing two parallel-plate capacitors adjacently side to side so that they supply electromotive force to each other by edge field. The secondary capacitor is connected with a large capacitor in parallel to increase the capacitivity of the secondary circuit. The mutual inductions between the two capacitors are not equal. The consumed power on load is not equal to the feeding power from the primary circuit.

Description
In this work, a capacitive power transfer system is designed by placing two parallel-plate capacitors adjacently side to side. As shown in Fig.1, the primary circuit is composed of source Vs, resistor R1, inductor L1, and parallel-plate capacitor C1. The parallel-plate capacitor C1 is composed by two metal plates separated by a distance d1. The secondary circuit is composed of the secondary parallel-plate capacitor C2, variable capacitor Cv, inductor L2, and load resistor R2. The secondary parallel-plate capacitor is composed by two metal plates separated by a distance d2. The capacitor C2 is placed adjacently to C1 side to side. The capacitivity between the edges of C1 and C2 is negligible. The electric field at the edge of C1 supplies the electromotive force (emf) to the secondary circuit. The electric field at the edge of C2 supplies the reaction emf to the primary circuit. The variable capacitor Cv is used to tune the resonant frequency and also increase the capacitivity of the secondary circuit. The sum of C2 and Cv is designed much larger than C1. The mutual induction from the primary current I1 to the secondary circuit is

\[M_{21} = -j \frac{1}{wC_1} \cdot \rho_{21} \]

(1)
where \(\rho_{21} \) is the emf pickup efficiency to the secondary circuit. The mutual induction from the secondary circuit \(I_2 \) to the primary circuit is

\[
M_{12} = -j \frac{1}{w(C_2 + C_v)} \cdot \rho_{12}
\]

(2)

where \(\rho_{12} \) is the emf pickup efficiency to the primary circuit. When \(C_1 \) and \(C_2 \) are setup adjacently side to side, the efficiencies \(\rho_{21} \) and \(\rho_{12} \) are approximately equal assuming \(d_1 \) and \(d_2 \) are equal. The mutual induction \(M_{21} \) is much larger than \(M_{12} \) because \(C_2 + C_v \gg C_1 \).

The coupling equations are listed in following:

\[
U_1 + W_{12} = I_1 \left(R_1 + jwL_1 - j \frac{1}{wC_1} \right)
\]

(3)

\[
I_2 = \frac{M_{21}I_1}{R_2 + jwL_2 - j \frac{1}{w(C_2 + C_v)}}
\]

(4)

\[
W_{12} = M_{12}I_2
\]

(5)

Where \(W_{12} \) is the reflect emf from the secondary circuit to the primary circuit. In the case of resonance, \(L_1C_1 = L_2(C_2 + C_v) \), we get

\[
I_1 = \frac{U_1R_2}{R_1R_2 + \frac{\rho_{12}\rho_{21}}{\omega^2C_1(C_2 + C_v)}}
\]

(6)

The feeding power through the primary circuit is

\[
P_1 = U_1 \cdot I_1 = \frac{U_1^2R_2}{R_1R_2 + \frac{\rho_{12}\rho_{21}}{\omega^2C_1(C_2 + C_v)}}
\]

(7)
The consumed power on R2 is

\[P_2 = I_2^2 \cdot R_2 = \frac{\rho_{21}^2 U_1^2}{R_2 \omega^2 C_1^2 (R_1 + \frac{\rho_{12}\rho_{21}}{R_2 \omega^2 C_1 (C_2 + C_v)})^2} \]

(8)

The power transfer efficiency is

\[\frac{P_2}{P_1} = \frac{\rho_{21}^2 (C_2 + C_v)}{R_1 R_2 \omega^2 C_1^2 (C_2 + C_v) + \rho_{12}\rho_{21} C_1} \]

(9)

As a comparison, Fig. 2 shows the schematic of conventional capacitive power transfer system which is widely used in industry designing. In this configuration, the metal plates of the secondary capacitor are connected to the primary capacitor face to face respectively. The secondary circuit is integrated into the primary circuit so that M21 is always equal to M12. In this scenario, the consumed power on R2 is equal to the feed power from the primary circuit.
Figure 1: Schematic of invented capacitive power transfer system.

Figure 2: Schematic of conventional capacitive power transfer system.