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Abstract

The existence of a disentangling mathematical transformation of wave func-
tions in a Coulomb entangled state of charged molecular radicals, reveals a
new chapter to the Einstein - Schrodinger discussion about entanglement.

1. Introduction

In the philosophy of physics there is every now and then some debate
about the exact meaning of Einstein’s seminal criticism [1] on the complete-
ness of the quantum theory. Einstein’s idea of entanglement was to let two
particles A and B have a brief interaction and then to separate them [2] and
[3]. Einstein reformulated his criticism, which still contains the Heisenberg
uncertainty in [1], into the following. If the wave fuction of A, denoted by
14, can be manipulated by observer O4, then, the wave function to be ob-
served by the distant Op is not uniquely attached to B. This is Einstein’s
inseparability criticism. Don Howard [2] argues that, because of e.g. Bose
statistics, already far before the publication of the EPR paper, Einstein had
his doubts about the separability of quantum particles.

In later developments Bohm [4] replaced the brief interaction between
A and B with the singlet spin state to entangle spins of particles A and B.
Bohm’s paradigmatic particle was para Positronium. Bohm’s work gave rise
to Bell his formula and the inequality derived thereof [5].

The present author has shown a critical flaw in Bell’s work [6]. This flaw
is in fact a refrence to concrete mathematical incompleteness: the Godel phe-
nonmenon in concrete mathematics [7]. Non inequality research supported
the idea that Bell inequalities are perhaps not the only way to determine
that the quantum mechanical non-relativistic analogue of classical mechan-
ics, is different from classical mechanics. Historically, one of the earliest
proofs thereof found is by Kocher and Commins [11]. The study of Kocher
and Commins is an example of a photon correlation experiment without
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the need for a Bell correlation formula based inequality. Recently, Nordén
[12] discussed the question how wrong Einstein was after all. The mathe-
matical incompleteness of Bell’s inequalities in [6] questions &~ 40 years of
experimental research into non-locality. It will not receive a warm welcome
in certain quarters of research. It does, however, not invalidate quantum
mechanics as a statistical theory. The latter view on quantum mechanics
was Einstein’s conception [2]. In a sense, Nordén [13] supports this idea
with an explanation that comes close to a Hanbury-Brown Twiss view of
spin-spin correlation. It must, in addition, be noted also that Wennestrom
[14] advances physics criticism on the non-locality conclusions that are de-
rived from experiment. A famous experiment that deserves mentioning here
is Aspect’s [15].

To continue, it must be noted that in his letter to Schrédinger, Einstein
was interested in the physics of a brief interaction followed by a spatial sep-
aration. This means a transformation of the joint wave function ¥ (x4,%xp)
into a product of two separate wave functions 1 4(x4)Yp(xp) for distant
particles A and B.

Einstein was displeased with the EPR paper [3]: ...die Hauptsache ist
sosusagen durch Gelehrsamkeit verschiittet!..”. In my humble opinion this
was not because of a more or less artisitic need for simplicity. The EPR paper
formulated something close to, but definitely not identical with, Einstein’s
inseparability criticism.

In an earlier letter to Schrodinger, Einstein writes down after correction
[2], a Schrodinger equation for entangled particles in the sense discussed here
in the above. The conversation between the two giants of physics continues
with Schrédinger noting that with the non-relativistic quantum analogue of
classical mechanics, separability cannot be conceived [3, page 177]. One can
with a more modern view imagine virtual photons carrying the Coulomb
interaction between two opposite charged particles. Because the absence
of relativity, the Schrodinger equation with Coulomb potential function is,
apparently according to Schrodinger, unfit to describe the separability that
Einstein was looking for. End of story according to Schrodinger [3, page
177].

Einstein directed his arrows of criticism to the unexpected inseparability
in non-relativistic quantum theory. Let us accept the words of Schrodinger
for the quantum analogue of classical mechanics. But what about unex-
pected separability in non-relativistic quantum theory? What would that
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tell us about the quantum analogue of classical mechanics.

Before entering into the mathematics of this question we first may note
that this question is most likely not pure philosophy. It is possible to design a
real experiment with e.g. charged molecule radicals and perform separation
within the boundaries of distances where Coulomb potentials can be felt.
This means, we can employ the kind of Schrodinger equation that Einstein
considered. However, now we look for unexpected separability. We look for
disentangling transformation in the realm where an inevitable entangling
Coulomb potential function rules. The matter of separeability and therefore
disentanglement because of temperature [16] will be discused later.

In order to find the properly charged radicals we can look at e.g. the
interesting field of spin-chemistry and make use of their experimental tech-
niques. Let us look at Figure - 1. The use of nearly equal mass radicals
make sense when we want to approximate a kind of chemical / molecular
onium-type of "atom” on the meso scale where quantum theory is still valid.
The Schrodinger equation can be similar to the one which approximates the
Positronium [8]. In Figure-1 the two radicals are presented. The (ideal)
molecular mass with Mo = 12, My = 14, My = 1, is for N-Methyl Car-
bazole, Mcy,m,, N = Mnmcz = 181. For Tetra Cyano Benzene we have
Mc,oH,N, = Mrconp = 178. The two charged molecular radicals come close
to a meso scale type of ”onium” atom approach that can also be found with
e.g. Positronium but then for electron and positron.

In a paper of Tanimoto and Fujiwara, [9, page 440 | we learn about
a charged radicals generating reaction for N-Ethyl Carbazole NECZ and
TCNB. This is what we want to accomplish for NMCZ and TCNB. The
method is to capture NECZ and TCNB in a micelle. Subsequently, the
micellar solution is subjected to light irradiation. The generation of the
radicals is performed with the use of photons denoted by Av. In our case we
capture NMCZ and TCN B (Figure -1) in micelles and use light to generate
the radicals.

D R/ C=N

N=C C=N

Figure 1. Left, N-Methyl Carbazole radical R denotes N*® — CHj abbrevi-
ated as NMCZ *® and right Tetra Cyano Benzene radical with R’ denoting
C = N°*©, abbreviated as TCNB *. In fact, the position of ® in the NMCZ
radical and © in the TCNB radical is unknown.



The generation of charged molecular radicals in micelles, is presented below

micelle micelle

NMCZ +TNCB+hvy —s NMCZ *® + TCNB *©

The right hand side of this equation serves as the entangled pair (better:
pairs) in a micelle. The spin-chemistry literature shows that this step is
possible.

A subsequent step is the separation of NMCZ *® and TCNB *©. This
can be done by e.g. "destroying” the micelle confnement and simultaneously
separate NMCZ *® and TCNB *° with e.g. dipole radiation. The latter
separation method can be compared to the way e.g. Wigner described the
separation of entangled electron and positron from Positronium [10]. Hence,

micelle

NMCZ *®* + TCNB*® — NMCZ *® ... TCNB °*°

The dots denote the spatial separation. We claim that Einstien’s treatment
of the Schrodinger equation for a number of NMCZ *® and TCNB *© in
the micelle, is correct here. What is needed is that, perhaps for a short
moment in time, NMCZ *® and TCNB *° are in a state where a joint
wave function exists. Let us call this the onium state. Most likely, similar
to spin-chemistry, there will be a loss of free NMCZ *® and TCNB *°©
through chemical reaction. Moreover, the number of ”onium” typed but
afterwards free NMCZ *® and TCN B *© must not be too small compared
to the NMCZ *® and TCN B *© that never were in the ”onium” state.

In relation to that we may note that spin-chemistry experiments [9] do
show that separate molecular radicals can be in the spin singlet state. So
in case of spin-spin entanglement a comparable ”"onium” is possible. We
believe that therefore the ”onium” without explicit consideration of the spin,
living in the micelle state and under the blessing of Einstein his compound
Schrodinger equation [2, page 26 |, is not just sheer fantasy.

2. Hamiltonian in a non-relativistic quantum analogue of classical
mechanics

Let us start with the, normalized in form, stationary Schrodinger equa-
tion for the Coulomb bound state of two particles. The structure in a sense
resembles a Positronium [8] and coincide with [3, page 26]. In the lowest non-
relativistic approximation the binding energy is determined by the instanta-
neous electrostatic interaction, similar to the hydrogen atom but then for, for



instance, 1 = NMCZ *® and 2 = TCNB *©. The reduced molecular mass
M = MiMs/(M; + M) is close to 179.49/2, e.g. m =~ myypcz/2 in e.g.
kg, the reduced mass is m ~ 1.4987 x 1072%. In SI units, & ~ 1.055 x 10734
J.s and e ~ 1.602 x 10~ coulomb.

/

2 2 o
Vi+ V5 + . + €12 Y(x1,%x2) =0 (1)
1,2
. . 2 . .
In this equation V? = 687:%’ with, x1 = (21,1, 21,2, 21,3). Similarly for V3,
. _ -1 _ -1 ’_ 2e?
with, xo = (22,1, 2,2, 223). Furthermore, rio = |[x1 —x2[| 7" and o’ = 7557

and e the unit of charge. €1 2 is 2m/h? times the energy eigenvalue [8, page
182] if A is not in units giving A is unity.

2.1. Unezpected independence

Here we ask can there be a transformation of the approximate Schrodinger
equation such that, despite the presence and validity of the Coulomb force,
we have mutual independence between distant particles? Of course temper-
ature effects are here crucial to the question [16].

In the experiment we have a number of subsequent stages. Each stage is
descroibed by a stationary Schrodinger equation. This is what is intended by
time-sliced change. First we have the situation where interacting particles
are in a micelle. Then, second;ly, the initial separation sets in. Here £ =
(1,2 + x2,1)/2 is, momentarily, a constant despite changes in respectively,
211 and o 1. This can be accomplished when e.g. z11 — 211 + Az and
221 — ®2,1 — Az. In the third next stage, we freeze 11 and let y = x12
and z = x1,3 vary on the particle 1 side . On the particle 2 side we let z2 1
increase. The £ in that stage or moment of time is no longer a constant
because x1 1 is "freezed”. The mathematics below makes things clear about
the arrangement of the experiment for ”free” but within Coulomb range
NMCZ *® and TCNB *°© radical pairs.

In order to study this we first look at the Coulomb potential function
itself. Now suppose that there is a £ € R and the (z1; — :c217)2 dominate
the Zzzz(xug — T2)? such that 1o = \/(xm — x91,)% + €2, If we then
subsequently arrange it such that z11 > § and 221 < § we approximate 7 %
with a 0 < 3 using

s~ 277 (@0 = 7+ (€ - wn) 7 (2)

If we take e.g. & = (21,1 +22,1)/2, then 7“1_% ~(x11 —58271)_6. This amounts
to an approximation of the Coulomb potential in the ”amount of space and



time” where a Coulomb potential rightfully may be employed. We have

o 2¢2m

o ~2 P iz {(301,1 —& P+ (¢- 332,1)_5} (3)

Let us define v = 2771 i‘fg If we then accept that at a certain point in
time the stationary Schrodinger equation (1) for a product wave function

Y(x1,X2) = ¥1(x1)2(x2) can be written as

1 . 1
(11 =8P (£ —w21)P

This equation (4) can be split into two equations given below. The time-slice
development in time allows us to momentarily take & is constant: z1; —
211+ Az and 91 — x2,1 —Az. Both the x. ; coordinates change but £ does
not. The idea is to separate the particles with the use of ”dipole radiation”
such as described by Wigner [10, around equation (46) of Wigner’s lecture].
This appears in principle to be possible with the charged radicals NMCZ *®
and TCN B *°. Hence,

[v% FvEt fy{ } n ] i1 )92 (xs16) = 0 (4)

¢2(X2\§){V%+M+61}¢1(X1’f) =0 (5)
and
016 {3+ g+ a pvaliale) =0 )

with, €12 = €1 + €2. It is supposed that the two separate equations describe
the situation in a stationary form just after the separation split. Then one
may imagine that in experiment it is possible to restict the stationary de-
scription of particle one with wave function ;(x1) to the directions 12 =y
and z13 = z. The y and z notation are introduced for ease of the presenta-
tion of computation.

If we then introduce the transformation of 11 with

0
p10.9) = g+ x0x1,8) ) da k) = Din ) @
the question can be asked if it is possible to find a transformation (7) such
that ¢1 does not depend on £. The symmetric propagation where x11 —
11 +h and x21 — 221 — h and the x. 1 coordinates change but ¢ does not,
is broken in that time frame. In turn £ depends on the 21 coordinate of



particle 2. It is assumed that the value of £ with fixed x1; can vary with
€2.1-

Of course, in experiment one can fix z1 ; without fixing x9 ;. In addition
& can vary because nobody knows exactly where we are allowed to start
talking about two separate particles. At the ”split” the ¢ is approximatedly
fixed when looking at e.g. 1,1 for the equation of particle 1. Similar case
for particle 2. But when the stationary equations for particle 1 and 2 evolve
for later ”time slices” & varies.

Given equation (5) we then may have

. Y
div grad ++61>¢1X§ =0 8
( = (k) ®)
with x = (x,y,2) = (x1,1, 212, 21,3) and z = x1; fixed. For ease of notaton
denote grad for the gradient (8 , aa ). Therefore, div grad = 2 + 8‘9222
Obviously we also have,
. Y
D | div grad ++61>¢1X§ =0 9
( e (k) (9

2.2. Transformation

Let us first look at the term D ( 37 T o2 )1/}1 in (8). Subsequently
observe div grad ¢; = div grad { (8% + X) 1/)1}. Hence,

div grad g+ x) v =
(;dlv grad ¥ + x div grad ¢1> + 1 div grad x + 2grad ¢; - grad x = (10)
(aa€ + X) div grad 1 4+ ¢ div grad x + 2grad ; - grad x
Therefore the first term in the differential equation (8) transforms like
D div grad ¢; = div grad ¢1 — 91 div grad x — 2grad ¢, - grad x  (11)

The second term contains a £. We have

0 gl
D = 85(( 5)”’1) @ _p ¥ (12)



Or, the second term can be written down as,

0 B By Y
Do = o T e

For completeness,

0

7@ P =(-B)(-1)(z—-& "

Note the definition of ¢; provided in (7) and used in (13). The third term
of (9) is a simple transformation

Deiyp1 = €101 (14)

If we then add equations (11), (13) and (14) we are back at (9) and note
that

. v
(le grad —+ W + €1> gpl(xfg) =0 (15)
provided
1 div grad x + 2grad ¢ - grad x — (:E—Bg)ﬂ“¢1 =0 (16)

If we observe the previous equation (16), then by construction, ¢ (x[¢) is a
solution to (8) operator equation as is ¥ (x[£).

2.3. A transformation that allows @1 independent of &

We start with the assumption that the experiment is such that, after the

split. Remembering, div grad = g—; + g—;
. g
d d+ ——— =0 17
{avgraa+ 2 vabuna g (7)

Let us assume an O(m?) approximation theory for m from + in the potential
function and take

1/}1($,y, Z’é) = g(ya Z)(JZ - g)BJrl (18)

Hence, the equation (17) results into

(div grad g) (z — &)™ + yg(z — &) + e1g(z — )P =0 (19)



or
(div grad g) (z — &)° + 79+ eg(z — &) =0 (20)

Now because we approximate in O(m?) it is possible to e.g. have g(y, z) =
mh(y, z) and so, vg = O(m?). The possibility to have a function with only
g = g(y, z) is therewith acknowledged and this is what is needed to have a
1 that, according to our aim, does not in O(m?) approximation depend on
€. The equation (20) then turns into

div grad g(y,2) + e19(y,2) =0 (21)
in O(m?). Subsequently we can have a look at

(] (CC, Y, Z|£) = g(y7 Z) (1‘ - S)B_‘—l (22)

z r— £)B
xu&aozﬂ%>aw5£§ &)

The first of the equations obeys the Schrédinger equation (19) and holds a
g = g(y, 2) which is in O(m?) approximation, independent of £&. The second
of the equations in (22) is not trivial even though we can multiply nominator
and denominator with ¢(y, z) to, obviously, obtain

fo— G
X

It is a part of D transformation and combines with the 11, for convenience
again given in the first of (22), to form a ¢ as

o1 = (;2 +x) Y= (23)
—(B+Dg(y,2)(@— &) + f(y,2)9(y, 2) + (B + 1)g(y, 2)(x — £)°

Hence, ¢1 = g(y, 2)f(y,2) and 1 is, clearly, independent of £. For com-
pleteness,

gﬁ%(XI&) = —9(y,2)(B+1) (z —&)"

and

XX w1 (x1€) = gy, 2) f(y,2) + 9(y, 2) (B +1) (z — &)°



3. Discussion and conclusion

3.1. Verification

We need to verify if the condition in (16) is fulfilled in a way that warrants
¢1 independence of £. If (22) is substituted in (16) we find, remembering,

grad = (6%7 %) and z, & constant for grad

g divgrad (f+(B+1)@-9%)+ (24)
2 grad(g) - grad (f + (84 1)(z — €)7) = fyg =0
Therefore,
g div grad (f) +2 grad(g) - grad (f) —Byg =0 (25)

with, grad = (8%7 %) and, £ = (z1,1 — x2,1)/2. For z fixed,

grad ((8+1)(@=8)7) = (0,0 (26)

We also note that it is assumed: vg = O(m?). Moreover we note that (25)
allows the conclusion that f = f(y, z) is indeed possible. This implies that
w1 = p1(y, z) is a solution of (15) despite the presence of the potential ﬁ
in that equation. Please also observe that ¢1(y,2) = g(y, 2)f(y,z) which
need not be O(m?). In addition, vg(y, z) is O(m?) but that does also not
imply that 11, defined in (22), is small of O(m?) in all cases as well. This
so because of the occurence of the (z — £)#*! as a factor in 1.

When x;; — xg; is large, the potential in (15) decreases. But some
wave function descriptions of the same particle, like 11, still ”feel” the effect
while others ¢1 = D11 may become "immune” to it. Observe that the D
transformation can transform ¢ (x|§), which is £ dependent, into p(x), which
is & independent. Both functions in (8) and (15) are a solution to

(div grad + 3 + €1> Uy =0

7
(z =€)
Here, ¥y € {¢1(X\§)7D¢1(X\§)7 <. }

Looking at the potential ﬁ in (8) we see that

meQ

Amh?

o—A-1 2me?

9y ) — ) =27

9(y, 2) (w11 — 22,1) (27)

10



is obtained. Noting mg(y,z) = mg(x12,713) = O(m?), the

(= &) = (z11 —22,1)/2

in (27) i.e. in (8) can compensate for O(m?) if e.g. |z1,1 — x21] is increased
sufficiently.

8.2. Schrodinger’s end of story

A 7relatively” large |11 — 21|, with fixed z7 1, maintains the influence
of the w1 coordinate of the second particle on the 91 function. This is true
despite the 1/(x1,1 —x2,1) form of the potential function in the Hamiltonian.

It allows also a transformation to 1 = D1y which is order O(m?) inde-
pendent of £&. Suppose that we in our analysis remain in the distances where
Schrodinger implicitly talked about in his letter to Einstein. The £ repre-
sents the influence, via the Coulomb force, of the coordinate of the second
entangled charged molecular radical on the wave function of the first.

Apparently, quantum mechanics allows a transformation of a wave func-
tion where the inevitable Coulombic entanglement, according to Schrodinger’s
end of story, is "immunized”. The use of charged molecular radicals makes
the description with the Schrédinger equation more natural. Note that
the charged radicals are taken to be particles with wave functions of their
own. The latter are likely related to the intrinsic molecular wave function.
Nevertheless, a description of the role of the particle in the experimental
environment is aimed for, not the intrinsic molecular wave function. We are
looking at a meso scale, but still quantum, behavior.

The mathematics of the Schrodinger equation implies that one can trans-
form away the Coulombic influence of the second particle on the first. We
can also ask the question what it means when not a single onium pair can
be found. E.g. what does it mean for radical chemistry, when this transfor-
mation cannot be accomplished.

A possible explanation for the effect can be a transformation to classi-
cal levels. Can temperature effects disallow all kinds of "non temperature
based” mathematics to be realised in the real world. From [16] we may learn
that asymptotic behavior of atom-atom interaction at sufficiently large sep-
aration, -which is perhaps needed in our present case-, are profoundly in-
fluenced by excitations in the radiation field. This has the effect that the
initial quantum interaction goes over to its classical analogue. On the other
hand, working with molecular radicals perhaps lowers the thermal noise that
could as well spoil the physical realization of the "non temperature based”
mathematics [17]. It is also noted that other forces [16] of the order 1/r,

11



might play a role as well in the physics of a possible experiment with photon
generated micelle based charged radicals.

In any case, the transformation 1 = D)y appears to open a new chapter
in the Schrodinger-Einstein story. One may, firstly, wonder what Einstein
would have thought of a description of a particle that can transform itself
in such a way that it does not ”feel” the Coulomb force anymore. If it is
a temeprature effect then we actually have a temperature effect associated
wave function transformation to classical levels. But still the question may
linger if in classical domain the Coulmob force at the distance in the exper-
iment will persist. Secondly, the author believes he is halfway a criticism
of the quantum analogue of classical mechanics and a genuine discovery in
the physical organic chemistry of charged radicals. The conditions for a
phenomenon of physical organic chemistry are,

e is it possible to create onium for most of the NMCZ *® and TCN B *©
in the micelle

e is it possible to separate NMCZ *® and TCN B *© and to stop one
radical along the x axis but still allow movement along y and z for the
first particle, while the other charged radical is separated along the x
axis in the opposite direction

e is it possible to, initially, orderly x-axis separate NMCZ *® and TCN B *©
with 211 — 21,1 + Az and 221 — 221 — Az

e is it possible to bring either NMCZ *® or TCNB *°, considered
mesoscopic, in a state wave function vy (z, v, 2|€) = g(y, 2)(z — &)+

— what is the influence of the intrinsic wave function on the possi-
bility to arrive at mesoscopic
— what does it mean when it is impossible to bring the, or even any,

charged radical in mesoscopic 1

e is it possible to find a physical equivalent for D = 8% + x(x[€) so that
the ” Coulomb immunity” mesoscopic state wave function actually can
be determined

12
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