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1.  Abstract

This paper demonstrates why logic system VŁ4 is a universal logic composed of any refutation as a 
non-tautologous fragment.  Recent advances are a definitive answer to criticism of logic Ł4, modal 
equations for lines and angles of the Square of Opposition, confirmation of the 24-syllogisms by 
updating Modus Cesare and Camestros, and proving that respective quantified and modal operators are 
equivalent.  The parser Meth8 implements VŁ4 as the modal logic model checker Meth8/VŁ4. Over 
435 assertions are tested in about 2400 assertions with a refutation rate of 81%. 

2.  Introduction

2.1. Outline

This paper proves that an exact, bivalent, quaternary logic is not a probabilistic, vector space.  From the
four-values of the 2-tuple, logical assignments are derived for two models in logic system B4.  Modal 
values are further ascribed for system Ł4 with truth tables for connectives.  A criticism of Ł4 is 
answered by trivial proof.  The Square of Opposition is corrected with modal equations for vertices and
edges.  Corrections are made to two of the 24-syllogisms as confirmed.  The quantifiers are shown 
equivalent to the respective modal operators as a distinguishing feature for system VŁ4.  The Meth8 
parser hosts and implements VŁ4 as a modal logic model checker.  Meth8/VŁ4 tested over 435 
artifacts in about 2400 assertions for a rate of 19% confirmation and 81% refutation.  The seven 
examples given are for refutations.

2.2.  Overview of literature

Universal logic owns a public domain corpus published at encyclopedia web sites with lists of 
marginal, secondary references.  A few primary sources describe non-standard and paraconsistent logic 
as appropriated by three writers, but traceable to earlier concepts as minimized or suppressed.  Until 
now, there is no literature on bivalent, modal, quaternary, universal logic. 

3.  B4 as a group, ring, module

In (James, 2010), the 2-tuple of logic B4 was described as:

Four value bit code (4vbc) consists of four dibits that have the semantic meanings of True {01} 
and False {10} and the syntactic meanings of Bivalent {11} and Not Bivalent {00}.  The 
respective left- and right-bits are further variables for false and true.  Two dibits (4-bits) form 
the basis of PMDL, a universal logic for propositional, modal, and deontic logics.  PMDL has 
three levels of tabular proofs as negation, rotation, and reflection.  This paper proves that 4vbc 
constitutes its own mathematical category as a group, ring, and module.  

The outline of the proof was:
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4vbc contains unique 8-bit operators that are tabulated into 256 look up tables (LUTs).  The 
additive table for the small finite field F4 is isomorphic in 4vbc to the LUT of the logical 
operator “XOR”.  4vbc is not isomorphic to the F4 multiplicative table which is bit-inconsistent.
Hence 4vbc is not a vector space.  The modulo 2 additive table of the elementary Abelian group 
(Z/2Z)2 is isomorphic in 4vbc to the LUT of the logical operator “Necessarily XOR”.  (Z/2Z)2 is
the finite group C2xC2 that is a distinct group of order 4 and is not cyclic.  A Cayley table as the 
representation of a multiplicative table of C2xC2 table is isomorphic in 4vbc to the LUT of the 
logical operator “10 EQV( XOR)”.   (Another distinct group of order 4 is the C4 group that is 
cyclic; in 4vbc that multiplicative table is bit-inconsistent.)  4vbc is further isomorphic to 
multiplicative table of the abstract Vierergruppe or Klein V4 Group.   4vbc meets the five 
axioms required for an Abelian group under addition.  4vbc meets the three axioms required for 
a monoid group under multiplication. 4vbc meets the six axioms required for a ring to include 
left- and right-distributivity through 12 brute force combinations.  4vbc meets the four axioms 
required for a left R-module.  Because the right and left R-modules are commutative, 4vbc is 
also an R-module.

The term above bit-inconsistent describes non-bivalent, vector spaces.

LET s = sinister (left-handed); d = dexter (right-handed).  The x below is connective AND.

Table 4.  F4 multiplicative table in 4vbc

 s|d   s|d   s|d  s|d   s|d
  x    0|0  0|1  1|0  1|1
0|0   0|0  0|0  0|0  0|0 line 1
0|1   0|0  0|1  1|0  1|1 line 2
1|0   0|0  1|0  1|1  0|1 line 3
1|1   0|0  1|1  0|1  1|0 line 4

Table 4 is bit inconsistent as shown in the left and right bits, respectively, in Table 5.

Table 5.  F4 bit-inconsistent in 4vbc

ssss dddd
0011 0011
0101 0101
0001 also 1110

Table 5 is derived many ways, as for example: 

By the default of row major, for left bits (s) from Table 4:
         ↓
0 0 = 0 in line 1 and 0 in line 2
0 1 = 0 in line 1 and 1 in line 2
1 0 = 0 in line 3 and 0 in line 3 
1 1 = 1 in line 3 and 0 in line 3
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but also for right bits (d) from Table 4:
         ↓
0 0 = 1 in line 3 and 0 in line 3
0 1 = 1 in line 3 and 0 in line 3
1 0 = 1 in line 4 and 0 in line 4
1 1 = 0 in line 4 and 1 in line 4

4.  Two model types on B4 with 2-tuple values

The two model types on B4 are named Model 1 (M1) and Model 2( M2).  The logical values of the 2-
tuple {00, 10, 01, 11} are described respectively as: 

{False for contradiction; Contingent for falsity; 
Non contingent for truthity; Tautology for proof} (M1)

and 
{Unevaluated; Improper; Proper; Evaluated}. (M2) 

The respective values of { F, C, N, T} in M1 are equivalent to { U, I, P, E} in M2.  The designated 
proof value is T for tautology and E for evaluated. 

5.  Modal values on Ł4 

Model 2.1 (M2.1) is equivalent to Model 1 (M1) but with { U, I, P, E} instead of { F, C, N, T}.  M2.1 is
included for completeness.  M2 also contains the sub-models of M2.2 and M2.3.  These are required 
for combinations of logical values in B4 to produce modal values in Ł4.  The derivation is based on the
up-and down-functors of Łukasiewicz below.  (The symbols are & for AND and v for OR, and [] for 
necessity and <> for possibility.)

Łukasiewicz' Up-functor [p]

M1     []: { F,C,N,T} & C = { F,C,F,C};  M1     <>: { F,C,N,T} v N = { N,T,N,T} 
M2.1   []: { U,I,P,E} & E = { U,I,P,E};  M2.1   <>: { U,I,P,E} v U = { U,I,P,E}
M2.2   []: { U,I,P,E} & U = { U,U,U,U};  M2.2   <>: { U,I,P,E} v E = { E,E,E,E}
M2.3.1 []: { U,I,P,E} & P = { U,U,P,P};  M2.3.1 <>: { U,I,P,E} v I = { I,I,E,E} 
M2.3.2 []: { U,I,P,E} & I = { U,I,U,I};  M2.3.2 <>: { U,I,P,E} v P = { P,E,P,E}

Łukasiewicz' Down-functor [~p]

M1     []: { T,N,C,F} & C = { C,F,C,F};  M1     <>: { T,N,C,F} v N = { T,N,T,N} 
M2.1   []: { E,P,I,U} & E = { E,P,I,U};  M2.1   <>: { E,P,I,U} v U = { E,P,I,U}
M2.2   []: { E,P,I,U} & U = { E,E,E,E};  M2.2   <>: { E,P,I,U} v E = { U,U,U,U}
M2.3.1 []: { E,P,I,U} & P = { E,E,I,I};  M2.3.1 <>: { E,P,I,U} v I = { E,E,I,I} 
M2.3.2 []: { E,P,I,U} & I = { I,U,I,U};  M2.3.2 <>: { E,P,I,U} v P = { E,P,E,P}

The look up tables (LUTs) are stored in binary and decimal as 
 

{ 00, 10, 01, 11} and 
{  0,  3,  2,  1} 
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with substitution LUTs for:

{  F,  C,  N,  T} and 
{  U,  I,  P,  E}.

Rule 1 states that for any expression falling within the scope of a modal operator, only M2.1 applies for
all truth constructs of the expression.

Symbols are: & for AND; + for OR; # for [] necessity; and % for <> possibility.  The modal results for 
#p, %p, #~p, and %~p of each model are below:

Row
index

Column index
Model 

0
p

1
#p

2
%p

3
#~p

4
%~p

0 B4          #  * 0   %  + 2 0  3  2  1 0  3  0  3 2  1  2  1 3  0  3  0 1  2  1  2

1 B4          # & 01  % + 10 00 10 01 11 00 10 00 10 01 11 01 11 10 00 10 00 11 01 11 01

2 M1        # & C   % + N F C N T F C F C N T N T C F C F T N T N

3 M2.1     # & E   % + U U I P E U I U I P E P E E P E P I U I U

4 M2.2     # & U  % + E U I P E U U U U E E E E E E E E U U U U

5 M2.3.1  # & P   % + I U I P E U U P P I I E E E E I I P P U U

6 M2.3.2  # & I   % + P U I P E U I U I P E P E E P E P I U I U

More compact LUTs are described as:

 VŁ4: M1  M2 ~VŁ4: ~M1 ~M2
  F   U       T   E
  C   I       N   P
  N   P       C   I
  T   E       F   U

    1        2.1  2.2  2.31 2.32 <  Definitions of the five models.
    # %      # %  # %  # %  # %   # Necessity,  All or every;
 F. F C   U. U U  U E  U P  U I   % Possibility, One or some
 C. F C   I. I I  U E  I E  U I   (The equivalence of modal
 N. N T   P. P P  U E  U P  P E   and quantified operators is
 T. N T   E. E E  U E  I E  P E   derived in Section 9 below.)

The connectives are from standard logic and in one character as

{and, or, imply, equivalent} for {&, +, >, =};  

and with the negated connectives as 

{nand; nor; not imply; exclusive-or} for {\, -, <, @}.  
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The 16-valued look up truth tables are by four rows-major and presented horizontally.

 1 & . F,F,F,F . F,C,F,C . F,F,N,N . F,C,N,T
 1 \ . T,T,T,T . T,N,T,N . T,T,C,C . T,N,C,F
 1 + . F,C,N,T . C,C,T,T . N,T,N,T . T,T,T,T
 1 - . T,N,C,F . N,N,F,F . C,F,C,F . F,F,F,F
 1 < . F,F,F,F . C,F,C,F . N,N,F,F . T,N,C,F
 1 = . T,N,C,F . N,T,F,C . C,F,T,N . F,C,N,T
 1 > . T,T,T,T . N,T,N,T . C,C,T,T . F,C,N,T
 1 @ . F,C,N,T . C,F,T,N . N,T,F,C . T,N,C,F
 
 2 & . U,U,U,U . U,I,U,I . U,U,P,P . U,I,P,E
 2 \ . E,E,E,E . E,P,E,P . E,E,I,I . E,P,I,U
 2 + . U,I,P,E . I,I,E,E . P,E,P,E . E,E,E,E
 2 - . E,P,I,U . P,P,U,U . I,U,I,U . U,U,U,U
 2 < . U,U,U,U . I,U,I,U . P,P,U,U . E,P,I,U
 2 = . E,P,I,U . P,E,U,I . I,U,E,P . U,I,P,E
 2 > . E,E,E,E . P,E,P,E . I,I,E,E . U,I,P,E
 2 @ . U,I,P,E . I,U,E,P . P,E,U,I . E,P,I,U

6.  Answer to an Ł4 objection

This proposition is supposed to be egregious to logic system Ł4: 

(◇p&◇q)→◇(p&q). (6.1.1)

If possibly the cat is alive and possibly the cat is dead, then
possibly both the cat is alive and the cat is dead. (6.1.0)

LET p, q:  Schrödinger's cat is alive; Schrödinger's cat is dead

(%p&%q)>%(p&q) ; TTTT TTTT TTTT TTTT (6.1.2)

Assumptions: ((exists(p) & exists(q))).
Goals (exists(p&q)).    Exhausted. (6.1.3)

Prover9 invalidates Eq. 6.1.3 to show Ł4 is untenable as an alethic logic.

If we preload p=~q as the antecedent to Eq. 6.1.0, then: 

If possibly the cat is alive is equivalent to Not (the cat is dead), then
if possibly the cat is alive and possibly the cat is dead, then 
possibly both the cat is alive and the cat is dead. (6.2.0)

%(p=~q)>(%(p&q)>(%p&%q)) ; TTTT TTTT TTTT TTTT (6.2.2)

Assumptions: (exists(p<->-q)).  
Goals: (exists(p)&exists(q))->(exists(p&q)).

Exhausted. (6.2.3)



6

Prover9 invalidates Eq. 6.2.3 to show Ł4 is untenable as an alethic logic.

Remark 6.2.3:  Eq. 6.2.3 shows Prover9 also does not distribute the 
existential quantifier.

We rewrite Eq. 6.2.1 using one variable and its negation as respectively alive and not alive:

  (◇p& ~p)◇ →◇(p&~p). (6.3.1)

If possibly the cat is alive and possibly the cat is not alive, then
possibly both the cat is alive and the cat is not alive. (6.3.0)

(%p&%~p)>%(p&~p) ; TTTT TTTT TTTT TTTT (6.3.2)

Assumptions:  (exists(p)&-exists(p)).
Goals:  (exists(p&-p). Theorem. (6.3.3)

Prover9 validates Eq. 6.3.3 to show Ł4 is tenable as an alethic logic.  

We explain Eqs. 6.1.2, 6.2.2, and 6.3.2 as rendered as tautologous in Meth8/VŁ4, but 6.1.3 as 
exhausted in Prover9 in this way.  For more than one variable, the vector space for arity with Prover9 
diverges from the bivalance inherent in VŁ4, in which modal operators and quantifiers are distributive.  
This speaks to Meth8/VŁ4, based on the corrected modern Square of Opposition for an exact bivalent 
system, as opposed to Prover9, based on the uncorrected modern Square of Opposition for an inexact 
probabilistic vector space.

Remark 6.3.2:  Meth8/VŁ4 also distinguishes between Eqs. 2.2 and 3.2 by protasis and 
apodosis as: 

%p&%q ; CCCT CCCT CCCT CCCT  (6.1.2.1.2)
%(p&q)=(p=p) ; CCCT CCCT CCCT CCCT  (6.1.2.2.2)

and
%p&%~p ; CCCC CCCC CCCC CCCC  (6.3.2.1.2)
%(p&~p)=(p=p) ; CCCC CCCC CCCC CCCC  (6.3.2.2.2)

7.  Corrected Square of Opposition

We include the Square of Opposition as corrected by Meth8 and confirmation of the Łukasiewicz 
Square of Opposition via logic VŁ4, including the Seuren Cube of Opposition which vindicates the  
mistaken criticism of it (although it still was not tautologous).

7.1.  Square of Opposition Meth8 corrected       

The modern revision of the square of opposition is not validated as tautologous by the Meth8 logic 
model checker, as based on system variant VŁ4.  Consequently we redefine the square so that it is 
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validated as tautologous my Meth8.  Instead of definientia using implication for universal terms or 
conjunction for existential terms, we adopt the equivalent connective for all terms.  The modal 
modifiers necessity and possibility map quantifiers as applying to the entire terms rather than to the 
antecedent within the terms.

The Meth8 symbols here are:  ~ Negation ;  \ Nand ;  > Imply ;  + Or ;  # modal necessity for universal 
quantifier ;  % modal possibility for existential quantifier ;  ? unspecified connective.

Sources
Type                   Definientia

* Modern Revision
Script Valid as

** Meth8 Correction
Script Valid as

Corner A #s> p #(s= p)

E #s>~p #(s=~p)

I %s&p %(s= p)

O %s&~p %(s=~p)

Contraries AE (#s>p) + (#s>~p) A + E #(s= p) \ #(s=~p) A \ E

Subalterns AI (#s>p) ? (%s&p) #(s= p) > %(s= p) A > I

Contradictories AO (#s>p) + (%s&~p) A + O #(s= p) \ %(s=~p) A \ O

Contradictories EI (#s>~p) + (%s&p) E + I #(s=~p) \ %(s= p) E \ I

Subalterns EO (#s>~p) ? (%s&~p) #(s=~p) > %(s=~p) E > O

Subcontraries IO (%s&p) \ (%s&~p) I \ O %(s= p) + %(s=~p) I + O

* The quantifier may refer to the entire term as #(p=q) or to the antecedent of the term as (#p=q).  In 
Meth8 there is a difference.  We adopt the latter because it returns more validated connectives.   For 
example from the traditional square: #(A?E), #(I?O) versus (A+E), (I\O). 

The modern revision of the square of opposition is not validated as tautologous by the Meth8 logic 
checker in five models for all expressions.  This leads us to consider that any logic system based on the 
square of opposition is spurious.  What follows then is that a first order predicate logic based on the 
square of opposition is now suspicious.

** The Meth8 validated square of opposition redefines A, E, I, O to match the words more clearly.  For 
example on A, "All S is P" is mapped as "#(s=p)", not as in the note above with "#s=p" because the 
connective of equivalence is stricter than that of implication and consistent for all definiens.  By 
changing the connective in the term from implication or conjunction to equivalence makes the Meth8 
validated square of opposition suitable as a basis for other logics such as first order predicate logic.

We note the validating connectives for the edges on the square are: \ Nand for the Contraries and 
Contradictories;  > Imply for the Subalterns; and + Or for the Subcontraries.

7.2.  Confirmation of the Łukasiewicz Square of Opposition via logic VŁ4

We evaluate the existential import of the Revised Modern Square of Opposition.  We confirm 
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that the Łukasiewicz syllogistic was intended to apply to all terms.  What follows is that 
Aristotle was mistaken in his mapping of vertices, which we correct and show fidelity to 
Aristotle's intentions.  We also evaluate the Cube of Opposition of Seuren.  Two final claims are
not tautologous, hence refuting the Cube, which also contradict criticism of Seuren that was not 
based on those claims.   

See: Read, S.  (2015).  Aristotle and Łukasiewicz on Existential Import.  
st-andrews.ac.uk/~slr/Existential_import.pdf   slr@st-andrews.ac.uk

We map vertices of the first Square of Opposition on page 4 with its words below.

(A) Every S is P. #(s= p)=(p=p) ; NFNF NFNF FNFN FNFN (7.2.0.1.2)
(E) No S is P. #(s=~p)=(p=p) ; FNFN FNFN NFNF NFNF (7.2.0.3.2)
(I) Some S is P. %(s= p)=(p=p) ; TCTC TCTC CTCT CTCT (7.2.0.5.2)
(O) Not every S is P. %(~s=p)=(p=p) ; CTCT CTCT TCTC TCTC (7.2.0.7.2)

Remark 7.2.0:  The above is from our revised Modern Square of Opposition 
as in Section 7.1. 

We map the relations which Aristotle accepts as preserved here.

A- and E-propositions are contrary (cannot both be true) [ (A)=T & (E)=T ] (7.2.1.1.1)

(#(s= p)=(p=p))&(#(s=~p)=(p=p)) ; FFFF FFFF FFFF FFFF (7.2.1.1.2)

and I- and O-propositions are subcontrary (cannot both be false) 
[ (I)=F & (O)=F ] (7.2.1.2.1)

(%(s= p)=(p@p))&(%(s=~p)=(p@p)) ; FFFF FFFF FFFF FFFF (7.2.1.2.2)

A- and O-propositions are contradictories,  [ (A)&(O) ] (7.2.2.1.1)

#(s= p)&%(s=~p) ; FFFF FFFF FFFF FFFF (7.2.2.1.2)

as are I- and E-propositions [ (I) & (E) ] (7.2.2.2.1)

%(s= p)&#(s=~p) ; FFFF FFFF FFFF FFFF (7.2.2.2.2)

A-propositions imply their subaltern I-proposition,  [ (A) > (I) ] (7.2.3.1.1)

#(s= p)>%(s= p) ; TTTT TTTT TTTT TTTT (7.2.3.1.2)

and E-propositions their subaltern O-proposition [ (E) > (O) ] (7.2.3.2.1)

#(s=~p)>%(s=~p) ; TTTT TTTT TTTT TTTT (7.2.3.2.2)
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I- propositions convert simply ‘Some S is P ’ implies ‘Some P is S’,  (7.2.4.1.1)

%(s= p)>%(p= s) ; TTTT TTTT TTTT TTTT (7.2.4.1.2)

and E-propositions ‘No S is P ’ implies ‘No P is S’ (7.2.4.2.1)

#(~s=p)>#(~p=s) ; TTTT TTTT TTTT TTTT (7.2.4.2.2)

A-propositions convert accidentally (‘Every S is P ’ implies ‘Some P is S’)  (7.2.5.1.1)

#(s= p)>%(p= s) ; TTTT TTTT TTTT TTTT (7.2.5.1.2)

and O-propositions don’t convert at all.   
[ Some S is not P implies Every P is not S. ] (7.2.5.2.1)

%(s=~p)>#(p=~s) ; NNNN NNNN NNNN NNNN (7.2.5.2.2)

We present these six equations for the six directed rays in the Square, as in Section 7.1.

(A\E) #(s= p) \ #(s=~p) ; TTTT TTTT TTTT TTTT (7.2.6.1.2)
(A>I) #(s= p) > %(s= p) ; TTTT TTTT TTTT TTTT (7.2.6.2.2)
(A\O) #(s= p) \ %(s=~p) ; TTTT TTTT TTTT TTTT (7.2.6.3.2)
(E\I) #(s=~p) \ %(s= p) ; TTTT TTTT TTTT TTTT (7.2.6.4.2)
(E>O) #(s=~p) > %(s=~p) ; TTTT TTTT TTTT TTTT (7.2.6.5.2)
(I+O) %(s= p) + %(s=~p) ; TTTT TTTT TTTT TTTT (7.2.6.6.2)

Remark 7.2.6:  The new connective distribution is as follows with count.  The mappings 
above allow for replication and confirmation of the 24-syllogisms and with our claim 
of a minor correction each to Modus Camestros and Modus Cesare.

(1) Contraries Not And (\);
(1) Subcontraries Or (+); 
(2) Subalterns Imply (>); and
(2) Contradictories Not And (\)

We conclude that Łukasiewicz was not mistaken in his rendition of the Square of Opposition.

We now turn to the criticism of the Cube of Opposition of Seuren to map and interleave the additional 
vertices from the diagram on page 8.  While * marks predicate negation with the term "-P", we use $ to 
mark copula negation with the term "not P", and mark the negation of $ using !.

(A) Every S is P. #(s= p) =(p=p) ;
NFNF NFNF FNFN FNFN (7.2.7.1.1)

(A*) Every S is not-P. ~(#(s=p)=(p=p))=(p=p) ;
   as Not (Every S is P.)

CTCT CTCT TCTC TCTC (7.2.7.1.2)
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(A$) Every S is not P. #(s=~p)=(p=p) ;
FNFN FNFN NFNF NFNF (7.2.7.1.3)

(A!) Not (Every S is not P.) ~(#(s=~p)=(p=p))=(p=p) ;
TCTC TCTC CTCT CTCT (7.2.7.1.4)

(E) No S is P. #(s=~p)=(p=p) ; 
FNFN FNFN NFNF NFNF (7.2.7.2.1)

(E*) No S is not-P. ~(#(s=~p)=(p=p))=(p=p) ;
   as Not (No S is P.) TCTC TCTC CTCT CTCT (7.2.7.2.2)

(E$) No S is not P. #(~s=~p)=(p=p) ;
NFNF NFNF FNFN FNFN (7.2.7.2.3)

(E!) Not (No S is not P.) ~(#(~s=~p)=(p=p))=(p=p) ;
CTCT CTCT TCTC TCTC (7.2.7.2.4)

(I) Some S is P. %(s= p)=(p=p) ; 
TCTC TCTC CTCT CTCT (7.2.7.3.1)

(I*) Some S is not-P. ~(%(s= p)=(p=p))=(p=p) ;
   as Not (Some S is P). FNFN FNFN NFNF NFNF (7.2.7.3.2)

(I$) Some S is not P. %(s=~p)=(p=p) ;
CTCT CTCT TCTC TCTC (7.2.7.3.3)

(I!) Not (Some S is not P.) ~(%(s=~p)=(p=p))=(p=p) ;
NFNF NFNF FNFN FNFN (7.2.7.3.4)

(O) Not every S is P. %(~s=p)=(p=p) ; 
CTCT CTCT TCTC TCTC (7.2.7.4.1)

(O*) Not every S is not-P. ~(%(~s=p)=(p=p))=(p=p) ;  
  as Not( Not every S is P.) NFNF NFNF FNFN FNFN (7.2.7.4.2)

(O$) Not every S is not P. %(~s=~p)=(p=p) ; 
TCTC TCTC CTCT CTCT (7.2.7.4.3)

(O!) Not (Not every S is not P.) ~(%(~s=~p)=(p=p))=(p=p) ;
FNFN FNFN NFNF NFNF (7.2.7.4.4)

The following are supposed to hold:

~I* = *E: ~(~(%(s= p)=(p=p))=(p=p)) = (~(#(s=~p)=(p=p))=(p=p)) ;
TTTT TTTT TTTT TTTT (7.2.8.1.1)

~A* = O*: ~(~(#(s=p)=(p=p))=(p=p)) = (~(%(~s=p)=(p=p))=(p=p)) ;
TTTT TTTT TTTT TTTT (7.2.8.1.2)

A* > E: (~(#(s=p)=(p=p))=(p=p)) > (#(s=~p)=(p=p)) ;
NNNN NNNN NNNN NNNN (7.2.9.1.1)

A > E*: (#(s= p) =(p=p)) > (~(#(s=~p)=(p=p))=(p=p)) ;
TTTT TTTT TTTT TTTT (7.2.9.1.2)
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I > O*: (%(s= p)=(p=p)) > (~(%(~s=p)=(p=p))=(p=p)) ;
NNNN NNNN NNNN NNNN (7.2.9.1.3)

I* > O: (~(%(s= p)=(p=p))=(p=p)) > (%(~s=p)=(p=p)) ;
TTTT TTTT TTTT TTTT (7.2.9.1.4)

Eqs. 7.2.9.1.1 (A* > E) and 7.2.9.1.3 (I > O*) are not tautologous, albeit truthities.  This means that the
final claims of Seuren's Cube of Opposition are mistaken, but also that the criticism of Seuren as based 
not on those claims is also mistaken.

8.  Corrected syllogisms

The original Square of Opposition produced four combinations for each corner A, I, E, O for 4 ^ 4 = 
256 syllogisms.  Medieval scholars determined 24 of the 256 syllogisms were tautologous deductions.  
Of those, 9 were made tautologous but only after additional known assumptions were applied as fix 
ups.  Meth8/VŁ4 found tautologous none of the 24 syllogisms before fix ups.  Meth8 also discovered 
correct additional assumptions to render the other 15 syllogisms found as tautologous.  The fix ups in 
bold were verified independently by Prover9 (2007).  

From: en.wikipedia.org/wiki/Syllogism

LET q, r, s:   M, P, S.  

Original syllogisms in Meth8 script:

Code Name Assumptions: 1, 2, 3 Conclusion Test Comments

AAA-1 Modus Barbara ((#q&r)&(#s&q))      >(#s&r) tautologous

AAI-1 Modus Barbari (((#q&r)&(#s&q)) &%s) >(%s&r) * not needed

 ((#q&r)&(#s&q)) >(%s&r) tautologous

AAI-4 Modus Bamalip (((#r&q)&(#q&s)) &%r >(%s&r) * not needed

  ((#r&q)&(#q&s))    >(%s&r) tautologous

EAE-1 Modus Celarent ((~q&r)&(#s&q))     >(~s&r) tautologous

EAE-2 Modus Cesare ((~r&q)&(#s&q))   >(~s&r) ~ tautologous * Mistake

  (((~r&q)&(#s&q)) &%r) >(~s&r) tautologous * Meth8 fix 

AEE-2 Modus Camestres ((#r&q)&(~s&q))     >(~s&r) tautologous

AEE-4 Modus Calemes ((#r&q)&(~q&s))     >(~s&r) tautologous  

EAO-1 Modus Celaront (((~q&r)&(#s&q)) &%s) >(~s&r) * not needed

((~q&r)&(#s&q))     >(~s&r) tautologous

EAO-2 Modus Cesaro (((~r&q)&(#s&q)) &%s) >(%s&~r) * not needed

 ((~r&q)&(#s&q))     >(%s&~r) tautologous
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Code Name Assumptions: 1, 2, 3 Conclusion Test Comments

AEO-2 Modus Camestros (((#r&q)&(~s&q)) &%s) >(%s&~r) tautologous * needed

                      ((#r&q)&(~s&q))     >(%s&~r) ~ tautologous * Mistake

AEO-4 Modus Calemos (((#r&q)&(~q&s)) &%s) >(%s&~r) * not needed

 ((#r&q)&(~q&s))    >(%s&~r) tautologous

AII-1 Modus Darii ((#q&r)&(%s&q))     >(%s&r) tautologous

AII-3 Modus Datisi ((#q&r)&(%q&s))     >(%s&r) tautologous

IAI-3 Modus Disamis ((%q&r)&(#q&s))     >(%s&r) tautologous

IAI-4 Modus Diamatis ((%r&q)&(#q&s))  >(%s&r) tautologous

EIO-1 Modus Ferio ((~q&r)&(%s&q))     >(%s&~r) tautologous

EIO-2 Modus Festino ((~r&q)&(%s&q))     >(%s&~r) tautologous

EIO-3 Modus Ferison ((~q&r)&(%q&s))     >(%s&r) tautologous

EIO-4 Modus Fresison ((~r&q)&(%q&s)) >(%q&~r) tautologous

AOO-2 Modus Baroco ((#r&q)&(%s&~q))  >(%s&~r) tautologous

OAO-3 Modus Bocardo ((%q&~r)&(#q&s))  >(%s&~r) tautologous

AAI-3 Modus Darapti (((#q&r)&(#q&s)) &%q) >(%s&r) * not needed

           ((#q&r)&(#q&s))     >(%s&r) tautologous

EAO-3 Modus Felapton (((~q&r)&(#q&s)) &%q) >(%s&~r) * not needed

 ((~q&r)&(#q&s))    >(%s&~r) tautologous

EAO-4 Modus Fesapo (((~r&q)&(#q&s)) &%q) >(%s&~r) * not needed

((~r&q)&(#q&s))     >(%s&~r) tautologous

9.  Quantifiers equivalent to modal operators

The rationale for rendering quantifiers as modal operators in Meth8/VŁ4 has arguments from  
reproducability of formulas for vertices and edges in modal logic for the Square of Opposition in 
Section 7, reproducability of evaluating syllogisms as tautologous (with two corrections) in Section 8, 
and from satisfiability (contra Kuhn) below. 

From:  Kuhn, S.T.  (1979).  "Quantifiers as modal operators".  Studia Logica.  39.2-3/80: 147.
faculty.georgetown.edu/kuhns/supp_files/quantifiers.pdf

"Either [with Montague's approach as first order models or with Prior's approach as 
"sequences of individuals"], there is a problem.  The atomic formulas of predicate logic 
cannot all be treated as atoms in the modal language.  If we regard Pxy and Pyx, for 
example, as distinct sentence letters of the modal language then 

∃ x ∃ y Pxy & −  ∃x  ∃y Pyx (9.1.1)
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LET p, q, r:   p, x, y

(p&(%q&%r))&~(p&(%r&%q)) ; FFFF FFFF FFFF FFFF (9.1.2)

will be satisfiable.  

Remark 9.1.2:  Eq. 9.1.2 is not tautologous and a contradiction.

If we regard them as identical sentence letters then 

∃ x ∃ y (Pxy & −Pyx) (9.2.1)

((p&(%q&%r))&~(p&(%r&%q))) = (p=p) ; FFFF FFFF FFFF FFFF (9.2.2)

will be unsatisfiable."

Remark 9.2.2:  Eq. 9.2.2 is not tautologous, is a contradiction, and is 
identical to Eq. 9.1.2.   

Because Eqs. 9.1.2 and 9.2.2 are identical as contradictions, so that rendition of the satisfiability for 
quantifiers to modal operators is contradictory.  For Meth8/VŁ4 to show that the contradictions are 
equivalent implies Meth8/VŁ4 is consistent in finding those definitions as equivalent.   

What follows is that there is no reason to rely on 

"the variable-free formulations of logic by Tarski, Bernays, Halmos, Nolin and 
Quine ... [for] the effect of arbitrary permutations and identifications of the variables 
occurring in a formula."

We further show that Eq. 9.1.1 (or 9.2.1) is not a fragment contained within the universally 
quantified variables of p&(#q&#r): (9.3.1)

((p&(%q&%r))&~(p&(%r&%q)))<(#q&#r) ; 
FFFF FFFF FFFF FFFF (9.3.2)

10.  Meth8/VŁ4 implementation 

The Meth8 script uses literals and connectives in one-character.  Propositions are p-z, and theorems are 
A-B.  The connectives for {and, or, imply, equivalent} are {&, +, >, =}.  The negated connectives for 
{nand; nor; not imply; exclusive-or} are {\, -, <, @}.  The operators for {not; possibility  ; necessity ◇∃

} are {~, %, #}.  Expressions are adopted for clarity as: (p=p) for tautologous; (p@p) for ◻∀
contradiction; and (x<y) for x y.  The expression x∈ ≤y as "x less than or equal to y" is rendered in the 
negative as ~(y<x) or as  (~x>~y).  Variables are defined as:
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Definition Axiom Symbol Name Meaning  Binary Decimal 

1 p=p T tautology proof 11  3

2 p@p F contradiction absurdum 00  0

3 %p>#p N non-contingency truthity 01  1

4  %p<#p C contingency falsity 10  2

Note the meaning of (%p>#p): a possibility of p implies the necessity of p; and some p implies 
all p.  In other words, if a possibility of p then the necessity of p; and if some p then all p.  

This shows equivalence of respective modal operators and quantified operators as in Section 9 
above.

Meth8 contains recent advances in parsing technology named sliding window.  It is written in 7,100 
lines of industrial grade code in True BASIC, the educator's language, and ANSI standard.  The novel 
installation wrapper is for one user per seat per CPU, and licensed by number of logical LUT accesses 
at run time.  The is no internet access, and no asymmetric key encryption.  Hence Meth8 is ITAR 
compliant and exportable.

Meth8 use variables for 4 propositions, 4 theorems, and 11 propositions.  The size of  truth tables are 
respectively for 16-, 256-, and 2048- truth values, using recent advances in look up table indexing.  In 
RAM look up tables (LUTs) are for 4 theorems (16 result tables), 4 propositional variables (1 result 
table), 11 propositional variables (128 result tables).  Larger numbers of variables scale via LUTs on 
external media. 

11.  Notable refutations

We evaluate 419 artifacts in 2286 assertions to confirm 445 as tautology and 1841 as not (80.5%).  We 
use Meth8, a modal logic checker in five models.  The mapping of formulas in Meth8 script was 
performed by hand, checked, and tested for accuracy of intent. 

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, 
F as contradiction, N as truthity (non-contingency), and C as falsity (contingency).  The 16-valued truth
table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, 
for more variables. (See ersatz-systems.com.)

LET ~ Not, ¬ ;   +  Or, , ∨ ∪ ;   -  Not Or;   &  And, , ∩;   \  Not  And;   ∧
>  Imply, greater than, →, , ↦ , ≻ , ⊃ , , ⊢ ⊨ ↠;   < Not Imply, less than, , ∈ , , , , ;   ≺ ⊂ ⊬ ⊭ ↞
=  Equivalent, ≡, :=, , ↔, ⇐⇒ , ≜ ≈;   @  Not Equivalent, ≠;  
%  possibility, for one or some, , ∃ ◊, M;   #  necessity, for every or all, , ∀ □, L;
(z=z)  T as tautology, , ordinal 3;  (z@z)  ⊤ F as contradiction, , Null, ∅  , zero⊥ ; 
(%z<#z)  C as contingency, Δ, ordinal 1;   (%z>#z)  N as non-contingency, , ordinal 2∇ ;  
~( y < x)  ( x ≤ y),  ( x  y);   (A=B)  (A~B).⊆

Note:  For clarity we usually distribute quantifiers on each variable as designated.
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Seven refutations are discovered as non-tautologous fragments of VŁ4.

11.1.  Refutation of Bell's inequality         

From:  Maccone, L. (2013).  "A simple proof of Bell’s inequality".  arxiv.org/pdf/1212.5214.pdf 

The summation of the respective probabilities for q equivalent to r, r equivalent 
to s, and q equivalent to s is equal to or greater than one, and hence is equivalent 
to a theorem. (11.1.1.1)

~((((p&q)=(p&r)) + (((p&r)=(p&s)) + ((p&q)=(p&s)))) < (%p>#p))  
= (p=p) ; NNNN NNNN NNNN NNNN (11.1.1.2)

Remark 11.1.1.1:  For further qualification to strengthen Eq. 11.1.1.1, we 
rewrite it as:

If the respective probabilities for q, r, s are equivalent to and equal to one, then 
the summation of the respective probabilities for q equivalent to r, r equivalent 
to s, and q equivalent to s is equal to or greater than one. (11.1.2.1)

(((p&q)=((p&r)=(p&s)))=(%p>#p)) > 
~((((p&q)=(p&r)) + (((p&r)=(p&s)) + ((p&q)=(p&s)))) < (%p>#p)) ; 

NNNT TTNN TTNN NNTT (11.1.2.2)

Eqs. 11.1.1.2 and 11.1.2.2 as rendered are not tautologous.  Hence, Bell's inequality as Eqs. 11.1.1.1 or 
11.1.2.1 is refuted.

11.2.  Refutation of  the Gödel-Löb axiom

This example replicates the proof for provability logic of the Gödel-Löb axiom GL as 

□(□p→p)→□p. (11.2.1.1)

If p is "choice", this transcribes in words to: 
"The necessity of choice, as always implying a choice, implies always a choice."

(11.2.1.0)

#(#p>p)>#p ; CTCT CTCT CTCT CTCT (11.2.1.2)

To coerce the GL axiom to be a tautology, the expression is rewritten as 

□(□p→p)↔(p ¬p),∨ TTTT TTTT TTTT TTTT (11.2.2.1)

in words:  "The necessity of choice, as always implying a choice, is equivalent to 
always a choice or no choice." (11.2.2.0)
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A simpler rendition of a tautologous GL-type axiom is either 

□(□¬p→p)↔□p, or (11.2.3.1)

□(□p→¬p)↔□¬p  (11.2.4.1)

as respectively in words: "The necessity of no choice, as always implying 
a choice, is equivalent to always a choice."; or (11.2.3.0)

"The necessity of choice, as always implying no choice, is equivalent to 
always no choice." (11.2.4.0)

Remark 11.2:  If GL fails, then so also does Zermelo-Fraenkel set theory and the axiom of choice (ZFC) 
as the basis of modern mathematics. 

11.3.  Refutation of the Löb theorem and Gödel incompleteness by substitution of contradiction
   

From: Gross, J. et al.  (2016).  Löb’s Theorem.  jasongross.github.io/lob-paper/nightly/lob.pdf
jgross@mit.edu,  jack@gallabytes.com, benya@intelligence.org

This, in a nutshell, is Löb’s theorem: to prove X, it suffices to prove that X is true 
whenever X is provable. If we let □X denote the assertion “X is provable,” then, 
symbolically, Löb’s theorem becomes: □(□X→X)→□X. (11.3.1.1)

LET p:  X.

#(#p>p)>#p ; CTCT CTCT CTCT CTCT (11.3.1.2)

Remark 11.3.1.2: Eq 11.3.1.2 as rendered is not tautologous, thus 
refuting Löb’s theorem.

Note that Gödel’s incompleteness theorem follows trivially from Löb’s theorem: 
by instantiating X with a contradiction [ ]⊥ , we can see that it’s impossible for 
provability to imply truth for propositions which are not already true. (11.3.2.1)

#(#(p@p)>(p@p))>#(p@p) ; CCCC CCCC CCCC CCCC (11.3.2.2)

Remark 11.3.2.2: Eq. 11.3.2.2, rendered as Eq. 11.3.1.2 with p 
substituted by (p@p), is not tautologous but consistently falsity as C 
for contingency.  Hence Gödel’s incompleteness theorem, as following 
trivially, is also refuted.

This means that the type of Löb’s theorem becomes either □(□X→X)→□X 
[Eq. 11.3.1.1], which is not strictly positive, or □(X→X)→□X, (11.3.3.1)
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#(p>p)>#p ; CTCT CTCT CTCT CTCT (11.3.3.2)

which, on interpretation, must be filled with a general fixpoint operator.  Such an 
operator is well-known to be inconsistent.

Remark on Fn. 2:  Eq. 11.3.3.2 as rendered produces the same truth 
table result as Eq. 11.3.1.2 and as another trivial refutation. 

11.4.  Refutation of the Löwenheim–Skolem theorem  

From:  en.wikipedia.org/wiki/Löwenheim–Skolem_theorem

In its general form, the Löwenheim–Skolem theorem states that for every 
signature σ, every infinite σ-structure M, and every infinite cardinal number κ ≥ |σ|, (11.4.1.1)

LET p,  q,  r,  s:   κ,  M,  N,  σ ;   (p@p)  0, zero;  
(s>(p@p))  |σ|;  (q>(p@p))  |M|;  (r>(p@p))  |N|;  ~(p<q)  (p≥q).

#(s&((s&q)&(~(p<(s>(p@p)))))) ; FFFF FFFF FFNF FFNF (11.4.1.2)

there is a σ-structure N  (11.4.2.1)

%(s&r) ;  CCCC CCCC CCCC TTTT (11.4.2.2)

such that |N| = κ and
 if κ < |M| then N is an elementary substructure of M; [and/or]

if κ > |M| then N is an elementary extension of M. (11.4.3.1)

( ((r>(p@p))=p)&(((p<(q>(p@p)))>(q<r)) [&,+] ((p>(q>(p@p)))>(q>r))) ) ; 
FTFT TFTF FTFT TFTF (11.4.3.2)

Eq. 11.4.1.1 implies 11.4.2.1. (11.4.4.1)

#(s&((s&q)&~(p<(s>(p@p)))))>%(s&r) ; TTTT TTTT TTCT TTTT (11.4.4.2)

Eq. (11.4.4.1 = 11.4.1.1 implies 11.4.2.1) implies 11.4.3.1. (11.4.5.1)

(#(s&((s&q)&~(p<(s>(p@p)))))>%(s&r)) > 
(((r>(p@p))=p)&(((p<(q>(p@p)))>(q<r))+((p>(q>(p@p)))>(q>r)))) ; 

 FTFT TFTF FTFT TFTF (11.4.5.2)

Eq. 11.4.1.2 as rendered is not tautologous, and not contradictory.  Eq. 11.4.11.4.4.1 is not tautologous 
due to one C falsity value.  Eq. 11.4.4.2 is not tautologous, and the same result table as Eq. 11.4.5.2.  
This means the Löwenheim–Skolem theorem is refuted.

11.5.  Refutation of Peirce's abduction and induction, and confirmation of deduction
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From:  iep.utm.edu/peir-log/

C.S. Peirce originally defined the three forms of inference in logic as:

Abduction: (Q is S) and (Q is P) imply (S is P) (11.5.1.1.1)

LET p, q, s:   P, Q, S.

((q=s)&(q=p))>(s=p) ; TTTT TTTT TTTT TTTT (11.5.1.1.2)

Induction: (S is Q) and (P is Q) imply (S is P) (11.5.2.1.1)

((s=q)&(p=q))>(s=p) ; TTTT TTTT TTTT TTTT (11.5.2.1.2)

Deduction: (S is Q) and (Q is P) imply (S is P) (11.5.3.1.1)

((s=q)&(q=p))>(s=p) ; TTTT TTTT TTTT TTTT (11.5.3.1.2)

Peirce described Eqs. 11.5.1 - 11.5.3 as inversions of the same.

Remark 11.5.1.1.1:  If the word "is" is taken to mean the word "implies" then 
the connective = is replaced with the connective > below.

Abduction: (Q implies S) and (Q implies P) imply (S implies P) (11.5.1.2.1)

((q>s)&(q>p))>(s>p) ; TTTT TTTT FTTT FTTT (11.5.1.2.2)

Induction: (S implies Q) and (P implies Q) imply (S implies P) (11.5.2.2.1)

((s>q)&(p>q))>(s>p) ; TTTT TTTT TTFT TTFT (11.5.2.2.2)

Deduction: (S implies Q) and (Q implies P) imply (S implies P) (11.5.3.2.1)

((s>q)&(q>p))>(s>p) ; TTTT TTTT TTTT TTTT (11.5.3.2.2)

Eqs. 11.5.1.2.2 - 11.5.2.2.2 as rendered  for abduction and induction are not tautologous, but Eq. 
11.5.3.2.2 is tautologous.  This means that abduction and induction are not inversions of deduction, 
leaving deduction as the only form of tautologous inference in logic.

11.6.  Erwin Schrödinger's cat thought-experiment

From: en.wikipedia.org/wiki/Schrödinger's_cat

If the monitor is tautologous, that is not activated, along with the box, cat, and poison 
apparatus in place, then there is no death. (11.6.H0.1)
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LET p,  q,  r,  s  t:   box,  cat,  poison,  monitor,  death

((s=s)&((p&q)&r)) > ~t ; FFNF FFNF FFNF FFNF (11.6.H0.2)

If the monitor is contradictory, that is activated, along with the box, cat, and 
poison apparatus in place, then there is death. (11.6.H1.1)

((s@s)&((p&q)&r)) > t ;     TTTT TTTT TTTT TTTT (11.6.H1.2)

Hence when opening the box at any time, the cat is either still alive or dead, but not "entangled" as both
dead and alive (a contradiction).  Therefore the experiment is not a paradox from Eq. 11.6.H1.2 but a 
contradiction.

11.7.  Refutation of the ZF axiom of the empty set

From: en.wikipedia.org/wiki/Axiom_of_empty_set

In the formal language of the Zermelo–Fraenkel axioms, the axiom reads ... in words: 

There is a set such that no element is a member of it:  x y¬(y x) ∃ ∀ ∈ (11.7.1.0)

We distribute the quantifiers to the respective variables as:  
Not( necessarily y as a member of  possibly x).  (11.7.1.1)

(#q>%p) = (p=p) ; TTCT TTCT TTCT TTCT (11.7.1.2)

From: plato.stanford.edu/entries/set-theory/ZF.html by Joan Bagaria 
(joan.bagaria@icrea.cat)

The null set, equivalent to the empty set, is defined as:     x∃ ¬∃y(y x)∈ (11.7.2.0)

We distribute the quantifiers to the respective variables as:  
Not( possibly y as a member of possibly x). (11.7.2.1)

(%q>%p) = (p=p) ; TTCT TTCT TTCT TTCT (11.7.2.2)

Eqs. 11.7.1.2 and 11.7.2.2, with the same truth table result, are not tautologous. This refutes the ZF 
axiom of the empty set.

12.  Conclusion

This paper: 

1.  Introduces the bivalent logic B4; 
2.  Adopts a four-valued system based on the 2-tuple in two models M1 and M2;  
3.  Derives modal values in Ł4;  
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4.  Answers an objection by trivial proof;  
5.  Corrects the Square of Opposition with modal equations for lines and angles; 
6.  Confirms the 24-syllogisms by modifying two; 
7.  Shows respective quantified and modal operators are equivalent; 
8.  Describes the Meth8 software implementation of VŁ4;  
9.  Tests 2200 assertions for a refutation rate of 80%; 
10.  Provides seven worked examples of refutation; 
11.  Classifies refutations as non tautologous fragments of VŁ4; and 
12.  Concludes that VŁ4 is a universal logic.

13.  Future research

Continued testing of artifacts burgeons the table of contents of results, with details usually as one or 
two paged papers.  The mapping of sentences into script for Meth8/VŁ4 could be automated for 
repetitive testing, however there is no substitute for hand-coding as best-by-test for catching most 
errors of symbolic assignments.  The parsing component of Meth8 is mature enough to rapidly detect 
incorrect grammatical for the input script. For Meth8 an immediate further application is mapping 
sentences of natural language into logical formulas, so a semi-automation of that linguistic process is 
proceeding.
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