Constant $e \cdot c / 2\pi \alpha$ determines
magnetic flux quantum in charged leptons

U. Kayser-Herold

February 20, 2019

Abstract

The constant $e \cdot c / 2\pi \alpha$ is a common characteristic of charged leptons (e, μ, τ) resulting from their identical fraction \hat{m} / λ_C of magnetons \hat{m} to Compton-wavelengths λ_C, in spite of their largely differing \hat{m} and λ_C. However the physical interpretation of this constant remained uncertain, but now clarified: It is proven that $e \cdot c / 2\pi \alpha$ is an alternative and equivalent definition of the magnetic flux quantum $\hbar / 2e$ which makes up the dipole-fields of charged leptons.

1 Introduction, problem and goal

Comprehensive consideration and incorporation of magnetic flux quantization in theories of charged leptons like e, μ, τ has not yet been established. (1) On the one hand, the magnetic dipole-moments \hat{m} (magnetons) assignable to e, μ and τ belong to the theoretically and experimentally most precisely determined constants. (CODATA) On the other hand, only rough estimates exist for the magnetic flux included in their dipole-fields. However the existence of a presumably constant magnetic flux in the dipole-fields of leptons is reasonable. Moreover, consideration of flux quantization would support the conjecture of magnetic flux conservation in the dipole-fields of charged leptons. Nonetheless current electron-models like the ”mathematical” or ”dressed” electron don’t take into account the magnetic flux included in its dipole-field.

If the principle of magnetic flux quantization was applied to charged leptons the ab-initio postulate that each of their dipole-fields comprises identical magnetic flux amounting at least one magnetic flux quantum $\Phi_0 = \hbar / 2e$ would have to be proven. This initial assumption is supported by the finding that the constant $e \cdot c / 2\pi \alpha$ - being assigned to charged leptons - is an implicit definition of the magnetic flux quantum presumably located in charged leptons. The approach will essentially consist of an analysis of the dipole-fields of charged leptons - focusing on their magnetic flux Φ_l - with the aim to clarify the physical interpretation of the constant $e \cdot c / 2\pi \alpha$. It can be anticipated that there exists a fundamental relationship among $e \cdot c / 2\pi \alpha$, the dipole-field of charged leptons,
2 Modeling of the dipole-field of charged leptons

2.1 Frame of reference

For modeling and analysis of the dipole-field of charged leptons the choice of an adequate frame and plane of reference is crucial. Thus a spherical \(r, \Theta, \varphi \) and a cartesian \(x - y - z \) - frame will be used. Their polar axis coincide with the dipole-axis.

2.2 Equatorial plane of reference \(p_e \)

The most convenient plane of reference for determination of the magnetic flux \(\Phi \) penetrating this plane is the equatorial (azimuthal) \(x - y \) plane \(p_e \) of the dipole. Let \(\vec{n} \) designate the normal unit-vector of \(p_e \). Among the specific advantages of \(p_e \) is that it is a symmetry-plane and that the angle of incidence of the induction \(\vec{B} \) field into \(p_e \) always is perpendicular to \(p_e \), i.e. \(\vec{B} \perp p_e \) or \(\vec{B} \parallel \vec{n} \).

2.3 Induction-field of a point-like dipole

The induction- or \(\vec{B} \)- field of a point-like dipole \(\hat{m} \) can most conveniently be represented by the \(\vec{B} \)- field generated by a microscopic circular current-loop of radius \(r_x \) located in \(p_e \), where its axis is centered with the \(z \)-axis. Generally, any dipole-field traversing the equatorial plane \(p_e \) comprises mutually opposed internal and an external \(\vec{B} \)- field sections designated \(\vec{B}_{int} \) and \(\vec{B}_{ext} \), corresponding to magnetic fluxes \(\Phi_{int} \) and \(\Phi_{ext} \). \(\Phi_{int} \) and \(\Phi_{ext} \) are delimited by their generating circular current-loop in \(p_e \). The equatorial plane \(p_e \) will serve as a reference plane for determination of \(\Phi_{int} \) and \(\Phi_{ext} \). According to Maxwell’s equation \(\nabla \cdot \vec{B} = 0 \rightarrow \Phi_{int} = -\Phi_{ext} \). Hence it will suffice to determine \(\Phi_{ext} \) so there is no need to dwell with \(\Phi_{int} \). \(\Phi_{ext} \) will be identified with total magnetic flux of a dipole-field.

3 External magnetic flux \(\Phi_{ext} \) of a dipole-field

The external induction field of a dipole is

\[
\vec{B}_{ext} \approx \frac{\mu_0 \hat{m}}{4\pi r^3} \left(2 \cos \Theta + \sin \Theta \right)
\]

where \(\mu_0 = 1/\epsilon_0 c^2 \) is vacuum permeability, \(\hat{m} \) the dipole-moment or magneton, \(\Theta \) the polar angle and \(r > r_c \) the radial distance of a point from the origin.
Generally, the magnetic flux Φ of an induction field \vec{B} penetrating a given surface A of arbitrary orientation \vec{n} is

$$\Phi = \int_A d\Phi = \int_A \vec{B} \cdot d\vec{a}$$

(2)

where $d\vec{a}$ is a surface element differential.

In p_e, the following applies: $\vec{n} \parallel \vec{B}$ or $\vec{n} \cdot \vec{B} = |\vec{B}|$.

For all points in p_e with $r > r_c$:

$\Theta = \pi/2 \rightarrow \cos \Theta = 0$, $\sin \Theta = 1$, $\vec{B}(\vec{r}) \parallel z$ and $\vec{B}(\vec{r}) \perp p_e$.

Thus the first term in brackets in (1) vanishes and (1) is reduced to

$$B_{ext} = \frac{\mu_0 \bar{m}_e}{4 \pi r^3}$$

(3)

Total external magnetic flux Φ_{ext} through p_e results from integration of (3) over p_e from r_c to ∞.

$$\Phi_{ext} = \int_{r_c}^\infty \vec{B}_r da = 2\pi \int_{r_c}^\infty \vec{B}_r r dr$$

(4)

where

$$da = 2\pi r dr$$

(5)

After substitution with (5) and integration of (4)

$$\Phi_{ext} = \frac{\mu_0 \bar{m}_e}{2r_c}$$

(6)

It should be pointed out that (6) reveals how Φ_{ext} is determined by a singular variable r_c (classical electron- or Compton-radius). However r_c should not be misinterpreted as the radius of a classical sphere thus more of a self-determined length-unit allocable to the electron without any geometrical meaning.

3.1 Delimiting "critical" radius r_c

The radius r_c in (4) and (6) is a lower or "critical" integration limit in the dipole-field being identical with the radius of a.m. circular current-loop. As r_c delimits the mutually opposed internal flux Φ_{int} from the external flux Φ_{ext}, r_c is the key variable to be determined. For the electron the author already proved in [4] that r_c is identical with the "classical" or "charge" radius r_e.

r_e can also be expressed as a function of the Compton-wavelength λ_{Ce} thus being a self-defined length-unit of the electron:

$$r_c = r_e = \frac{\alpha \lambda_{Ce}}{2\pi} = \alpha \frac{\hbar}{m_e c}$$

(7)
where α = fine-structure constant, $m_e = \text{electron-mass}$ and $\lambda_{Ce} = \text{electron Compton-wavelength}$.

Substitution with (7) in (6):

$$\Phi_{\text{ext}} = \frac{\mu_0}{2\alpha} \cdot \frac{\hat{m}_e}{\lambda_{Ce}} = \frac{\hat{m}_e}{2\alpha \cdot \epsilon_0 c^2 \lambda_{Ce}} \quad (8)$$

To facilitate interpretation of (8) it can be split into more meaningful factors:

$$\lambda_{Ce} = \frac{h}{m_e c} \quad (8 \ a)$$

$$\alpha = \frac{e^2}{4 \pi \epsilon_0 \hbar c} \quad (8 \ b)$$

$$\hat{m}_e = \frac{e \hbar}{2m_e} = \frac{e \hbar}{4 \pi m_e} \quad (8 \ c)$$

By substitution of (8a), (8b) and (8c) in (8) the result reveals

$$\Phi_{\text{ext}} = \frac{h}{2e} = \Phi_0 \quad (9)$$

where Φ_0 is the magnetic flux quantum!

Remarkably in (8), Φ_{ext} is exclusively determined by the constants ϵ_0, c, α, \hat{m}_e, λ_{Ce}.

Let

$$C_\Phi = \frac{\hat{m}_e}{\alpha \lambda_{Ce}} = \frac{e \cdot c}{2\pi \alpha} \quad (10)$$

Substitution with (10) in (8) yields

$$\Phi_{\text{ext}} = \frac{\mu_0}{2} \cdot C_\Phi = \mu_0 \cdot \frac{e \cdot c}{4\pi \alpha} = \Phi_0 \quad (11)$$

where Φ_0 is the magnetic flux quantum.

Note that $\Phi_0 = \Phi_{\text{ext}} = -\Phi_{\text{int}}$.

In p_e, Φ_{ext} is delimited from Φ_{int} by a circle of Compton-radius $\alpha \lambda_C/2\pi$ (7).

3.2 Critical radius of Myons and Tauons

It is evident from (8) that above approach for the electron would also apply for myons and tauons if their individual masses m_l, magnetons \hat{m}_l and Compton-wavelengths λ_{Cl} were used.

Substitution in (8c) with a generalized lepton-mass m_l (instead of m_e) and a general lepton-magneton \hat{m}_l (instead of \hat{m}_e) yields

$$\hat{m}_l = \frac{e \hbar}{4\pi m_l} \quad (12)$$
U. Kayser-Herold

Charged leptons comprise magnetic flux quantum

as well as a generalized Compton-wavelength λ_{Cl}

$$\lambda_{Cl} = \frac{h}{m_l c}$$ \hfill (13)

The ratio (12) to (13) $\times \alpha^{-1}$ delivers a constant C_Φ for all charged leptons:

$$C_\Phi = \frac{\hat{m}_l}{\alpha \lambda_{Cl}} = \frac{e \cdot c}{2 \pi \alpha} \left[\frac{A}{m} m^2 \right]$$ \hfill (14)

As (14) is identical with (10) constant magnetic flux Φ_l of all charged leptons can be inferred.

The dimensionality of C_Φ corresponds to a total flux of a magnetic field-strength vector-field \vec{H} through p_e being in proportion to total flux of the induction-field $\vec{B} = \mu_0 \vec{H}$ through p_e.

Substitution in (8) with (10) and (12) yields

$$\Phi_l = \frac{\mu_0}{2} C_\Phi = \frac{h}{2e} = \Phi_0$$ \hfill (15)

In conclusion (14) and (15) prove that all charged Leptons carry one magnetic flux quantum Φ_0.

4 Summary and Comment

A new commonality among charged leptons e, μ, τ is revealed: Each of their dipole-fields coincides with one magnetic flux quantum being determined by their common constant $e \cdot c / 2\pi \alpha$ being given by the fraction \hat{m}_l / λ_{Cl} of their individual magnetons \hat{m}_l and Compton-wavelengths λ_{Cl}.

This conclusion is based on analysis of their magnetic dipole-fields which unravels that the constant $e \cdot c / 2\pi \alpha$ is an equivalent (hidden) definition of the magnetic flux-quantum $h/2e$. It denotes identical flux of the leptons dipole fields through their equatorial planes - outside of their Compton-radii - being equivalent to one magnetic flux quantum $h/2e$.

The mathematical procedure includes breaking of the fine-structure constant α into its factors (8 b). The analysis further reveals a remarkable and unexpected role of the “classical” or “Compton” electron radius r_e (and its equivalents for myons and tauons), being intimately related to the magnetic flux quantum, Josephson’s constant, spin-angular momentum $\hbar/2$ and the constant $e \cdot c / 2\pi$, even if r_e is regarded as a fictitious length. [5]

The task could also be inverted by asking for a critical radius r_c which delimits one fluxon Φ_0 in p_e following a transformation of (6): $r_c = \mu_0 \hat{m}_l / 2 \Phi_0$.

It deserves a final remark that (14), (15) would also apply for protons.
References

