Meth8/VŁ4 on one and three in arithmetic

Abstract: We evaluate arithmetic using 0 and 3 as binary 00 and 11. Arithmetic holds in nine theorems. For division by zero, the result is Not(0 and 3).

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, F as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET \(\sim \) Not, \(\neg \); \(+ \) Or, \(\lor \); \(- \) Not Or; \(\& \) And, \(\land \); \(\\setminus \) Not And;
\(> \) Imply, greater than, \(\rightarrow \), \(\Rightarrow \), \(> \), \(\triangleright \), \(\vartriangleright \), \(\subset \), \(\succ \), \(\supset \), \(\vdash \), \(\models \);
\(\% \) possibility, for one or some, \(\exists \), \(\diamond \), \(M \); \(\# \) necessity, for every or all, \(\forall \), \(\Box \), \(L \);
\((z=z) \) T as tautology, \(T \), ordinal 3; \((z\neq z) \) F as contradiction, \(\varnothing \), Null, \(\bot \), zero;
\((%z<#z) \) C as contingency, \(\Delta \), ordinal 1; \((%z\neq#z) \) N as non-contingency, \(\nabla \), ordinal 2;
\(\sim(y<x) \) (x \(\leq \) y), (x \(\leq \) y); (A=B) (A\(\sim \)B).

Note: For clarity we usually distribute quantifiers on each variable as designated.

LET \((r=r)\) ordinal 3; \((r\neq r)\) number 0.

Subtraction:

If \(3>0\), then \(3-3=0\).

\[
((r=r)>>(r@r))>((((r=r)-(r=r))<(r=r))) ;
\]

\(TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \)

(1.1)

If \(3>0\), then \(3-0=3\).

\[
((r=r)>>(r@r))>(((((r=r)-(r@r))=(r=r))) ;
\]

\(TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \)

(2.1)

Addition:

If \(3>0\), then \(3+3>3\).

\[
((r=r)>>(r@r))>((((r=r)+(r=r))>(r=r)) ;
\]

\(TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \)

(3.1)

If \(3>0\), then \(3+0=3\).

\[
((r=r)>>(r@r))>(((((r=r)+(r@r))=(r=r)) ;
\]

\(TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \)

(4.1)

Multiplication:

If \(3>0\), then \(3*3>3\).

\[
((r=r)>>(r@r))>((((r=r)&(r=r))>(r=r)) ;
\]

\(TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \hspace{1cm} TTTT \)

(5.1)
If $3 > 0$, then $3 \cdot 0 = 0$. \hspace{1cm} (6.1)

\[(((r=r) \land (r@r)) = (r@r)) \quad ; \quad \text{TTTT TTTT TTTT TTTT} \]

(6.2)

Division:

If $3 > 0$, then $0/3 = 0$. \hspace{1cm} (7.1)

\[(((r=r) \land (r@r)) = (r@r)) \quad ; \quad \text{TTTT TTTT TTTT TTTT} \]

(7.2)

If $3 > 0$, then $3/3 > 0$. \hspace{1cm} (8.1)

\[(((r=r) \land (r@r)) = (r@r)) \quad ; \quad \text{TTTT TTTT TTTT TTTT} \]

(8.2)

If $3 > 0$, then $3/0 = \neg (0 \land 3)$. \hspace{1cm} (9.1)

\[(((r=r) \land (r@r)) = (r@r)) \quad ; \quad \text{TTTT TTTT TTTT TTTT} \]

(9.2)

Arithmetic holds as theorems in Eqs. 1.2-9.2.