Denial of logic system PL_4

Abstract: We evaluate the logic system PL_4 as refuting and replacing VL_4. Eight modal theses and two axioms are not tautologous and contrary to those of PL_4. This denies that PL_4 refutes VL_4, refutes PL_4, and justifies VL_4 as containing the non bivalent fragment named PL_4. We assume the method and apparatus of Meth8/VL_4 with Tautology as the designated proof value, F as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

Let \sim Not, \neg; $+$ Or, \lor; $-$ Not Or; $\&$ And, \land; \backslash Not And; $>$ Imply, greater than, \rightarrow, \Rightarrow, \supset, \supseteq, \leftarrow, \Leftarrow; $<$ Not Imply, less than, \leftarrow, \Leftarrow, \subset, \subseteq, $\#$ possibility, for one or some, \exists, \checkmark, \ast, $\%$; $\#$ necessity, for every or all, \forall, \square, \lozenge; $(z=z)$ T as tautology, \top, ordinal 3; $(z\neq z)$ F as contradiction, \bot, Null, \perp, zero; $(\%z<\#z)$ C as contingency, Δ, ordinal 1; $(\%z>\#z)$ N as non-contingency, ∇, ordinal 2; $\sim(y<x)$ ($x \leq y$), ($x \leq y$); $(A=B)$ $(A\sim B)$.

From: Méndez, J.M.; Robles, G. (2015). A strong and rich 4-valued modal logic without Łukasiewicz-type paradoxes. Logica Universalis. 9: 501-522. sefus@usal.es gemma.robles@unileon.es
[Note that Springer sells this paper only to the public.]
readcube.com/articles/10.1007%2Fs11787-015-0130-z?

Proposition 7.11. Modal theses provable in PL_4:

$$A \rightarrow (\neg A \lor LA)$$ \hspace{1cm} (T18.1)

$$p > (\sim p + \# p) ;$$ \hspace{1cm} TNTN TNTN TNTN TNTN \hspace{1cm} (T18.2)

$$\neg (LA \land A) \rightarrow \neg A$$ \hspace{1cm} (T19.1)

$$\sim (\# p \land p) > \sim p ;$$ \hspace{1cm} TNTN TNTN TNTN TNTN \hspace{1cm} (T19.2)

Remark T: Eqs. T18.2 and T19.2 are not tautologous.

Proposition 7.13. Modal wffs not provable in PL_4:

$$(A \rightarrow B) \rightarrow (MA \rightarrow MB)$$ \hspace{1cm} (F5.1)

$$(p > q) > (\% p > \% q) ;$$ \hspace{1cm} TTTT TTTT TTTT TTTT \hspace{1cm} (F5.2)

$$(A \rightarrow B) \rightarrow (LA \rightarrow LB)$$ \hspace{1cm} (F6.1)
(p>q)>(#p>#q);

(MA∧MB)→M(A∧B)

(%p&%q)>%(p&q);

L(A∨B)→(LA∨LB)

#(p+q)>(#p+#q);

LA→(B→LB)

#p>(q>#q);

LA→(MB→B)

#p>(%q>q);

It is easy to check that each one of these wffs is invalidated in the matrix MPŁ4. Consequently, they are not provable in PL4 by the soundness theorems (cf. Corollary 5.7). Provability of F1-F4 would result in collapse, that is, in the provability

Remark 11: PL4 is not supposed to prove Eqs. F5-F10. However VL4 proves F5.2-F10.2. This implies PL4 is a non bivalent fragment of VL4. Furthermore VL4 finds Eq. F11 as *not* tautologous.

Then, we can add the following axioms to A1-A8 in Definition 3.1:

\[(A∧B) → A/(A∧B) → B\]

\[((p&q)>((p'(p&q))))>q\];

\[A → (A ∨ B)/B → (A ∨ B)\]

\[(p>((p+q)q))>(p+q)\];

After testing eight modal theses and two axioms, the results are contrary to those of PL4. This denies that PL4 refutes VL4, and further refutes logic system PL4.