In this paper we will talk about how masses actually spend their energies in space and how masses actually lose their mass energy. Masses are relative and are not conserved; they lose their mass by radiation, spinning, and gravity. When we look at a mass, we find that it has the same mass at all times, but in fact, because of its losing mass at a rate of c, the speed of light constant, it becomes c times smaller after c seconds. All the mass lost is equal to mc, the number of mass multiplied by the c constant or $mc^2/c = mc$. And what is left is the new mc rather than $E = mc^2$. Energy and then we can talk about how mass likes to act like waves when they gain external energy from other masses. As when you hit pond water with a ball and watch the ripples, the wave is just energy that cannot escape from the mass medium. When it is spread across a larger medium and the oscillations heights (peaks and troughs) are still the same, unless and the wave is still there and is not lost unless of course if the wave hits air and then the wave disappears after some time. But if there is no air and also if there is zero air in a water container and a wave is applied, the water vibrates forever unless the energy is absorbed by the masses and are part of the masses. Then we talk about waves and why waves are masses. It's because waves are not electromagnetic waves; they are masses that have very much mass absorbed from the star it came from and then photon mass absorbs the energy inside of the mass and then the photon starts losing energy at c constant rate but since the photon has small mass to energy acquired ratio it moves at high speeds for long time.