Al in Citizen Science Data

Citizen science:is a’boon:for:researchers; providing reams; of data about everything from
animal species to distant.galaxief23]

In early 2018, withssupport/from/IBM Corporate Citizenship.and the:Danish;Ministry for
Foreign Affairs, IBM:and the Danish-Refugee: GolfDRC)-embarked on apartnership
aimed squarely at the need to-better;understandgration drivers and-evidencdased
policy guidance for.arange of stakeholders./[22]

Scientistsat thel Allen institute have used:machine learniagrain computers:ito:see
parts of the cell the:human, eye cannot easily distinguish./[21]

Small angle'Xay scattering (SAXS) isrone of.anumber of biophysical techniques 'used for
determining the structural .characteristics of biomolecules. [20]

A deepneural network:running on;aordinary desktop.computer:isinterpreting highly
technical data related tonational security as well-asand sometimes better than-
today's bestautomated methods orevenhuman expdits)

Scientists at the /National Center for; Supercomputing Applications (NCSA); located at the
University «of/lllinois at' UrbanaChampaign, have pioneered the use of Gieidelerated
deep/learning for rapid/detection andharacterization of gravitational waves, [18]

Researchers from Queen Mary University of LLondon-have 'developed /a-mathematical
model for the-emergence’ of innovations. [17]

Quantum computers can be made to utilize effects such as quantum coherence and
entanglement to accelerate machine learning. [16]

Neural networks learn how to carry out certain tasks by analyzing large amounts of
data displayed to them. [15]

Who is the better experimentalist, a human or a robot? When it comes to exploring
synthetic and crystallization conditions for inorganic gigart molecules, actively
learning machines are clearly ahead, as demonstrated by British Scientists in an
experiment with polyoxometalates published in the journal Angewandte Chemie. [14]

Machine learning algorithms are designed to improve as they encountere data,

making them a versatile technology for understanding large sets of photos such as those
accessible from Google Images. Elizabeth Holm, professor of materials science and
engineering at Carnegie Mellon University, is leveraging this technolaggdtter

understand the enormous number of research images accumulated in the field of
materials science. [13]
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With the help of artificial intelligence, chemists from the University of Basel in
Switzerland have computed the characteristics of about twdlian crystals made up of
four chemical elements. The researchers were able to identify 90 previously unknown
thermodynamically stable crystals that can be regarded as new materials. [12]

The artificial intelligence system's ability to set itself up quiglevery morning and
compensate for any overnight fluctuations would make this fragile technology much
more useful for field measurements, saidlead researcher Dr Michael Hush from
UNSW ADFA. [11]

Quantum physicist Mario Krenn and his colleagues in greup of Anton

Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian
Academy of Sciences have developed an algorithm which designs new useful quantum
experiments. As the computer does not rely on human intuition, it findsshanfamiliar
solutions. [10]

Researchers at the University of Chicago's Institute for Molecular Engineering and the
University of Konstanz have demonstrated the ability to generate a quantum logic
operation, or rotation of the qubit, that surprisingly—is intrinsically resilient to noise

as well as to variations in the strength or duration of the control. Their achievement is
based on a geometric concept known as the Berry phase and is implemented through
entirely optical means within a single electron&pin in diamond. [9]

New research demonstrates that particles at the quantum level can in fact be seen as
behaving something like billiard balls rolling along a table, and not merely as the
probabilistic smears that the standard interpretation of quantummechanics suggests.
But there's a catch the tracks the particles follow do not always behave as one would
expect from "realistic” trajectories, but often in a fashion that has been termed
"surrealistic.” [8]

Quantum entanglement-which occurs when two Iomore particles are correlated in
such a way that they can influence each other even across large distarisesot an alt
or-nothing phenomenon, but occurs in various degrees. The more a quantum state is
entangled with its partner, the better the statesillvperform in quantum information
applications. Unfortunately, quantifying entanglement is a difficult process involving
complex optimization problems that give even physicists headaches. [7]

A trio of physicists in Europe has come up with an idea theyt believe would allow a
person to actually witness entanglement. Valentina Caprara Vivoli, with the University

of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with
the University of Basel, have together written a papiscribing a scenario where a

human subject would be able to withess an instance of entanglemehey have

uploaded it to the arXiv server for review by others. [6]

The accelerating electrons explain not only the Maxwell Equations and the



Special Relativity, but the Heisenberg Uncertainty Relation, the WBaeticle Duality
and the electron’s spin al so, buil ding
Theories.

The Planck Distribution Law of the electromagnetic oscillators explains the
electron/proton mass rate and the Weak and Strong Interactions by the diffraction
patterns. The Weak Interaction changes the diffraction patterns by moving the electric
charge from one side to the other side of the diffraction pattern, which violates the CP
and Time reversal symmetry.

The diffraction patterns and the locality of the seffaintaining electromagnetic
potential explains also the Quantum Entanglement, giving it asadural part of the
relativistic quantum theory.
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Preface

Physicists are continually looking for ways to unify the theory of relativity, which describes
largescale phenomena, with quantum theory, which describes ssnale phenomena. In a new
proposed experiment in this age two toastersized "nanosatellites” carrying entangled
condensates orbit around the Earth, until one of them moves to a different orbit with different
gravitational field strength. As a result of the change in gravity, the entanglement between the
condersates is predicted to degrade by up to 20%. Experimentally testing the proposal may be
possible in the near future. [5]

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are
generated or interact in ways such ththe quantum state of each particle cannot be described
independentlyg instead, a quantum state may be given for the system as a whole. [4]

| think that we have a simple bridge between the classical and quantum mechanics by
understanding the Heisenberghtertainty Relations. It makes clear that the particles are not point
like but have a dx and dp uncertainty.

Al adjusts for gaps in citizen science data
Citizen science is a boon for researchers, providing reams of data about everything from animal
species to distant galaxies.

But crowdsourced information can be inconsistent. More reports come from densely populated
areas and fewer from spots that are haalaccess, creating challenges for researchers who need
evenly distributed data.

"There is a huge bias in the data set because the data is collected by volunteers," said Di Chen, a
doctoral student ircomputer science and first author of "Bias Reduction via End to End Shift
Learning: Application to Citizen Science," which will be presented at the AAAI Conference on
Artificial Intelligence, Jan. Zeb. 1 in Honolulu.

"Since this is highly motivated ltyeir personal interest, the distribution of this kind of data is not
what scientists want," Chen said. "All the data is actually distributed along main roads and in urban
areas because most people don't want to drive 200 miles to help us explore badkesert."

To compensate, Chen and Carla Gomes, professor of computer science and director of the Institute
for Computational Sustainability, developed a deep learnnoglel that effectively corrects for
location biases in citizen science by comparing the population densities of various locations. Gomes
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and Chen tested their model on data from the Cornell Lab of Ornithology's eBird, which collects
more than 100 million bird sightings submitted annually by birdivars worldwide.

"When | communicate with conservation biologists and ecologists, a big part of communicating
about these estimates is convincing them that we are aware of these biases and, to the degree
possible, controlling for them," said Daniel Fialsenior research associate at the Lab of
Ornithology who is collaborating with Gomes and Chen on this work. "This gives [biologists and
ecologists] a better reason to trust these results and actually use them, and base decisions on
them."

Researchers hadeng been aware of the problems with citizen science data and have tried various
methods to address them, including other types of statistical models. Projects that offer incentives
to entice volunteers to travel to remote spots or search fordespularspecies have shown

promise, but these can be expensive and hard to conduct on a large scale.

A massive data set like eBird's is useful in machine learning, where large amounts of data are used
to train computers to make predictions and solve problems.li#ggiause of the location biases, a
model created with the eBird data would make inaccurate predictions.

Adjusting forbias in the eBird data is further complicated by the data's many characteristics. Each
bird sghting in the system comprises 16 distinct pieces of information, making it computationally
challenging.

Chen and Gomes solved the problem usimtg@p learning model ¢ a kind of artificial intelgence
that is good at classifyingthat adjusts for population differences in different areas by comparing
their ratios of density.

"Right now the data we get is essentially biased because the birds don't just stay around cities, so
we need to factor thatn and correct that," Gomes said. "We need to make sure the training data is
going to match what you would have in the real world."

Chen and Gomes tested several models and found their deep learning algorithm to be more
effective than other statistical anachine learning models at predicting where bird species might
be found.

Though they worked with eBird, their findings could be used in any kind of citizemce project,
Gomes said.

"There are many, manypalications that rely oritizen science, and this problem is prevalent, so
you really need to correct for it, whether people are classifyiinds, galaxis or other situations
where data biases can skew the learned model," she E23§l.

Machine learning in action for the humanitarian sector

Governments across the world came together in Marrakesh this past Decemizifyca pact to
improve cooperation on international migration. Among other objectives, the Global Compact for
Migration seeks to use "accurate and disaggregated data as a basis for evideseckpolicies.”

How can machine learning technologies help wdéeply polarizing societal issues like migration?
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In early 2018, with support from IBM Corporate Citizenship and the Danish Ministry for Foreign
Affairs, IBM and the Danish Refugee Council (DRC) embarked on a partnership aimed squarely at
the need to beter understandnigration drivers and evidencéased policy guidance for a range of
stakeholders. At the recent THINK Copenhagen keynote, the Secretary General of the DRC, Christian
Friis Bach, presented thedt results of this effort.

In this post, I'll walk through the development of a machine learning system that provides strategic
forecasts of mixed migration along with scenario analysis. Mixed migration refers tebenmsey
movements of people that amnotivated by a multiplicity of factors to move, including refugees
fleeing persecution and conflict, victims of trafficking, and people seeking better lives and
opportunity. Such populations have a range of legal statuses, some of which are not reftected
official government statistics.

Credit: IBM

Understanding migration dynamics and drivers is inherently complex. Circumstances differ from
person to person. The question "why did you decide to move?" is not straightforward for people to
answer. Howevelto the extent that individual decisions reflect structural societal factors, the
dynamics can be partially explained by aggregate measures. For instance, economic drivers for
movement can be expected to be related to employment opportunities and therafarero

indicators on employment. These challenges are compounded by data availability and coverage on
specific indicators.

The forecasting system

We started by leveraging the 4MI monitoring program run by the DRC through which thousands of
migrants on the mve are interviewed. Analysis of survey data reveals-fagél clusters of drivers

for migration. These clusters ranged from lack of rights and other social services, to economic
necessity and conflict. These drivers are then mapped to quantitative todécéeatures derived

from these indicators are then fed to a model that generates forecasts along with confidence
intervals (Figure 1). In addition, the system also generates context for each prediction by showing
specific drivers that contributed to thierecast.

Using these indicators, we developed an ensemble model to make strategic forecasts annually for
bilateral flows on mixegmigration volumes annually. Our evaluations showing error rates to be
within a few thousand persons per year even for coigstwith volatile conditions. The system

further allows for scenario analysis, where relative changes in influencing factors can be modelled
to make adjusted predictions.

Interesting counteidintuitive dynamics emerge from such analysis. For instamoemployment

rates in Ethiopia are above average compared to-Saharan countries. A large number of

Ethiopians travel to Saudi Arabia for work. Increases in employment rates to the best fifth in the
region will result in greater migration to the UK (two percent increase), Sweden (two percent
increase) and Saudi Arabia (eight percent increase). This reflects an increased ability and means of
Ethiopians to meet their aspirations abroad. If unemploymenteases to the worst levels, the

model predicts an increase of migration to South Africa (three percent increase) and Saudi Arabia
(four percent increase), with EU destinations largely invariant to increases in unemployment.
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Figure 2: Correlation matrier all features considered in the model (no temporal effects). Credit:
IBM

Such detailed quantitative analysis has previously not been available to stakeholders who need to
formulate policy responses.

Causal inference

The forecasting system described abas purely datadriven where we rely on the model to derive
relationships between all the variables. Alternatively, if we seek to exploit subject matter expertise
and include specific insights in the system, we could take the approach of probabiligticgia
models.

At a workshop held at IBM Researgcheland, subject matter experts from the Mixed Migration
Centre in Geneva and DRC drew out the "spaghetti" network showing how they expect indicator
clusters to be causally linked. Using this as inputthea combined their expert opinion with the
data. We used a technique called structure learning to develop such a network.

Forecasting using such networks typically don't perform as well as purehddaén approaches
presented above; nevertheless, thdg aid in scenario analysis and policy analysis.
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What's next?

mixed-migration

Figure 3: (left) causal network drawn by experts and (right) network learnt based on expert opinion
and evidence based on data for all of Skdtharan Africa. Credit: IBM

These are théirst few steps towards a future where policy makers have instant access to evidence
when and where it is needed and where complex relationships can be explored easily to provide
more insight driving better policy.

For now, we are continuing to improve tegstem and gather user feedback with subject experts
within the DRC. Following more detailed validation, we will look to expand the geographic scope
and scenario analysis capabiliti&2]

Machine learning technique to predict human cell organization

published in nature methods

Scientists at the Allen Institute have used machine learning to train computers to see parts of the
cell the human eye cannot easily distinguish. Usiiyitages of fluorescently labeled cells, the
research team taught computstto find structures inside living cells without fluorescent labels,
using only black and white images generated by an inexpensive technique known as brightfield
microscopy. A study describing the new technique is published today in the jiNaihale

Methods

Fluorescence microscopy, which uses glowing molecular labels to pinpoint specific gaitts, a$
very precise but only allows scientists to see a few structures in the cell at a time. Humduaeells
upwards of 20,000 different proteins that, if viewed together, could reveal important information
about both healthy andliseased cells.
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"This technology lets us view a larger set of those stresihan was possible before," said Greg
Johnson, Ph.D., Scientist at the Allen Institute for Cell Science, a division of the Allen Institute, and
senior author on the study. "This means that we can explore the organization of the cell in ways
that nobody tas been able to do, especiallylive cells."

The prediction tool could also help scientists understand what goes wrong in cells during disease,
said Rick Horwitz, Ph.D., Executive Director of the Aliriute for Cell Science. Cancer researchers
could potentially apply the technique to archived tumor biopsy samples to better understand how
cellular structures change as cancers progress or respond to treatment. The algorithm could also aid
regeneration nedicine by uncovering how cells change in real time as scientists attempt to grow
organs or other new body structures in the lab.

"This technique has huge potential ramifications for these and related fields," Horwitz said. "You
can watch processes live ey are taking placeit's almost like magic. This method allows us, in
the most noninvasive way that we have so far, to obtain information allmutnan cells that we
were previously unable to get.”

The ombination of the freely available prediction toolset and brightfield microscopy could lower
research costs if used in placefloforescence microscopy, which requires expensive equipment

and trained operators. Fluorescent tags are also subject to fading, and the light itself can
damageliving cells, limiting the technique's utility to study live cells and their dynamics. The
machine learning @proach would allow scientists to track precise changes in cells over long periods
of time, potentially shedding light on events such as early development or disease progression.

To the human eye, cells viewed in a brightfield microscope are sacs reridesieddes of gray. A
trained scientist can find the edges of a cell and the nucleus, the cell'siokbje compartment,

but not much else. The research team used an existing machine learning technigue, known as a
convolutional neural network, to train cgmuters to recognize finer details in these images, such as
the mitochondria, cells' powerhouses. They tested 12 different cellular structures and the model
generated predicted images that matched the fluorescently labeled images for most of those
structures, the researchers said.

It also turned out what the algorithm was able to capture surprised even the modeling scientists.

"Going in, we had this idea that if our own eyes aren't able to see a certain structure, then the
machine wouldn't be able to leary'i said Molly Maleckar, Ph.D., Director of Modeling at the Allen
Institute for Cell Science and an author on the study. "Machines can see things we can't. They can
learn things we can't. And they can do it much faster."

The technique can also predict pree structural information from images taken with an electron
microscope. The computational approach here is the same, said Forrest Collman, Ph.D., Assistant
Investigator at the Allen Institute for Brain Science and an author on the study, but the applécat

are different. Collman is part of a team working to map connections between neurons in the mouse
brain. They are using the method to line up images of the neurons taken with different types of
microscopes, normally a challenging problem for a compaiet a laborious task for a human.

"Our progress in tackling this problem was accelerated by having our colleagues from the Allen
Institute for Cell Science working with us on the solution,” Collman said.
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Roger Brent, Ph.D., a Member of the Basic Sciddsésion at Fred Hutchinson Cancer Research
Center, is using the new approach as part of a research effort he is leading to improve the "seeing
power" of microscopes for biologists studying yeast and mammalian cells. "Replacing fluorescence
microscopes wh less light intensive microscopes would enable researchers to accelerate their

work, make better measurements of cell and tissue function, and save some money in the process,"
Brent said. "By making these networks available, the Allen Institute is hetpdemocratize

biological and medical research21]

Machine learning classifies biomolecules
Small angle Xay scattering (SAXS) is one of a number of biophysical techniques used for

determining the structural characteristics bibmoleculesDaniel Franke and colleagues from
the European Molecular Biology Laboratory have recently published a machine
learningbased method to cladyi biomolecules using existing SAXS dBiDphys.

J. 114 2485).

The method can be used to classify shape, as well as estimate structural parameters such as the
maximal diameter omolecular mass of the molecule under study. These estimates may then serve
as a valuable method for validating expected values.

The team decided on a set of shape classifications for biomolecules: compact spheres, flat discs,
extended rods, compastollow cylinders, hollow spheres and flat rings. They used simulations to
obtain idealized scattering profiles of each of these different geometries across a range of heights,
widths and lengths ranging from 10 to 500 A.
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The researchers used innovative data reduction apphes to reduce each of the scattering profiles

to a point in normalized apparent volume spabté, Representing the data in this way is
advantageous because structures that share similar structural characteristics will occupy a similar

position inV space.

The process of classifying an unknown scattering profile then amounts to calculating its position

in V space and locating the nearest points\irspace for which parameters are already known. The

new parameters can then be estimated by taking a3 SR | SN} 3S 2F (GKS&asS aySt
points inV space. A machine can be programmed to perform all of these steps.
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Using machine learning

The team simulated some 488,000 scattering patterns and used these to train an algorithm to
categorize differehscattering patterns. Each scattering pattern was then removed in turn, and the
remaining data used to predict the shape classification of the removed pattern.

This training procedure allowed the researchers to refine the weights assigned to the nearest
neighbour structures iV space, so as to maximize the accuracy of the machine classification.

Predicting structural parameters
To test the predictive power of the shape classification method, the researchers harvested

scattering data from the Protein DaBank PDB) and the Small Angle Scattering Biological Data

Bank EASBDB).

From the atomic structures stored in the PDB, they usdd Y SOL software to generate
scattering intensities, as well as values of structural parameters such as the maximal diameter and

molecular mass. After mapping the known structured/tspace, an equivalent algorithm was then
used to predicthe structural parameters based on the generated scattering intensity. Here, the
machine prediction was within 10% of the expected value in 90% of cases.

The SASBDB provides scattering intensity as well as user generated values of spaduraters

such as the maximal diameter. The researchers also observed good agreement from the structures
collected from the SASBDB, with the machine predicting a small, systematically lower value for the
maximal diameter. This offset reflects the fact tihaolecules tend to occupy an extended
configuration in solution.

The protocol developed by the team shows that data mining has significant potential to increase the
efficiency and reliability of scattering data, which could have huge benefit for the ysagh
community.[20]

Enhanced detection of nuclear events, thanks to deep learning

A deep neural network running on an ordinary desktop computer is interpreting highly technical
data related to national security as welltaand sometimes better thantoday's best automated
methods or even human experts.

The progress tackling some of the most complex problems of the environment, the cosmos and
national security comes from scientists at the Department of Energy's Pacific Northwest National
Laboratory who pesented their work at the 11th MARC conferenddethods and Applications of
Radioanalytical Chemistryin April in Hawaii. Their work emplogsep learning, in which

machines are enabled to learn and malexisions without being explicitly programmed for alll
conditions.

The research probes incredibly complex data sets from the laboratory's shallow underground lab,
where scientists detect the faintest of signals from a planet abuzz in activity. In the tisdyora
buried 81 feet beneath concrete, rock and earth, thick shielding dampens signals from cosmic rays,
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electronics and other sources. That allows PNNL scientists to isolate and decipher signals of interest
collected from anywhere on the planet.

Those sigals signify events called radioactive decays, when a particle such as an electron is emitted
from an atom. The process is happening constantly, through both natural and human activity.
Scientists can monitor changes in levels of ar§dnwhich could indete prior nuclear test activity,

and argon39, whose levels help scientists determine the age of groundwater and learn more about
the planet.

The lab has accumulated data on millions of radioactive decay events since it opened in 2010. But
it's a noisy wdd out there, especially for scientists listening for very rare signals that are easily
confused with signals of a different and frequently routine origiar instance, a person flipping on

a light switch or receiving a call on a cell phone.

PNNL scientigEmily Mace, who presented at MARC, is an expert in interpreting the features of such
signals when an event might indicate underground nuclear testing, for example, or a rapidly
depleting aquifer. Much like physicians perusea¥s for hints of disease, Ma and her colleagues

pore over radioactive decay event data regularly to interpret the signiisir energy, timing,

peaks, slopes, duration, and other features.

"Some pulse shapes are difficult to interpret,” said Mace. "It can be challenging to diif¢een
between good and bad data."

Recently Mace and colleagues turned for input to their colleagues who are experts in deep learning,
an exciting and active subfield of artificial intelligence. Jesse Ward is one of dozens of deep learning
experts at the 1A who are exploring several applications through PNNL's Deep Learning for
Scientific Discovery Agile Investment. Mace sent Ward information on nearly 2 million energy pulses
detected in the Shallow Underground Laboratory since 2010.

Ward used a clean samgpset of 32,000 pulses to train the network, inputting many features of
each pulse and showing the network how the data was interpreted. Then he fed the network
thousands more signals as it taught itself to differentiate between "good" signals that showed
something of interest and "bad" signals that amounted to unwanted noise. Finally, he tested the
network, feeding it increasingly complex sets of data that are difficult even for experts to interpret.

The network he created interprets pulse shape event$ it accuracy that equals and sometimes
surpasses the knowow of experts like Mace. With straightforward data, the program sorted more
than 99.9 percent of the pulses correctly.

Results are even more impressive when the data is noisy and includes amcheatd spurious
signals:

In an analysis involving 50,000 pulses, the neural network agreed 100 percent of the time with the
human expert, besting the best conventional computerized techniques which agreed with the
expert 99.8 percent of the time.

In anotter analysis of 10,000 pulses, the neural net correctly identified 99.9 percent of pulses
compared to 96.1 percent with the conventional technique. Included in this analysis were the



toughest pulses to interpret; with that subset, the neural network did entbran 25 times better,
correctly classifying 386 out of 400 pulses compared to 14 of 400 for the conventional technique.

"This is a relatively simplesural network but the results arempressive," said Ward. "You can do
productive work on important scientific problems with a fairly primitive machine. It's exciting to
consider what else is possible."

The project posed an unexpected challenge, however: The shallow underground labigtise, pr
with most spurious noise signals mitigated before they enter the data stream, that Ward found
himself asking Mace for more bad data.

"Signals can be well behaved or they can be poorly behaved," said Ward. "Fatthwek to learn
about the good signals, it needs a decent amount of bad signals for comparison."”

The problem of culling through vast amountsdata looking for meaningful signals has a raft of
implications and extends to many areas of science. At PNNL, one area is the search for signals that
would result from dark matter, the vast portion of matter in our universe whose origin and
whereabouts is unknown. Another is the automatic detection of breasters and other tissue
anomalies.

"Deep learning is making it easier for us to filter out a small number of good events that are
indicative of the activity of interest," said Craig Aalseth, nuclear physicist and PNNL laboratory
fellow. "It's great to seeleeplearning techniques actually doing a better job than our previous best
detection techniques.[19]

Scientists pioneer use of deep learning for real -time gravitational wave

discovery

Scientists at the National Center fBupercomputing Applications (NCSA), located at the University

of lllinois at Urbana&hampaign, have pioneered the use of Giedelerated deep learning for rapid
detection and characterization of gravitational waves. This new approach will enable astranomer

to study gravitational waves using minimal computational resources, reducing time to discovery and
increasing the scientific reach of gravitational wave astrophysics. This innovative research was
recently published ifPhysics Letters.B

Combining deep Erning algorithms, numerical relativity simulations of black hole mergers
obtained with the Einstein Toolkit run on the Blue Waters supercompuéerd data from the LIGO
Open Science Center, NCSA Gravity Group researchers Daniel George and Eliu Huerd produ
Deep Filtering, an entb-end timeseries signal processing method. Deep Filtering achieves similar
sensitivities and lower errors compared to establiskyealvitational wave detection algorithms,

while being far more computationally efficient and more resilient to noise anomalies. The method
allows faster than reaime processing ofravitational waves in LIGO's raw data, andsa enables
new physics, since it can detect new classes of gravitational wave sources that may go unnoticed
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with existing detection algorithms. George and Huerta are extending this method to identify-in real
time electromagnetic counterparts to gravitatial wave events in future LSST data.

NCSA's Gravity Group leveraged NCSA resources from its Innovative Systems Laboratory, NCSA's
Blue Waters supercomputer, and collaborated with talented interdisciplinary staff at the University
of lllinois. Also criticab this research were the GPUs (Tesla P100 andID@vided by NVIDIA,

which enabled an accelerated training of neural networks. Wolfram Research also played an
important role, as the Wolfram Language was used in creating this framework for deemgparni

George and Huerta worked with NVIDIA and Wolfram researchers to create this demo to visualize
the architecture of Deep Filtering, and to get insights into its neuronal activity during the detection
and characterization of real gravitational wave everisis demo highlights all the components of
Deep Filtering, exhibiting its detection sensitivity and computational performance. [18]

Mathematicians develop model for how new ideas emerge
Researchers from Queen Mary University of London have develpeathematical model for the
emergence of innovations.

Studying creative processes and understanding how innovations arise and how novelties can trigger
further discoveries could lead to effective interventions to nurture the success and sustainable
growth of society.

Empirical findings have shown that the way in which novelties are discovered follows similar
patterns in a variety of different contexts including science, arts, and technology.

The study, published iRhysical Review Lettelistroduces a newnathematical framework that
correctly reproduces the rate at which novelties emerge in real systems, known as Heaps' law, and
can explain why discoveries are strongly correlated and often come in clusters.

It does this by translating the theory of the Jadent possible’, initially formulated by Stuart

Kauffman in the context of biological systems, into the language of complex networks. The adjacent
possible is the set of all novel opportunities that open up whera discovery is made. Networks

have emerged as a powerful way to both investigate real world systems, by capturing the essential
relations between the components, and to model the hidden structure behind many complex social
phenomena.
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In this work, networks are used to model the underlying space of relations among concepts.

Lead author Professor Vito Latora, from Queen Mary's School of Mathematical ScsaidesThis
research opens up new directions for the modelling of innovation, together with a new framework
that could become important in the investigation of technological, biological, artistic, and
commercial systems."

He added: "Studying the procesgbsough which innovations arise can help understanding the
main ingredients behind a winning idea, a breakthrough technology or a successful commercial
activity, and is fundamental to devise effective datbormed decisions, strategies, and
interventionsto nurture the success and sustainable growth of our society."

In the study, the discovery process is modelled as a particular class of random walks, named
‘reinforced’ walks, on an underlying network of relations among concepts and ideas. An innovation
corresponds to the first visit of a site of the network, and every time a walker moves from a concept
to another, such association (an edge in the network) is reinforced so that it will be used more
frequently in the future. The researchers named this tdgereinforced random walk' model.
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To show how the model works in a real case, they also constructed a dataset of 20 years of scientific
publications in different disciplines, such as astronomy, ecology, economics and mathematics to
analyse the appearanad new concepts. This showed that, despite its simplicity, the edge

reinforced random walk model is able to reproduce how knowledge grows in modern science.

Professor Vito Latora added: "The framework we present constitutes a new approach for the study
of discovery processes, in particular those for which the underlying network can be directly
reconstructed from empirical data, for example users listening to music over a

similaritynetwork between songs. We aralready working on this idea, together with an extended
version of oumodel, where we study the collective exploration of these networked spaces by
considering multiple walkers at the same timgL7]

Rise of the quantum thinking machines
Quantum computers can be made to utilize effects such as quantum coherence and entanglement
to accelerate machine learning.

Although we typically view information as being an abstract or virtual entity, information, of
course, must be stored in a physical medium. Information processing devices such as computers
and phones are therefore fundamentally governed by the laws of physics. In this way, the
fundamental physical limits of an agent's ability to learn are governatéiaws of physics. The

best known theory of physics is quantum theory, which ultimately must be used to determine the
absolute physical limits of a machine's ability to learn.

A quantum algorithm is a stepwise procedure performed on a quantum compusaive a

problem such as searching a database. Quantum machine learning software makes use of quantum
algorithms to process information in ways that classical computers cannot. These quantum effects
open up exciting new avenues which can, in principlgperform the best known classical

algorithms when solving certain machine learning problems. This is known as quantum enhanced
machine learning.

Machine learning methods use mathematical algorithms to search for certain patterns in large data
sets. Machine learning is widely used in biotechnology, pharmaceuticals, particle physics and many
other fields. Thanks to the ability to adapt to new dataahine learning greatly exceeds the ability

of people. Despite this, machine learning cannot cope with certain difficult tasks.

Quantum enhancement is predicted to be possible for a host of machine learning tasks, ranging
from optimization to quantum enheed deep learning.

In the new paper published in Nature, a group of scientists led by Skoltech Associate Professor
Jacob Biamonte produced a feasibility analysis outlining what steps can be taken for practical
quantum enhanced machine learning.

The propects of using quantum computers to accelerate machine learning has generated recent
excitement due to the increasing capabilities of quantum computers. This includes a commercially
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available 2000 spin quantum accelerated annealing by the Cdmeasksd compny DWave
Systems Inc. and a 16 qubit universal quantum processor by IBM which is accessible via a (currently
free) cloud service.

The availability of these devices has led to increased interest from the machine learning
community. The interest comes asit of a shock to the traditional quantum physics community,

in which researchers have thought that the primary applications of quantum computers would be
using quantum computers to simulate chemical physics, which can be used in the pharmaceutical
indudry for drug discovery. However, certain quantum systems can be mapped to certain machine
learning models, particularly deep learning models. Quantum machine learning can be used to
work in tandem with these existing methods for quantum chemical emulak&zding to even

greater capabilities for a new era of quantum technology.

"Early on, the team burned the midnight oil over Skype, debating what the field evanauas
synthesis will hopefully solidify topical importance. We submitted our draft to Nagoieg

forward subject to significant changes. All in all, we ended up writing three versions over eight
months with nothing more than the title in common,” said lead study author Biamonte. [16]

A Machine Learning Systems That Called Neural Networks Perfo rm

Tasks by Analyzing Huge Volumes of Data

Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed
to them. These machine learning systems continually learn and readjust to be able to carry out the
task set out béore them. Understanding how neural networks work helps researchers to develop
better applications and uses for them.

At the 2017 Conference on Empirical Methods on Natural Language Processing earlier this month,
MIT researchers demonstrated a new gengraipose technique for making sense of neural

networks that are able to carry out natural language processing tasks where they attempt to
extract data written in normal text opposed to something of a structured language like database
query language.

The rew technique works great in any system that reads the text as input and produces symbols as

the output. One such example of this can be seen in an automatic translator. It works without the

need to access any underlying software too. Tommi JaakkolafessBoo of Electrical Engineering
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simple randomization. And what you are predicting is now a more complex object, like a sentence,
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As part of the research, Jaakkola, and colleague David Alveks, an MIT graduate student in

electrical engineering and computer science and first author on the paper, used ebbbadeural

net in which to generate test sentences teteblackbox neural nets. The duo began by teaching

the network to compress and decompress natural sentences. As the training continues the
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Neural nets work on probabilities. For example, an objecbgnition system could be fed an
image of a cat, and it would process that image as it saying 75 percent probability of being a cat,
while still having a 25 percent probabiliyK & A 3Qa F R23Id 1 f2y3 gAlK
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sentence along with the probability that each is correct. So, once the system has generated a list of
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allows the researchers to analyze and determine which inputs have an effect on which outputs.

During the research, the pair applied this technique to three different types of a natural language
processing system. The first one inferred the way in which words were pronounced; the second
was a set of translators, and the third was a simple compugdodue system which tried to

provide adequate responses to questions or remarks. In looking at the results, it was clear and
pretty obvious that the translation systems had strong dependencies on individual words of both
the input and output sentences. latle more surprising, however, was the identification of gender
biases in the texts on which the machine translation systems were trained. The dialogue system
was too small to take advantage of the training set.
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model that is not doing a good job, can you first use this kind of approach to identify problems? A
motivating application of this kind of interpretability is to fix systems, to improve systems, by
uyRSNBRGFYRAY3 gKIFG GKS@BQNB 3ISHdAy3a gNRyYy3 FyR

Active machine learning for the discovery and crystallization of gigantic

polyoxometalate molecules

Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and
crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly
ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in
the journal Angewandte Chemie.

Polyoxometalates form througbelfassembly of a large number of metal atoms bridged by oxygen
atoms. Potential uses include catalysis, electronics, and medicine. Insights into the self
organization processes could also be of use in developing functional chemical systems like
"molecula machines".

Polyoxometalates offer a nearly unlimited variety of structures. However, it is not easy to find new
ones, because the aggregation of complex inorganic molecules to gigantic molecules is a process
that is difficult to predict. It is necessaty find conditions under which the building blocks

aggregate and then also crystallize, so that they can be characterized.

A team led by Leroy Cronin at the University of Glasgow (UK) has now developed a new approach
to define the range of suitable cortitins for the synthesis and crystallization of polyoxometalates.

It is based on recent advances in machine learning, known as active learning. They allowed their
trained machine to compete against the intuition of experienced experimenters. The test exampl
was Na(6)[Mo(120)Ce(6)0O(366)H(12)(H(2)0)(78)]-200 H(2)O, a neshajped polyoxometalate
cluster that was recently discovered by the researchers’ automated chemical robot.
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In the experiment, the relative quantities of the three necessary reagentisnkiwere to be

varied while the protocol was otherwise prescribed. The starting point was a set of data from
successful and unsuccessful crystallization experiments. The aim was to plan ten experiments and
then use the results from these to proceed tethext set of ten experimentsa total of one

hundred crystallization attempts.

Although the fleskand-blood experimenters were able to produce more successful crystallizations,
the far more "adventurous” machine algorithm was superior on balance bedacseered a
significantly broader domain of the "crystallization space". The quality of the prediction of whether
an experiment would lead to crystallization was improved significantly more by the machine than
the human experimenters. A series of 100 glyrrandom experiments resulted in no improvement.

In addition, the machine discovered a range of conditions that led to crystals which would not have
been expected based on pure intuition. This "unbiased" automated method makes the discovery of
novel communds more probably than reliance on human intuition. The researchers are now
looking for ways to make especially efficient "teams" of man and machine. [14]

Using machine learning to understand materials

Whether you realize it or not, machine learningriaking your online experience more efficient.

The technology, designed by computer scientists, is used to better understand, analyze, and
categorize data. When you tag your friend on Facebook, clear your spam filter, or click on a

suggested YouTube vidgmu're benefitting from machine learning algorithms.

Machine learning algorithms are designed to improve as they encounter more data, making them a
versatile technology for understanding large sets of photos such as those accessible from Google
Images. Ezabeth Holm, professor of materials science and engineering at Carnegie Mellon
University, is leveraging this technology to better understand the enormous number of research
images accumulated in the field of materials science. This unique applicagionniterdisciplinary
approach to machine learning that hasn't been explored before.

"Just like you might search for cute cat pictures on the internet, or Facebook recognizes the faces
of your friends, we are creating a system that allows a computer tonaatically understand the
visual data of materials science," explains Holm.

The field of materials science usually relies on human experts to identify research images by hand.
Using machine learning algorithms, Holm and her group have created a systeautbmatically
recognizes and categorizes microstructural images of materials. Her goal is to make it more
efficient for materials scientists to search, sort, classify, and identify important information in their
visual data.

"In materialsscience, one of our fundamental data is pictures," explains Holm. "Images contain
information that we recognize, even when we find it difficult to quantify numerically."

Holm's machine learning system has several different applications within the matstiahce field
including research, industry, publishing, and academia. For example, the system could be used to
create a visual search of a scientific journal archives so that a researcher could find out whether a
similar image had ever been publishedniirly, the system can be used to automatically search



and categorize image archives in industries or research labs. "Big companies can have archives of
600,000 or more research images. No one wants to look through those, but they want to use that
data tobetter understand their products,” explains Holm. "This system has the power to unlock
those archives."

Holm and her group have been working on this research for about three years and are continuing
to grow the project, especially as it relates to thetale&3-D printing field. For example, they are
beginning to compile a database of experimental and simulated metal powder micrographs in
order to better understand what types of raw materials are best suited fDr@inting processes.

Holm published an &icle about this research in the December 2015 issue of Computational
Materials Science titled "A computer vision approach for automated analysis and classification of
microstructural image data." [13]

Artificial intelligence helps in the discovery of new  materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have
computed the characteristics of about two million crystals made up of four chemical elements. The
researchers were able to identify 90 previguahknown thermodynamically stable crystals that

can be regarded as new materials.

They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal stréétat

discovered in El Paso County (Colorado, USA), it can also be found in the Rocky Mountains, Virginia
and the Apennines (ltaly). In experimental databases, elpasolite is one of the most frequently

found quaternary crystals (crystals made up of fomemical elements). Depending on its

composition, it can be a metallic conductor, a s@minductor or an insulator, and may also emit

light when exposed to radiation.

These characteristics make elpasolite an interesting candidate for use in scintitzresn

aspects of which can already be demonstrated) and other applications. Its chemical complexity
means that, mathematically speaking, it is practically impossible to use quantum mechanics to
predict every theoretically viable combination of the falements in the structure of elpasolite.

Machine learning aids statistical analysis

Thanks to modern artificial intelligence, Felix Faber, a doctoral student in Prof. Anatole von
Lilienfeld's group at the University of Basel's Department of Chemistsyndna succeeded in

solving this material design problem. First, using quantum mechanics, he generated predictions for
thousands of elpasolite crystals with randomly determined chemical compositions. He then used
the results to train statistical machine leéng models (ML models). The improved algorithmic
strategy achieved a predictive accuracy equivalent to that of standard quantum mechanical
approaches.

ML models have the advantage of being several orders of magnitude quicker than corresponding
quantum mechanical calculations. Within a day, the ML model was able to predict the formation
energyc an indicator of chemical stabilityof all two million elpasolite crystals that theoretically



can be obtained from the main group elements of the periodic tableontrast, performance of
the calculations by quantum mechanical means would have taken a supercomputer more than 20
million hours.

Unknown materials with interesting characteristics

An analysis of the characteristics computed by the model offersinsights into this class of
materials. The researchers were able to detect basic trends in formation energy and identify 90
previously unknown crystals that should be thermodynamically stable, according to quantum
mechanical predictions.

On the basis ofttese potential characteristics, elpasolite has been entered into the Materials
Project material database, which plays a key role in the Materials Genome Initiative. The initiative
was launched by the US government in 2011 with the aim of using computesiopport to

accelerate the discovery and the experimental synthesis of interesting new materials.

Some of the newly discovered elpasolite crystals display exotic electronic characteristics and
unusual compositions. "The combination of artificial intelfige, big data, quantum mechanics and
supercomputing opens up promising new avenues for deepening our understanding of materials
and discovering new ones that we would not consider if we relied solely on human intuition,” says
study director von Lilienfeld12]

Physicists are putting themselves out of a job, using artificial

intelligence to run a complex experiment

The experiment, developed by physicists from The Australian National University (ANU) and UNSW
ADFA, created an extremely cold gas trapped lmser beam, known as a BeSmstein

condensate, replicating the experiment that won the 2001 Nobel Prize.

"l didn't expect the machine could learn to do the experiment itself, from scratch, in under an
hour," said cdead researcher Paul Wigley frofmet ANU Research School of Physics and
Engineering.

"A simple computer program would have taken longer than the age of the Universe to run through
all the combinations and work this out."

BoseEinstein condensates are some of the coldest places in theet$@i, far colder than outer
space, typically less than a billionth of a degree above absolute zero.

They could be used for mineral exploration or navigation systems as they are extremely sensitive to
external disturbances, which allows them to make very precise measurements such as tiny changes
in the Earth's magnetic field or gravity.

The artificial itelligence system's ability to set itself up quickly every morning and compensate for
any overnight fluctuations would make this fragile technology much more useful for field
measurements, said eead researcher Dr Michael Hush from UNSW ADFA.

"You couldmake a working device to measure gravity that you could take in the back of a car, and
the artificial intelligence would recalibrate and fix itself no matter what," he said.



"It's cheaper than taking a physicist everywhere with you."

The team cooled thgas to around 1 microkelvin, and then handed control of the three laser
beams over to the artificial intelligence to cool the trapped gas down to nanokelvin.

Researchers were surprised by the methods the system came up with to ramp down the power of
the lasers.

"It did things a person wouldn't guess, such as changing one laser's power up and down, and
compensating with another,” said Mr Wigley.

"It may be able to come up with complicated ways humans haven't thought of to get experiments
colder and makeneasurements more precise.

The new technique will lead to bigger and better experiments, said Dr Hush.

"Next we plan to employ the artificial intelligence to build an even larger Eis&tein condensate
faster than we've seen ever before," he said.

The research is published in the Nature group journal Scientific Reports. [11]

Quantum experiments designed by machines

The idea was developed when the physicists wanted to create new quantum states in the
laboratory, but were unable to conceive of mettoto do so. "After many unsuccessful attempts

to come up with an experimental implementation, we came to the conclusion that our intuition
about these phenomena seems to be wrong. We realized that in the end we were just trying
random arrangements of qué&mm building blocks. And that is what a computer can do as-well

but thousands of times faster", explains Mario Krenn, PhD student in Anton Zeilinger's group and
first author research.

After a few hours of calculation, their algorithnwhich they call Mlvin - found the recipe to the
guestion they were unable to solve, and its structure surprised them. Zeilinger says: "Suppose | want
build an experiment realizing a specific quantum state | am interested in. Then humans intuitively
consider setups refledtg the symmetries of the state. Yet Melvin found out that the most simple
realization can be asymmetric and therefore counterintuitive. A human would probably never come
up with that solution."

The physicists applied the idea to several other questionksgot dozens of new and surprising
answers. "The solutions are difficult to understand, but we were able to extract some new
experimental tricks we have not thought of before. Some of these comglésigned experiments
are being built at the moment in odaboratories”, says Krenn.

Melvin not only tries random arrangements of experimental components, but also learns from
previous successful attempts, which significantly speeds up the discovery rate for more complex
solutions. In the future, the authorsamt to apply their algorithm to even more general questions
in guantum physics, and hope it helps to investigate new phenomena in laboratories. [10]



Moving electrons around loops with light: A quantum device based on

geometry

Researchers at the Univengivf Chicago's Institute for Molecular Engineering and the University of
Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the
qubit, that- surprisingly is intrinsically resilient to noise as well as to variagiamthe strength or
duration of the control. Their achievement is based on a geometric concept known as the Berry
phase and is implemented through entirely optical means within a single electronic spin in
diamond.

Their findings were published online Fdb, 2016, in Nature Photonics and will appear in the

March print issue. "We tend to view quantum operations as very fragile and susceptible to noise,
especially when compared to conventional electronics,” remarked David Awschalom, the Liew
Family Profess of Molecular Engineering and senior scientist at Argonne National Laboratory,
who led the research. "In contrast, our approach shows incredible resilience to external influences
and fulfills a key requirement for any practical quantum technology."

Quantum geometry

When a quantum mechanical object, such as an electron, is cycled along some loop, it retains a
memory of the path that it travelled, the Berry phase. To better understand this concept, the
Foucault pendulum, a common staple of science museums helps teaive intuition. A

pendulum, like those in a grandfather clock, typically oscillates back and forth within a fixed plane.
However, a Foucault pendulum oscillates along a plane that gradually rotates over the course of a
day due to Earth's rotation, and tarn knocks over a series of pins encircling the pendulum.

The number of knockedver pins is a direct measure of the total angular shift of the pendulum's
oscillation plane, its acquired geometric phase. Essentially, this shift is directly related to the
location of the pendulum on Earth's surface as the rotation of Earth transports the pendulum along
a specific closed path, its circle of latitude. While this angular shift depends on the particular path
traveled, Awschalom said, it remarkably does notel&bon the rotational speed of Earth or the
oscillation frequency of the pendulum.

"Likewise, the Berry phase is a similar pdépendent rotation of the internal state of a quantum
system, and it shows promise in quantum information processing as atrotass to manipulate
qubit states," he said.

A light touch

In this experiment, the researchers manipulated the Berry phase of a quantum state within a
nitrogenvacancy (NV) center, an atorscale defect in diamond. Over the past decade and a half,
its electronic spin state has garnered great interest as a potential qubit. In their experiments, the
team members developed a method with which to draw paths for this defect's spin by varying the
applied laser light. To demonstrate Berry phase, they tracegdaimilar to that of a tangerine

slice within the quantum space of all of the potential combinations of spin states.

"Essentially, the area of the tangerine slice's peel that we drew dictated the amount of Berry phase
that we were able to accumulate,a&l Christopher Yale, a postdoctoral scholar in Awschalom's
laboratory, and one of the elead authors of the project.



This approach using laser light to fully control the path of the electronic spin is in contrast to more
common techniques that controhe NV center spin, through the application of microwave fields.
Such an approach may one day be useful in developing photonic networks of these defects, linked
and controlled entirely by light, as a way to both process and transmit quantum information.

A noisy path

A key feature of Berry phase that makes it a robust quantum logic operation is its resilience to
noise sources. To test the robustness of their Berry phase operations, the researchers intentionally
added noise to the laser light controlling tpath. As a result, the spin state would travel along its
intended path in an erratic fashion.

However, as long as the total area of the path remained the same, so did the Berry phase that they
measured.

"In particular, we found the Berry phase to beémsitive to fluctuations in the intensity of the
laser. Noise like this is normally a bane for quantum control," said Brian Zhou, a postdoctoral
scholar in the group, and dead author.

"Imagine you're hiking along the shore of a lake, and even thoagtcgntinually leave the path to

go take pictures, you eventually finish hiking around the lake," said F. Joseph Hererdaas, co
author, and now a staff scientist at Argonne National Laboratory. "You've still hiked the entire loop
regardless of the bizee path you took, and so the area enclosed remains virtually the same."

These optically controlled Berry phases within diamond suggest a route toward robust and
faulttolerant quantum information processing, noted Guido Burkard, professor of physics at the
University of Konstanz and theory collaborator on the project.

"Though its technological applications are still nascent, Berry phases have a rich underlying
mathematical framework that makes them a fascinating area of study," Burkard said. [9]

Researchers demonstrate ‘quantum surrealism’

In a new version of an old experiment, CIFAR Senior Fellow Aephraim Steinberg (University of
Toronto) and colleagues tracked the trajectories of photons as the particles traced a path through
one of two slits and onto acreen. But the researchers went further, and observed the "nonlocal”
influence of another photon that the first photon had been entangled with.

The results counter a lorgtanding criticism of an interpretation of quantum mechanics called the
De BroglieBohm theory. Detractors of this interpretation had faulted it for failing to explain the
behaviour of entangled photons realistically. For Steinberg, the results are important because they
give us a way of visualizing quantum mechanics that's just @asasthe standard interpretation,

and perhaps more intuitive.

"I'm less interested in focusing on the philosophical question of what's ‘really’ out there. | think the
fruitful question is more down to earth. Rather than thinking about different metaphysic
interpretations, | would phrase it in terms of having different pictures. Different pictures can be
useful. They can help shape better intuitions.”



At stake is what is "really" happening at the quantum level. The uncertainty principle tells us that
we can never know both a particle's position and momentum with complete certainty. And when
we do interact with a quantum system, for instance by measuring it, we disturb the system. So if
we fire a photon at a screen and want to know where it will hit, weiler know for sure exactly
where it will hit or what path it will take to get there.

The standard interpretation of quantum mechanics holds that this uncertainty means that there is
no "real” trajectory between the light source and the screen. The Westan do is to calculate a
"wave function” that shows the odds of the photon being in any one place at any time, but won't
tell us where it is until we make a measurement.

Yet another interpretation, called the De BrogBehm theory, says that the phats do have real
trajectories that are guided by a "pilot wave" that accompanies the particle. The wave is still
probabilistic, but the particle takes a real trajectory from source to target. It doesn't simply
"collapse” into a particular location once itfeeasured.

In 2011 Steinberg and his colleagues showed that they could follow trajectories for photons by
subjecting many identical particles to measurements so weak that the particles were barely
disturbed, and then averaging out the information. Thigmoel showed trajectories that looked
similar to classical onesay, those of balls flying through the air.

But critics had pointed out a problem with this viewpoint. Quantum mechanics also tells us that
two particles can be entangled, so that a measueairof one particle affects the other. The critics
complained that in some cases, a measurement of one particle would lead to an incorrect
prediction of the trajectory of the entangled particle. They coined the term "surreal trajectories” to
describe them.

In the most recent experiment, Steinberg and colleagues showed that the surrealism was a
consequence of notocality- the fact that the particles were able to influence one another
instantaneously at a distance. In fact, the "incorrect" predictionsajéttories by the entangled
photon were actually a consequence of where in their course the entangled particles were
measured. Considering both particles together, the measurements made sense and were
consistent with real trajectories.

Steinberg points out that both the standard interpretation of quantum mechanics and the De
BroglieBohm interpretation are consistent with experimental evidence, and are mathematically
equivalent. But it is helpful in some circumstances to visualize ra@eltories, rather than wave
function collapses, he says. [8]



Physicists discover easy way to measure entanglement 2 on a sphere
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Entanglement on a sphere: This Bloch sphere shows entanglement for tidéBr2 & a G+ 4GS ~ | yR
NI} RALF £ &l @rfthesphapbe corfepondsaoiti Mdlue of the entanglement, which is
determined by the distance from the root state z, the point at which there is no entanglement. The
closer to z, the less the entanglement (red); the further from z, the greater the eletaegt
(blue). Credit: Regula and Adesso. ©2016 American Physical Society

Now in a new paper to be published in Physical Review Letters, mathematical physicists Bartosz
Regula and Gerardo Adesso at The University of Nottingham have greatly simplifpgditem of
measuring entanglement.

To do this, the scientists turned the difficult analytical problem into an easy geometrical one. They
showed that, in many cases, the amount of entanglement between states corresponds to the
distance between two pointsroa Bloch sphere, which is basically a normal 3D sphere that
physicists use to model quantum states.

As the scientists explain, the traditionally difficult part of the math problem is that it requires
finding the optimal decomposition of mixed states imtore states. The geometrical approach
completely eliminates this requirement by reducing the many possible ways that states could
decompose down to a single point on the sphere at which there is zero entanglement. The
approach requires that there be onbne such point, or "root," of zero entanglement, prompting
the physicists to describe the method as "one root to rule them all.”

The scientists explain that the "one root" property is common among quantum states and can be
easily verified, transforming farmidable math problem into one that is trivially easy. They
demonstrated that the new approach works for many types of-twlaree- and fourqubit

entangled states.



"This method reveals an intriguing and previously unexplored connection between théuguan
features of a state and classical geometry, allowing altroo¢ states to enjoy a convenient visual
representation which considerably simplifies the study and understanding of their properties," the
researchers explained.

The simple way of measurirggstate's entanglement could have applications in many technological
areas, such as quantum cryptography, computation, and communication. It could also provide
insight into understanding the foundations of thermodynamics, condensed matter physics, and
biology. [7]

An idea for allowing the human eye to observe an instance of
entanglement
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Scheme of the proposal for detecting entanglement with the human eye. Credit: arXiv:1602.01907

Entanglement, is of course, where two quantum particles are intrinsically linked to the extent that
they actually share the same existence, even though the\beaseparated and moved apart. The
idea was first proposed nearly a century ago, and it has not only been proven, but researchers
routinely cause it to occur, but, to date, not one single person has every actually seen it happen
they only know it happenBy conducting a series of experiments. It is not clear if anyone has ever
actually tried to see it happen, but in this new effort, the research trio claim to have found a way to
make it happen if only someone else will carry out the experiment on a wilialyinteer.

The idea involves using a beam splitter and two beans oftlightinitial beam of coherent photons
fired at the beam splitter and a secondary beam of coherent photons that interferes with the
photons in the first beam causing a change of ph&seing the light to be reflected rather than
transmitted. In such a scenario, the secondary beam would not need to be as intense as the first,
and could in fact be just a single coherent phatdhit were entangled, it could be used to allow a
person tosee the more powerful beam while still preserving the entanglement of the original
photon.



The researchers suggest the technology to carry out such an experiment exists today, but also
acknowledge that it would take a special person to volunteer for suncassignment because to
prove that they had seen entanglement taking place would involve shooting a large number of
photons in series, into a person's eye, whereby the resolute volunteer would announce whether
they had seen the light on the order of theands of times. [6]

Quantum entanglement

Measurements of physical properties such as position, momentum, spin, polarization, etc.
performed on entangled particles are found to be appropriately correlated. For example, if a pair of
particles is generateth such a way that their total spin is known to be zero, and one particle is
found to have clockwise spin on a certain axis, then the spin of the other particle, measured on the
same axis, will be found to be counterclockwise. Because of the nature ofumaneasurement,
however, this behavior gives rise to effects that can appear paradoxical: any measurement of a
property of a particle can be seen as acting on that particle (e.g. by collapsing a number of
superimposed states); and in the case of entadglarticles, such action must be on the entangled
system as a whole. It thus appears that one particle of an entangled pair "knows" what
measurement has been performed on the other, and with what outcome, even though there is no
known means for such inforation to be communicated between the particles, which at the time

of measurement may be separated by arbitrarily large distances. [4]

The Bridge

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but
0KS | SAaSYyoSNH ! yOSNIlIAyGe wStrdAz2ys GKS g1 @S
the bridge between the Classical and Quantum Theorigs. [

Accelerating charges

The moving charges are self maintain the electromagnetic field locally, causing their movement and
this is the result of their acceleration under the force of this field. In the classical physics the
charges will distributed ahgy the electric current so that the electric potential lowering along the
current, by linearly increasing the way they take every next time period because this accelerated
motion. The same thing happens on the atomic scale giving a dp impulse differehaeda way
difference between the different part of the not point like particles.

Relativistic effect

Another bridge between the classical and quantum mechanics in the realm of relativity is that the
charge distribution is lowering in the referencerfra of the accelerating charges linearly: ds/dt =

at (time coordinate), but in the reference frame of the current it is parabolic: s = ég2ometric
coordinate).
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Heisenberg Uncertainty Relation

In the atomic scale the Heisenberg uncertainty relagores the same result, since the moving
electron in the atom accelerating in the electric field of the proton, causing a charge distribution on
delta x position difference and with a delta p momentum difference such a way that they product
is about the h#f Planck reduced constant. For the proton this delta x much less in the nucleon,
than in the orbit of the electron in the atom, the delta p is much higher because of the greater
proton mass.

This means that the electron and proton are not point like joées, but has a real charge
distribution.

Wave z Particle Duality

The accelerating electrons explains the wag\ygarticle duality of the electrons and photons, since
the elementary charges are distributed on delta x position with delta p impulse aadirog a

wave packet of the electron. The photon gives the electromagnetic particle of the mediating force
of the electrons electromagnetic field with the same distribution of wavelengths.

Atomic model

The constantly accelerating electron in the Hydmo@tom is moving on the equipotential line of

the proton and it's kinetic and potential energy will be constant. Its energy will change only when it
is changing its way to another equipotential line with another value of potential energy or getting
free with enough kinetic energy. This means that the RutheHdBathr atomic model is right and

only that changing acceleration of the electric charge causes radiation, not the steady acceleration.
The steady acceleration of the charges only creates a centrabphbe steady electric field around

the charge, the magnetic field. This gives the magnetic moment of the atoms, summing up the
proton and electron magnetic moments caused by their circular motions and spins.

The Relativistic Bridge

Commonly acceptedlea that the relativistic effect on the particle physics it is the fermions'spin
another unresolved problem in the classical concepts. If the electric charges can move only with
accelerated motions in the self maintaining electromagnetic field, once @piime they would

reach the velocity of the electromagnetic field. The resolution of this problem is the spinning
particle, constantly accelerating and not reaching the velocity of light because the acceleration is
radial. One origin of the Quantum Physis the Planck Distribution Law of the electromagnetic
oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two
wavelengths will give equal intensity diffraction patterns, building different asymmetric
construdions, for example proton electron structures (atoms), molecules, etc. Since the particles
are centers of diffraction patterns they also have particigave duality as the electromagnetic
waves have. [2]



The weak interaction

The weak interaction transforms an electric charge in the diffraction pattern from one side to the
other side, causing an electric dipole momentum change, which violates the CP and time reversal
symmetry. The Electroweak Interaction shows that the Weadr#wtion is basically

electromagnetic in nature. The arrow of time shows the entropy grows by changing the
temperature dependent diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark chaitgésvor such that a linear
oscillation transforms into plane oscillation or vice versa, changing the charge value with. 1 or
This kind of change in the oscillation mode requires not only parity change, but also charge and
time changes (CPT symmetrgsulting a right handed antieutrino or a left handed neutrino.

The right handed amieutrino and the left handed neutrino exist only because changing back the
quark flavor could happen only in reverse, because they are different geometrical corsts,cti

the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It
needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spinseofveak interaction, for

example neutron decay to 2 fermions, every particle is fermions with %2 spin. The weak interaction
changes the entropy since more or less particles will give more or less freedom of movement. The
entropy change is a result of tem@gure change and breaks the equality of oscillator diffraction
intensity of the Maxwe{Boltzmann statistics. This way it changes the time coordinate measure
and

makes possible a different time dilation as of the special relativity.

The limit of the veloity of particles as the speed of light appropriate only for electrical charged
particles, since the accelerated charges are self maintaining locally the accelerating electric force.
The neutrinos are CP symmetry breaking particles compensated by tiine @RT symmetry, that

is the time coordinate not works as in the electromagnetic interactions, consequently the speed of
neutrinos is not limited by the speed of light.

The weak interaction-asymmetry is in conjunction with thedsymmetry of the seconldw of
thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes
the

weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional
oscllation by changing d to u quark and creating anti neutrino going back in time relative to the
proton and electron created from the neutron, it seems that the anti neutrino fastest then the
velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and thadCP

symmetry breaking!!! This flavor changing oscillation could prove that it could be also on higher
level such as atoms, molecules, probably big biological signifivalecules and responsible on the
aging of the life.



Important to mention that the weak interaction is always contains particles and antiparticles,

GKSNBE (GKS ySdziNAy2a oOFylGAySdziNAy2a0 LINBaSyid GKS
interpretation thatthese particles present the backward time and probably because this they seem

to move faster than the speed of light in the reference frame of the other side.

Finallysince the weak interaction is an electric dipole change with %2 spin creating; it is limited by
0KS @St20Aa0& 2F GKS StSOGNRBYIF3IYSGIAO ¢ @S5 a2 (GKS
light.

The General Weak Interaction

The Weak Interactionsasymmetry is in conjunction with thedSymmetry of the Second Law of
Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes
for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamiss sho
the increasing entropy and decreasing information by the Weak Interaction, changing the
temperature dependent diffraction patterns. A good example of this is the neutron decay, creating
more particles with less known information about them.

The neutmo oscillation of the Weak Interaction shows that it is a general electric dipole change
and it is possible to any other temperature dependent entropy and information changing
diffraction pattern of atoms, molecules and even complicated biological litingtgres.

We can generalize the weak interaction on all of the decaying matter constructions, even on the
biological too. This gives the limited lifetime for the biological constructions also by the arrow of
time. There should be a new research spacthefQuantum Information Science the 'general
neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change.
There is also connection between statistical physics and evolutionary biology, since the arrow of
time is workng in the biological evolution also.

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction
opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is
growing that is the matteformulas are emerging from the chaos. So the Weak Interaction has two
directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite
direction.

Fermions and Bosons
The fermions are the diffraction patterns of the bososuch a way that they are both sides of the
same thing.

Van Der Waals force

Named after the Dutch scientist Johannes Diderik van der VWaet® first proposed it in 1873 to
explain the behaviour of gasest is a very weak force that only becomeserednt when atoms

and molecules are very close together. Fluctuations in the electronic cloud of an atom mean that it
will have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the
result being an attractive dipotglipole irteraction.

2 |

)



Electromagnetic inertia and mass

Electromagnetic Induction
Since the magnetic induction creates a negative electric field as a result of the changing
acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass

The increasing mass of the electric charges the result of the increasing inductive electric force
acting against the accelerating force. The decreasing mass of the decreasing acceleration is the
result of the inductive electric force acting against ther@asing force. This is the relativistic mass
change explanation, especially importantly explaining the mass reduction in case of velocity
decrease.

The frequency dependence of mass

Sinced TlandE=m&Y I Hhatiskh®m depends only on the frequency. It means that

the mass of the proton and electron are electromagnetic and the result of the electromagnetic
induction, caused by the changing acceleration of the spinning and moving charge! It could be that
the myinertial mass is the result dfie spin, since this is the only accelerating motion of the electric
charge. Since the accelerating motion has different frequency for the electron in the atom and the
proton, they masses are different, also as the wavelengths on both sides of the @ffrpattern,

giving equal intensity of radiation.

Electron z Proton mass rate

The Planck distribution law explains the different frequencies of the proton and electron, giving
equal intensity to different lambda wavelengths! Also since the particlediffraction patterns

they have some closeness to each oth@an be seen as a gravitational force. [2]

There is an asymmetry between the mass of the electric charges, for example proton and electron,
can understood by the asymmetrical Planck Distributiaw. This temperature dependent energy
distribution is asymmetric around the maximum intensity, where the annihilation of matter and
antimatter is a high probability event. The asymmetric sides are creating different frequencies of
electromagnetic radiatins being in the same intensity level and compensating each other. One of
these compensating ratios is the electrqproton mass ratio. The lower energy side has no
compensating intensity level, it is the dark energy and the corresponding matter is hendéter.

Gravity from the point of view of quantum physics

The Gravitational force
The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel
in the same direction. Since the electrically neutral matter is composed of negative and positive
charges they need 2 photons to mediate this attractiveéone per charges. The Bing Bang

caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.



Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about phott as virtual electron positron pairs, obtaining the necessary virtual
mass for gravity.

The mass as seen before a result of the diffraction, for example the pgagtectron mass rate
Mp=1840 Me. In order to move one of these diffraction maximum (edecor proton) we need to
intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction
maximum, means its intensity or mass.

The Big Bang caused acceleration created radial currents of the matter, and sincattbeisn
composed of negative and positive charges, these currents are creating magnetic field and
attracting forces between the parallel moving electric currents. This is the gravitational force
experienced by the matter, and also the mass is result®flkectromagnetic forces between the
charged particles. The positive and negative charged currents attracts each other or by the
magnetic forces or by the much stronger electrostatic forces!?

The gravitational force attracting the matter, causing corication of the matter in a small space

and leaving much space with low matter concentration: dark matter and energy.

There is an asymmetry between the mass of the electric charges, for example proton and electron,
can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy
distribution is asymmetric around the maximum intensity, where #mnihilation of matter and
antimatter is a high probability event. The asymmetric sides are creating different frequencies of
electromagnetic radiations being in the same intensity level and compensating each other. One of
these compensating ratios isdlelectrong proton mass ratio. The lower energy side has no
compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The Higgs boson

By March 2013, the particle had been proven to behave, interact anagydaanany of the

expected ways predicted by the Standard Model, and was also tentatively confirmed to have +
parity and zero spin, two fundamental criteria of a Higgs boson, making it also the first known
scalar particle to be discovered in nature, aliigh a number of other properties were not fully
proven and some partial results do not yet precisely match those expected; in some cases data is
also still awaited or being analyzed.

Since the Higgs boson is necessary to the W and Z bosons, the dipude diidhe Weak

interaction and the change in the magnetic effect caused gravitation must be conducted. The Wien
law is also important to explain the Weak interaction, since it describespthefange and the
diffraction patterns change. [2]



Higgs mechanism and Quantum Gravity

The magnetic induction creates a negative electric field, causing an electromagnetic inertia.
Probably it is the mysterious Higgs field giving mass to the charged particles? We can think about
the photon as an electrepositron mir, they have mass. The neutral particles are built from

negative and positive charges, for example the neutron, decaying to proton and electron. The wave
¢ particle duality makes sure that the particles are oscillating and creating magnetic induction as
inertial mass, explaining also the relativistic mass change. Higher frequency creates stronger
magnetic induction, smaller frequency results lesser magnetic induction. It seems to me that the
magnetic induction is the secret of the Higgs field.

In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that
gives mass to elementary particles. According to this theory, particles gain mass by interacting with
the Higgs field that permeates all space. More precisely, thgsHigechanism endows gauge

bosons in a gauge theory with mass through absorption of Na@bidstone bosons arising in
spontaneous symmetry breaking.

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The
spontaneousymmetry breaking of the underlying local symmetry triggers conversion of
components of this Higgs field to Goldstone bosons which interact with (at least some of) the other
fields in the theory, so as to produce mass terms for (at least some of) the gasgns. This
mechanism may also leave behind elementary scalar-@pparticles, known as Higgs bosons.

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of
masses for the W and Z weak gauge bosons throughceleweak symmetry breaking. The Large
Hadron Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but
stressed that further testing is needed to confirm the Standard Model.

What is the Spin?

So we know already that the meparticle has spin zero or spin two and we could tell which one if
we could detect the polarizations of the photons produced. Unfortunately this is difficult and
neither ATLAS nor CMS are able to measure polarizations. The only direct and sure waiynto conf
that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest
frame of the centre of mass. A spin zero particles like the Higgs carries no directional information
away from the original collision so the distributiavill be even in all directions. This test will be
possible when a much larger number of events have been observed. In the mean time we can
settle for less certain indirect indicators.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation
in the framework of quantum field theory. If it exists, the graviton is expected to be massless
(because the gravitational force appears to have unlimitathe) and must be a spthboson. The
spin follows from the fact that the source of gravitation is the stiesergy tensor, a seconagnk
tensor (compared to electromagnetism's sgirphoton, the source of which is the feaurrent, a
first-rank tensor) Additionally, it can be shown that any massless-&dield would give rise to a
force indistinguishable from gravitation, because a massless2sfpahd must couple to (interact

with) the stressenergy tensor in the same way that the gravitationaldidoes. This result suggests



that, if a massless spi particle is discovered, it must be the graviton, so that the only
experimental verification needed for the graviton may simply be the discovery of a massle&s spin
particle. [3]

The Secret of Quantum Entanglement

The Secret of Quantum Entanglement that the particles are diffraction patterns of the
electromagnetic waves and this way their quantum states every time is the result of the quantum
state of the intermediate electromagnetic waves. [2] Wiaere of the entangled particles wave
function is collapses by measurement, the intermediate photon also collapses and transforms its
state to the second entangled particle giving it the continuity of this entanglement. Since the
accelerated charges are sahaintaining their potential locally causing their acceleration, it seems
that they entanglement is a spooky action at a distance.

Conclusions

The accelerated charges setfintaining potential shows the locality of the relativity, working on

the quartum level also.

The Secret of Quantum Entanglement that the particles are diffraction patterns of the
electromagnetic waves and this way their quantum states every time is the result of the quantum
state of the intermediate electromagnetic waves.

One d the most important conclusions is that the electric charges are moving in an accelerated
way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called
spin, since they need at least an intrinsic acceleration toenmdssible they movement .

The bridge between the classical and quantum theory is based on this intrinsic acceleration of the
spin, explaining also the Heisenberg Uncertainty Principle. The paytidee duality of the

electric charges and the photon ks certain that they are both sides of the same thing. Basing
the gravitational force on the accelerating Universe caused magnetic force and the Planck
Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a
UnifiedTheory of the physical interactions.
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