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Abstract

Physicists usually understand that physics cannot (and should not) explain
why c = 3 · 108m/s and h̄ = 1.054 · 10−34kg ·m2/s because c and h̄ are funda-
mental physical quantities. At the same time they usually believe that physics
should explain the value of the cosmological constant Λ. We first prove that
three fundamental parameters defining transitions from more general theories
to less general ones are (c, h̄, R) where R is the parameter defining contraction
from the de Sitter (dS) or anti-de Sitter (AdS) algebra to the Poincare algebra.
This parameter is fundamental to the same extent as c and h̄. In particular, a
question why R is as is does not arise, and the answer is simply that R has its
value because people want to measure distances in meters. On classical level
Λ = ±3/R2 for dS and AdS spaces, respectively. As a consequence of the fact
that quantum dS and AdS symmetries are more general than Poincare sym-
metry, the cosmological constant problem does not arise, Λ is necessarily not
zero and there is no need to involve dark energy for explaining the cosmological
acceleration. Following our previous publications, we consider a system of two
free bodies in dS invariant quantum mechanics and show that in semiclassical
approximation the dS repulsion is the same as in General Relativity. This re-
sult is obtained without using geometry of dS space, metric and connection but
simply as a consequence of quantum dS symmetry.
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1 Brief overview of the cosmological constant prob-

lem and dark energy

The history of General Relativity (GR) is described in a vast literature. The La-
grangian of GR is linear in Riemannian curvature Rc, but from the point of view
of symmetry requirements there exist infinitely many Lagrangians satisfying such re-
quirements. For example, f(Rc) theories of gravity are widely discussed, where there
can be many possibilities for choosing the function f . Then the effective gravitational
constant Geff can considerably differ from standard gravitational constant G. It is
also argued that GR is a low energy approximation of more general theories involv-
ing higher order derivatives. The nature of gravity on quantum level is a problem,
and standard canonical quantum gravity is not renormalizable. For those reasons the
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quantity G can be treated only as a phenomenological parameter but not fundamental
one.

Let us restrict ourselves with the consideration of standard GR. Here the
Einstein equations depend on two arbitrary parameters G and Λ where Λ is the
cosmological constant (CC). In the formal limit of GR when matter disappears, space-
time becomes Minkowski space when Λ = 0, de Sitter (dS) space when Λ > 0, and
anti-de Sitter (AdS) space when Λ < 0.

Well known historical facts are that first Einstein included Λ because he
believed that the Universe should be stationary, and this is possible only if Λ 6= 0.
However, according to Gamow, after Friedman’s results and Hubble’s discovery of
the Universe expansion, Einstein changed his mind and said that inclusion of Λ was
the greatest blunder of his life (but there are no independent confirmations of this
phrase).

The usual philosophy of GR is that curvature is created by matter and
therefore Λ should be equal to zero. This philosophy has been advocated even in
standard textbooks written before 1998. For example, the authors of Ref. [1] say that
”...there are no convincing reasons, observational and theoretical, for introducing a
nonzero value of Λ” and that ”... introducing to the density of the Lagrange function
a constant term which does not depend on the field state would mean attributing to
space-time a principally ineradicable curvature which is related neither to matter nor
to gravitational waves”.

However, the data of Ref. [2] on supernovae have shown that Λ > 0 with
the accuracy better than 5%, and further investigations have improved the accuracy
to 1%. For reconciling this fact with the philosophy of GR, the terms with Λ in
the left-hand-sides of the Einstein equations have been moved to the right-hand-sides
and interpreted not as the curvature of empty space-time but as a contribution of
unknown matter called dark energy. Then, as follows from the experimental value
of Λ, dark energy contains approximately 70% of the energy of the Universe. At
present a possible nature of dark energy is discussed in a vast literature and several
experiments have been proposed.

Let us to note the following. In the formalism of GR the coordinates
and curvature are needed for the description of real bodies. One of fundamental
principles of physics is that definition of a physical quantity is the description on
how this quantity should be measured. In the Copenhagen formulation of quantum
theory measurement is an interaction with a classical object. Therefore in empty
space-time nothing can be measured, and the coordinates and curvature of empty
space-time have no physical meaning. This poses a problem whether the formal limit
of GR when matter disappears but space-time remains is physical. Some authors
(see e.g. Ref. [3]) propose approaches such that if matter disappears then space-time
disappears too.

The CC problem is as follows. In standard quantum field theory one starts
from the choice of the space-time background. By analogy with the philosophy of GR,
it is believed that the choice of the Minkowski background is more physical than the
choice of the dS or AdS one. Here the quantity G is treated as fundamental and
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the value of Λ should be extracted from the vacuum expectation value of the energy-
momentum tensor. The theory contains strong divergencies and a reasonable cutoff
gives for Λ a value exceeding the experimental one by 120 orders of magnitude. This
result is expected because in units c = h̄ = 1 the dimension of G is m2, the dimension
of Λ is m−2 and therefore one might think than Λ is of the order of 1/G what exceeds
the experimental value by 120 orders of magnitude.

Several authors argue that the CC problem does not exists. For exam-
ple, the authors of Ref. [4] titled ”Why all These Prejudices Against a Constant?”
note that since the solution of the Einstein equations depends on two arbitrary phe-
nomenological constants G and Λ it is not clear why we should choose only a special
case Λ = 0. If Λ is as small as given in Ref. [2] then it has no effect on the data in
Solar System and the contribution of Λ is important only at cosmological distances.
Also theorists supporting Loop Quantum Gravity say that the preferable choice of
Minkowski background contradicts the background independence principle. Neverthe-
less, the majority of physicists working in this field believe that the CC problem does
exist and the solution should be sought in the framework of dark energy, quintessence
and other approaches.

2 Remarks on fundamental theories

In this section we discuss comparisons of fundamental theories. One of the known
examples is the comparison of nonrelativistic theory (NT) with relativistic one (RT).
One of the reasons why RT can be treated as more fundamental is that it contains a
finite parameter c and NT can be treated as a special degenerate case of RT in the
formal limit c → ∞. Therefore, by choosing a large value of c, RT can reproduce
any result of NT with a high accuracy. On the contrary, when the limit is already
taken one cannot return back from NT to RT and NT cannot reproduce all results of
RT. It can reproduce only results obtained when v � c. Other known examples are
that classical theory is a special degenerated case of quantum one in the formal limit
h̄ → ∞ and RT is a special degenerate case of dS and AdS invariant theories in the
formal limit R → ∞ where R is the parameter of contraction from the dS or AdS
algebras to the Poincare algebra (see below). A question arises whether it is possible
to give a general definition when theory A is more fundamental than theory B. In
view of the above examples, we propose the following

Definition: Let theory A contain a finite parameter and theory B be ob-
tained from theory A in the formal limit when the parameter goes to zero or infinity.
Suppose that with any desired accuracy theory A can reproduce any result of theory
B by choosing a value of the parameter. On the contrary, when the limit is already
taken then one cannot return back to theory A and theory B cannot reproduce all
results of theory A. Then theory A is more general than theory B and theory B is a
special degenerate case of theory A. A problem arises how to justify this Definition
not only from physical but also from mathematical considerations.

In relativistic quantum theory the usual approach to symmetry on quan-
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tum level follows. Since the Poincare group is the group of motions of Minkowski
space, quantum states should be described by representations of this group. This
implies that the representation generators commute according to the commutation
relations of the Poincare group Lie algebra:

[P µ, P ν ] = 0, [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ),

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1)

where µ, ν = 0, 1, 2, 3, P µ are the operators of the four-momentum and Mµν are
the operators of Lorentz angular momenta. This approach is in the spirit of Klein’s
Erlangen program in mathematics.

However, as noted in Sec. 1, the notion of the background space-time is
problematic and, as argued in Ref. [5], the approach should be the opposite. Each
system is described by a set of linearly independent operators. By definition, the rules
how they commute with each other define the symmetry algebra. In particular, by
definition, Poincare symmetry on quantum level means that the operators commute
according to Eq. (1). This definition does not involve Minkowski space at all.

Such a definition of symmetry on quantum level has been proposed in Ref.
[6] and in subsequent publications of those authors. I am very grateful to Leonid
Avksent’evich Kondratyuk for explaining me this definition during our collabora-
tion. I believe that this replacement of the standard paradigm is fundamental for
understanding quantum theory, and I did not succeed in finding a similar idea in the
literature.

Our goal is to compare four theories: classical (i.e. non-quantum) the-
ory, nonrelativistic quantum theory, relativistic quantum theory and dS or AdS
quantum theory. All those theories are described by representations of the sym-
metry algebra containing ten linearly independent operators Aα (α = 1, 2, ...10): four
energy-momentum operators, three angular momentum operators and three Galilei
or Lorentz boost operators. For definiteness we assume that the operators Aα where
α = 1, 2, 3, 4 refer to energy-momentum operators, the operators Aα where α = 5, 6, 7
refer to angular momentum operators and the operators Aα where α = 8, 9, 10 refer
to Galilei or Lorentz boost operators. Let [Aα, Aβ] = icαβγAγ where summation over
repeated indices is assumed. In the theory of Lie algebras the quantities cαβγ are
called the structure constants.

Let S0 be a set of (α, β) pairs such that cαβγ = 0 for all values of γ and
S1 be a set of (α, β) pairs such that cαβγ 6= 0 at least for some values of γ. Since
cαβγ = −cβαγ it suffices to consider only such (α, β) pairs where α < β. If (α, β) ∈ S0

then the operators Aα and Aβ commute while if (α, β) ∈ S1 then they do not commute.
Let (SA0 , S

A
1 ) be the sets (S0, S1) for theory A and (SB0 , S

B
1 ) be the sets

(S0, S1) for theory B. As noted above, we will consider only theories where α, β =
1, 2, ...10. Then one can prove the following

Statement: Let theory A contain a finite parameter and theory B be
obtained from theory A in the formal limit when the parameter goes to zero or infinity.
If the sets SA0 and SB0 are different and SA0 ⊂ SB0 (what equivalent to SB1 ⊂ SA1 if the
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sets SA1 and SB1 are different) then theory A is more general than theory B and theory
B is a special degenerate case of theory A.

Proof: Let S̃ be the set of (α, β) pairs such that (α, β) ∈ SA1 and (α, β) ∈
SB0 . Then in theory B cαβγ = 0 for any γ. One can choose the parameter such that in
theory A all the quantities cαβγ are arbitrarily small. Therefore by choosing a value
of the parameter theory A can reproduce any result of theory B with any desired
accuracy. When the limit is already taken then, in theory B, [Aα, Aβ] = 0 for all
(α, β) ∈ S̃. This means that the operators Aα and Aβ become fully independent
and therefore there is no way to return to the situation when they do not commute.
Therefore for theories A and B the conditions of Definition are satisfied.

It is sometimes stated that the expressions in Eq. (1) are not general
enough because they are written in the system of units c = h̄ = 1. Let us consider
this problem in more details. The operators Mµν in Eq. (1) are dimensionless. In
particular, standard angular momentum operators (Jx, Jy, Jz) = (M12,M31,M23) are
dimensionless and satisfy the commutation relations

[Jx, Jy] = iJz, [Jz, Jx] = iJy, [Jy, Jz] = iJx (2)

If one requires that the operators Mµν should have the dimension kg ·m2/sec then
they should be replaced by Mµν/h̄, respectively. In that case the new commutation
relations will have the same form as in Eqs. (1) and (2) but the right-hand-sides will
contain the additional factor h̄.

The result for the components of angular momentum depends on the sys-
tem of units. As shown in quantum theory, in units h̄ = 1 the result is given by
a half-integer 0,±1/2,±1, .... We can reverse the order of units and say that in
units where the angular momentum is a half-integer l, its value in kg · m2/sec is
1.05457162 · 10−34 · l · kg · m2/s. Which of those two values has more physical sig-
nificance? In units where the angular momentum components are half-integers, the
commutation relations (2) do not depend on any parameters. Then the meaning of l
is clear: it shows how big the angular momentum is in comparison with the minimum
nonzero value 1/2. At the same time, the measurement of the angular momentum
in units kg ·m2/s reflects only a historic fact that at macroscopic conditions on the
Earth in the period between the 18th and 21st centuries people measured the angular
momentum in such units.

We conclude that for quantum theory itself the quantity h̄ is not needed.
However, it is needed for the transition from quantum theory to classical one: we
introduce h̄, then the operators Mµν have the dimension kg ·m2/sec, and since the
right-hand-sides of Eqs. (1) and (2) in this case contain an additional factor h̄, all
the commutation relations disappear in the formal limit h̄→ 0. Therefore in classical
theory the set S1 is empty and all the (α, β) pairs belong to S0. Since in quantum
theory there exist (α, β) pairs such that the operators Aα and Aβ do not commute
then in quantum theory the set S1 is not empty and, as follows from Statement,
classical theory is the special degenerate case of quantum one in the formal limit
h̄ → 0. Since in classical theory all operators commute with each other then in this
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theory operators are not needed and one can work only with physical quantities. A
question why h̄ is as is does not arise since the answer is: because people want to
measure angular momenta in kg ·m2/sec.

Consider now the relation between RT and NT. If we introduce the Lorentz
boost operators Lj = M0j (j = 1, 2, 3) then Eqs. (1) can be written as

[P 0, P j] = 0, [P j, P k] = 0, [J j, P 0] = 0, [J j, P k] = iεjklP
l,

[J j, Jk] = iεjklJ
l, [J j, Lk] = iεjklL

l, [Lj, P 0] = iP j (3)

[Lj, P k] = iδjkP
0, [Lj, Lk] = −iεjklJ l (4)

where j, k, l = 1, 2, 3, εjkl is the fully asymmetric tensor such that ε123 = 1, δjk is
the Kronecker symbol and a summation over repeated indices is assumed. If we now
define the energy and Galilei boost operators as E = P 0c and Gj = Lj/c (j = 1, 2, 3),
respectively then the new expressions in Eqs. (3) will have the same form while
instead of Eq. (4) we will have

[Gj, P k] = iδjkE/c
2, [Gj, Gk] = −iεjklJ l/c2 (5)

Note that in relativistic theory itself the quantity c is not needed. One
can choose c = 1 and treat velocities v as dimensionless quantities such that v ≤ 1 if
tachyons are not taken into account. One needs c only for transition from RT to NT:
when we introduce c then the dimension of velocities becomes m/s and instead of the
operators P 0 and Lj we work with the operators E and Gj, respectively. If M is the
Casimir operator for the Poincare algebra defined such that M2c4 = E2 −P2c2 then
in the formal limit c → ∞ the first expression in Eq. (5) becomes [Gj, P k] = iδjkM
while the commutators in the second expression become zero. Therefore in NT the
(α, β) pairs with α, β = 8, 9, 10 belong to S0 while in RT they belong to S1. Therefore,
as follows from Statement, NT is a special degenerate case of RT in the formal limit
c→∞. The question why c = 3 · 108m/s and not, say c = 7 · 109m/s does not arise
since the answer is: because people want to measure c in m/s.

In his famous paper ”Missed Opportunities” [7] Dyson notes that RT is
more fundamental than NT and dS and AdS theories are more fundamental than
RT not only from physical but also from pure mathematical considerations. Poincare
group is more symmetric than Galilei one and the transition from the former to the
latter at c → ∞ is called contraction. Analogously dS and AdS groups are more
symmetric than Poincare one and the transition from the former to the latter at
R → ∞ (described below) also is called contraction. At the same time, since dS
and AdS groups are semisimple they have a maximum possible symmetry and cannot
be obtained from more symmetric groups by contraction. However, since we treat
symmetry not from the point of view of a group of motion for the corresponding
background space but from the point of view of commutation relations in the sym-
metry algebra, we will discuss the relations between the dS and AdS algebra on one
hand and the Poincare algebra on the other.

By analogy with the definition of Poincare symmetry on quantum level,
the definition of dS symmetry on quantum level should not involve the fact that
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the dS group is the group of motions of dS space. Instead, the definition is that
the operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) describing the system under
consideration satisfy the commutation relations of the dS Lie algebra so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (6)

where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 =
−η44 = 1. The definition of AdS symmetry on quantum level is given by the same
equations but η44 = 1.

With such a definition of symmetry on quantum level, dS and AdS sym-
metries are more natural than Poincare symmetry. In the dS and AdS cases all the
ten representation operators of the symmetry algebra are angular momenta while in
the Poincare case only six of them are angular momenta and the remaining four op-
erators represent standard energy and momentum. If we define the operators P µ as
P µ = M4µ/R where R is a parameter with the dimension length then in the formal
limit when R → ∞, M4µ → ∞ but the quantities P µ are finite, Eqs. (6) become
Eqs. (1). This procedure is called contraction and in the given case it is the same for
the dS or AdS symmetry. As follows from Eqs. (1) and (6), if α, β = 1, 2, 3, 4 then
the (α, β) pairs belong to S0 in RT and to S1 in dS and AdS theories. Therefore,
as follows from Statement, RT is indeed a special degenerate case of dS and AdS
theories in the formal limit when R→∞.

One of the consequences is that the CC problem described in Sec. 1 does
not exist because its formulation is based on the incorrect assumption that RT is
more fundamental than dS and AdS theories. We will also see below that in classical
approximation R becomes the radius of dS space.

Note that the operators in Eq. (6) do not depend on R at all. This
quantity is needed only for transition from dS quantum theory to Poincare quantum
theory. In full analogy with the above discussion of quantities h̄ and c a question why
R is as is does not arise and the answer is: because people want to measure distances
in meters.

On classical level, dS space is usually treated as the four-dimensional hy-
persphere in the five-dimensional space such that

x21 + x22 + x23 + x24 − x20 = R
′2 (7)

where R′ is the radius of dS space and at this stage it is not clear whether or not
R′ coincide with R. Transformations from the dS group are usual and hyperbolic
rotations of this space. They can be parametrized by usual and hyperbolic angles
and do not depend on R′. In particular, if instead of xa we introduce the quantities
ξa = xa/R

′ then the dS space can be represented as a set of points

ξ21 + ξ22 + ξ23 + ξ24 − ξ20 = 1 (8)

Therefore in classical dS theory itself the quantity R′ is not needed at
all. It is needed only for transition from dS space to Minkowski one: we choose
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R′ in meters, then the curvature of this space is Λ = 3/R
′2 and a vicinity of the

point x4 = R′ or x4 = −R′ becomes Minkowski space in the formal limit R′ → ∞.
Analogous remarks are valid for the transition from AdS theory to Poincare one, and
in this case Λ = −3/R

′2.
We have proved that all the three discussed comparisons satisfy the con-

ditions formulated in Definition above. Namely, the more general theory contains
a finite parameter and the less general theory can be treated as a special degenerate
case of the former in the formal limit when the parameter goes to zero or infinity.
The more general theory can reproduce all results of the less general one by choosing
some value of the parameter. On the contrary, when the limit is already taken one
cannot return back from the less general theory to the more general one.

In Refs. [8, 9] we considered properties of dS quantum theory and gave
arguments that dS symmetry is more natural than Poincare one. However, the
above discussion proves that dS and AdS symmetries are not only more natural than
Poincare symmetry but more fundamental. In particular, R is fundamental to the
same extent as h̄ and c and therefore R must be finite.

In the literature the notion of the ch̄G cube of physical theories is some-
times used. The meaning is that any relativistic theory should contain c, any quantum
theory should contain h̄ and any gravitation theory should contain G. The more fun-
damental a theory is the greater number of those parameters it contains. In particular,
relativistic quantum theory of gravity is the most fundamental because it contains
all the three parameters c, h̄ and G while nonrelativistic classical theory without
gravitation is the least fundamental because it contains none of those parameters.

However, as noted in Sec. 1, since the nature of gravity is not clear yet,
the quantity G is not fundamental. As follows from the above discussion, the three
fundamental parameters are (c, h̄, R), and, in contrast to usual statements, the situa-
tion is the opposite: relativistic theory should not contain c, quantum theory should
not contain h̄ and dS or AdS theories should not contain R. Those three parameters
are needed only for transitions from more general theories to less general ones. The
most general dS and AdS quantum theories do not contain dimensionful quantities at
all while the least general nonrelativistic classical theory contains three dimensional
quantities (kg,m, s).

3 A system of two bodies in quantum dS theory

Since experimental data indicate that Λ > 0, in what follows we will consider only the
dS theory and will not consider the AdS one. Our next goal is to show that classical
equations of motions for a system of two free macroscopic bodies on dS space follow
from quantum dS quantum mechanics in semiclassical approximation. We will assume
that the distance between the bodies is much greater than the sizes of the bodies and
the bodies do not have anomalously large internal angular momenta. Then from the
formal point of view the motion of two bodies as a whole can be described by the
same formulas as the motion of two elementary particles with zero spin. We will
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follow technical results described in Refs. [8, 9].
In quantum dS theory elementary particles are described by irreducible

representations (IRs) of the dS algebra. As shown in Refs [8, 9], one can explicitly
construct IRs of the dS algebra describing elementary particles.

It is known that in Poincare theory any massive IR can be implemented
in the Hilbert space of functions χ(v) on the Lorenz 4-velocity hyperboloid with the
points v = (v0,v), v0 = (1+v2)1/2 such that

∫
|χ(v)|2dρ(v) <∞ and dρ(v) = d3v/v0

is the Lorenz invariant volume element. For positive energy IRs the value of energy is
E = mv0 where m is the particle mass defined as the positive square root (E2−P2)1/2.
Therefore for massive IRs, m > 0 by definition.

However, as shown by Mensky in his excellent book on induced represen-
tations [10], in contrast to Poincare theory, IRs in dS theory can be implemented only
on two Lorenz hyperboloids, i.e. the Hilbert space for such IRs consist of sets of two
functions (χ1(v), χ2(v)) such that∫

(|χ1(v)|2 + |χ2(v)|2)dρ(v) <∞

As shown in Refs. [8, 9], in Poincare limit one dS IR splits into two IRs of the Poincare
algebra with positive and negative energies and, as argued in those references, this
implies that one IR of the dS algebra describes a particle and its antiparticle simul-
taneously. Since in the present paper we do not deal with antiparticles and neglect
spin effects, we give only expressions for the action of the operators on the upper
hyperboloid in the case of zero spin [8, 9]:

J = l(v), L = −iv0
∂

∂v
, B = mdSv + i[

∂

∂v
+ v(v

∂

∂v
) +

3

2
v]

E = mdSv0 + iv0(v
∂

∂v
+

3

2
) (9)

where B = {M41,M42,M43}, l(v) = −iv × ∂/∂v, E = M40 and mdS is a positive
quantity.

This implementation of the IR is convenient for the transition to Poincare
limit. Indeed, the operators of the Lorenz algebra in Eq. (9) are the same as in
the IR of the Poincare algebra. Suppose that the limit of mdS/R when R → ∞
is finite and denote this limit as m. Then in the limit R → ∞ we get standard
expressions for the operators of the IR of the Poincare algebra where m is standard
mass, E = E/R = mv0 and P = B/R = mv. For this reason mdS has the meaning
of the dS mass. In contrast to m, mdS is dimensionless. Since Poincare symmetry is
a special case of dS one, mdS is more fundamental than m. Since Poincare symmetry
works with a high accuracy, the value of R is supposed to be very large.

Consider the non-relativistic approximation when |v| � 1. If we wish to
work with units where the dimension of velocity is meter/sec, we should replace v by
v/c. If p = mv then it is clear from the expression for B in Eq. (9) that p becomes
the real momentum P only in the limit R → ∞. At this stage we do not have
any coordinate space yet. However, if we assume that semiclassical approximation is
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valid, then, by analogy with standard quantum mechanics, we can define the position
operator r as i∂/∂p.

In classical approximation we can treat p and r as usual vectors. Then as
follows from Eq. (9)

P = p +mcr/R, H = p2/2m+ cpr/R, L = −mr (10)

where H = E−mc2 is the classical nonrelativistic Hamiltonian. As follows from these
expressions,

H(P, r) =
P2

2m
− mc2r2

2R2
(11)

The last term in Eq. (11) is the dS correction to the non-relativistic
Hamiltonian. It is interesting to note that the non-relativistic Hamiltonian depends
on c although it is usually believed that c can be present only in relativistic theory.
This illustrates the fact mentioned in the preceding section that the transition to
nonrelativistic theory understood as |v| � 1 is more physical than that understood
as c → ∞. The presence of c in Eq. (11) is a consequence of the fact that this
expression is written in standard units. In nonrelativistic theory c is usually treated
as a very large quantity. Nevertheless, the last term in Eq. (11) is not large since we
assume that R is very large.

As follows from Eq. (11) and the Hamilton equations, in dS theory a free
body moves with the acceleration given by

a = rc2/R2 (12)

where a and r are the acceleration and the radius vector of the particle, respectively.
Since R is very large, the acceleration is not negligible only at cosmological distances
when |r| is of the order of R.

Following our results in Refs. [8, 9], we now consider whether the result
(12) is compatible with GR. As noted in the preceding section, the dS space is a four-
dimensional manifold in the five-dimensional space defined by Eq. (7). In the formal
limit R′ →∞ the action of the dS group in a vicinity of the point (0, 0, 0, 0, x4 = R′)
becomes the action of the Poincare group on Minkowski space. With this parameter-
ization the metric tensor on dS space is

gµν = ηµν − xµxν/(R
′2 + xρx

ρ) (13)

where µ, ν, ρ = 0, 1, 2, 3, ηµν is the Minkowski metric tensor, and a summation over
repeated indices is assumed. It is easy to calculate the Christoffel symbols in the
approximation where all the components of the vector x are much less than R′:
Γµ,νρ = −xµηνρ/R

′2. Then a direct calculation shows that in the nonrelativistic
approximation the equation of motion for a single particle is the same as in Eq. (12)
if R′ = R.

Another way to show that Eq. (12) is compatible with GR follows. The
known result of GR is that if the metric is stationary and differs slightly from the
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Minkowskian one then in the nonrelativistic approximation the curved space-time can
be effectively described by a gravitational potential ϕ(r) = (g00(r)− 1)/2c2. We now
express x0 in Eq. (7) in terms of a new variable t as x0 = t + t3/6R

′2 − tx2/2R
′2.

Then the expression for the interval becomes

ds2 = dt2(1− r2/R
′2)− dr2 − (rdr/R′)2 (14)

Therefore, the metric becomes stationary and ϕ(r) = −r2/2R
′2 in agreement with

Eq. (12) if R′ = R.
We conclude that in classical limit the parameter R defining contraction

from quantum dS symmetry to quantum Poincare symmetry indeed equals the radius
of dS space.

Consider now a system of two free bodies in dS space. Let (ri, ai) (i = 1, 2)
be their radius vectors and accelerations, respectively. Then Eq. (12) is valid for each
particle if (r, a) is replaced by (ri, ai), respectively. Now if we define the relative
radius vector r = r1 − r2 and the relative acceleration a = a1 − a2 then they will
satisfy the same Eq. (12) which shows that the dS antigravity is repulsive.

Let us now consider a system of two free bodies in the framework of the
representation of the dS algebra. The particles are described by the variables Pj and
rj (j = 1, 2). Define standard nonrelativistic variables

P12 = P1 + P2, q = (m2P1 −m1P2)/(m1 +m2)

R12 = (m1r1 +m2r2)/(m1 +m2), r = r1 − r2 (15)

Then, as follows from Eq. (10), in the nonrelativistic approximation the two-particle
quantities P, E and L are given by

P = P12, E = M +
P2

12

2M
− Mc2R2

12

2R2
, L = −MR12 (16)

where

M = M(q, r) = m1 +m2 +Hnr(r,q), Hnr(r,q) =
q2

2m12

− m12c
2r2

2R2
(17)

and m12 is the reduced two-particle mass. Here the operator M acts in the space of
functions χ(q) such that

∫
|χ(q)|2d3q <∞ and r acts in this space as r = i∂/∂q.

It now follows from Eq. (9) that M has the meaning of the two-body
mass and therefore M(q, r) is the internal two-body Hamiltonian. Then, by analogy
with the derivation of Eq. (12), it can be shown from the Hamilton equations that in
semiclassical approximation the relative acceleration is given by the same expression
(12) but now a is the relative acceleration and r is the relative radius vector.

4 Discussion and conclusion

The fact that two free bodies have a relative acceleration is known for cosmologists
considering dS symmetry on classical level. This effect is called the dS antigravity.
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The term antigravity in this context means that the particles repulse rather than
attract each other. In the case of the dS antigravity the relative acceleration of two
free particles is proportional (not inversely proportional!) to the distance between
them. As shown above, this classical result is a direct consequence of GR.

At the same time, since GR is pure classical theory and quantum theory is
more general than classical one a problem arises whether the cosmological acceleration
can be obtained from quantum theory in semiclassical approximation. Following our
results in Refs. [8, 9], it is shown in the present paper that this is the case. The
result for the cosmological acceleration has been obtained without using dS space, its
metric, connection etc. This result is simply a consequence of standard dS quantum
mechanics of two free bodies and the calculation does not involve any geometry. The
fact that Λ 6= 0 is a consequence of dS symmetry on quantum level: since dS symmetry
is more general than Poincare one then R is finite, on classical level Λ = 3/R2 must
be nonzero, and the problem why Λ is as is does not arise. This has nothing to do
with gravity, existence or nonexistence of dark energy and with the problem whether
or not empty space-time should be necessarily flat.

Acknowledgement: I am grateful to Bernard Bakker for numerous impor-
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