Evaluating the effect of anti–cancer nano drugs dosage and reduced leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers under synchrotron radiation

Alireza Heidari1,2 and Ricardo Gobato1

1. Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2. State Secretariat for Education of Paraná, Laboratory of Biophysics and Molecular Modeling Genesis, Bela Vista do Paraiso, Paraná, Brazil

Leukemia is a cancer of the blood and bone marrow; there are many types of leukemia, depending on which type of white blood cell is involved. Treatment varies with the type and stage of disease. In fact, it is a blood cancer that begins in the marrow of our bones, the soft center where new blood cells grow [1-57]. If we have polycythemia vera, our marrow makes too many red blood cells, which causes our blood to get too thick. That can make us more likely to have clots, a stroke, or a heart attack. Treatment of leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers for optimum usage of anti–cancer Nano drugs dosage is one of the most important issues of sustainable development [58-111]. Therefore, the only available way to deal with the problem of treatment of leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers is optimum usage of anti–cancer Nano drugs dosage [112-212]. In this study, we evaluated the chemical changes of anti–cancer Nano drugs dosage in human blood and bone marrow cancers’ cells such as leukemia, a type of cancer found in our blood and bone marrow cancers is caused by the rapid production of abnormal white blood cells. The high number of abnormal white blood cells is not able to fight infection, and they impair the ability of the bone marrow cancers to produce red blood cells and platelets and determine the treatment trend of these changes. The average annual human blood and bone marrow cancers’ cells parameters were calculated, and then its quality at each section and its changes in time and place was studied based on existing standards and recommendations for treatment methods and techniques. Treatment quality was evaluated with the effect of leukemia and polycythemia vera level changes in the human blood and bone marrows’ samples of the study. The results showed that based on the reduction in leukemia and polycythemia vera levels in the most in the human blood and bone marrows’ samples particularly under synchrotron radiation, leukemia and polycythemia vera levels status in these samples have also decreased. In fact, other quality parameters of human cells have increased because of the reduction in leukemia and polycythemia vera levels has reached to the average state. Continuing increasing in leukemia and polycythemia vera levels can change these human blood and bone marrow cancer cells’ conditions to a critical point.

References

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us

Received: January 08, 2019; Accepted: January 17, 2019; Published: January 21, 2019
Heidari A (2019) Evaluating the effect of anti-cancer nano drugs dosage and reduced leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers under synchrotron radiation

111. Heidari A (2017) Vibrational Dechertz (diHz), Centhertz (cHz), Millihertz (miHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Atohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine, 7 (4), 335–340.

116. Heidari A (2017) Vibrational Dechertz (diHz), Centhertz (cHz), Millihertz (miHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Atohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Bioanal Chem, 2 (3): 41–46.
Heidari A (2019) Evaluating the effect of anti-cancer nano drugs dosage and reduced leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers under synchrotron radiation

Heidari A (2019) Evaluating the effect of anti-cancer nano drugs dosage and reduced leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers under synchrotron radiation

160. Ricardo Gobato, Alireza Heidari (2018) Cadaverine (1,5–Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1 (1): 4–11.

161. Alireza Heidari (2018) Uranocene (U(C$_2$H$_5$)$_2$) and Bis[(cycloocta-1,3,5-triene)iron (FeC$_3$H$_5$)$_2$], or Fe(COT)$_2$]-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1 (2): 1–16.

Heidari A (2019) Evaluating the effect of anti–cancer nano drugs dosage and reduced leukemia and polycythemia vera levels on trend of the human blood and bone marrow cancers under synchrotron radiation

