Collatz Conjecture Proof

Abstract. Collatz sequences are formed by applying the Collatz algorithm to any positive integer. If it is even repeatedly divide by two until it is odd, then multiply by three and add one to get an even number and vice versa. If the Collatz conjecture is true eventually you always get back to one. A connected Collatz Structure is created, which contains all positive integers exactly once. The terms of the Collatz Structure are joined together via the Collatz algorithm. Thus, every positive integer forms a Collatz sequence with unique terms terminating in the number one.

Introduction.

The Collatz Structure (displayed in the diagram below) consists of horizontal branches and vertical towers. Vertical arrows \(\downarrow \) represent descending Collatz towers, where each term is half the previous term. Horizontal arrows \(\leftarrow \) indicate the Collatz algorithm is applied to move from term to term in the branch.

To prove the Collatz Conjecture it is necessary to show that the Collatz Structure is connected (Section 7). Otherwise there could be circular or unending Collatz sequences. We need to show that every positive integer is in the Collatz Structure (Section 1) exactly once (Section 2). The heart of the proof is in Sections 3,4,5, where we develop the properties of the Collatz Structure. Section 6 discusses the relation between towers and branches.

Collatz Structure Branches and Towers \(\downarrow \) indicates a descending Collatz tower

<table>
<thead>
<tr>
<th>(\downarrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>160</td>
<td>53</td>
<td>106</td>
<td>35</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>128</td>
<td>42</td>
<td>80</td>
<td>64</td>
<td>21</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>64</td>
<td>26</td>
<td>52</td>
<td>17</td>
<td>34</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 1

Defining and populating the Collatz Structure

The Trunk Tower is the left-most tower, where each term is a power of two \(2^s \), \(s=0,1,2,3\ldots \). A Collatz sequence can begin anywhere within the Collatz Structure and eventually by applying the Collatz algorithm a \(2^s \) term in the Trunk Tower will be reached. From there we repeatedly divide by two until the base term \(1 \) is reached. Every Collatz sequence terminates at the Trunk Tower base term \(1 \).

Notice that every red tower base term is of the form \(24m+4, 24m+10 \), or \(24m+22 \). The rest of the red tower terms alternate between \(12k+8 \) terms \(20, 80 \) in blue and \(24k+16 \) terms \(40, 160 \) in brown.

We trace a red tower from its \(n\text{-th} \) term \(24k_n+16 \rightarrow 12k_n+8 \rightarrow 6k_n+4 = 24k_{n+1}+16 \) (\(k_n = 4k_{n+1}+2 \)) to its first term. \(24k_n+16 \rightarrow 12k_n+8 \rightarrow 6k_n+4 = 24k_{n+2}+16 \rightarrow 12k_{n+2}+8 \rightarrow 6k_{n+2}+4. \) (\(k_{n+2} = 4k_{n+1}+2 \))

If \(k_1=4m, 6k_1+4=24m+4 \). If \(k_1=4m+1, 6k_1+4=24m+10 \). If \(k_1=4m+3, 6k_1+4=24m+22 \). In a branch \(6k_1+4 \) is always the immediate successor of an odd term. \(2k_{n+1} \rightarrow 6k_{n+1}+4 \) is an even number that has a remainder of one when divided by three as are \(24m+4, \ 24m+10, \) and \(24m+22 \).

Note that all \(24k+16 \) terms, which are all divisible by eight are the last term in a branch. All the other even terms that appear in the middle of a branch \(24m+4 \rightarrow 12m+2 \) \((24j+2, m=2j), \ 24j+14, m=2j+1), \ 24m+10, \) or \(24m+22, \) are divisible by at most four or two. In appendix 1 we show there can be no more than two consecutive even terms in a branch. Since they are divisible by eight, \(24k+16 \) terms must appear at the end of a branch. We will show in section 5 that there are no unending branches.
Collatz Structure Branches and Towers ↓ indicates an ascending Collatz tower

<table>
<thead>
<tr>
<th>↓</th>
<th>↓</th>
<th>↓</th>
<th>↓</th>
<th>↓</th>
<th>↓</th>
<th>↓</th>
<th>↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>84</td>
<td>160</td>
<td>53</td>
<td>106</td>
<td>35</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>128</td>
<td>42</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>21</td>
<td>40</td>
<td>13</td>
<td>26</td>
<td>52</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **green** first terms in a branch are of the form $6j+3$. They all have a remainder of zero when divided by three. All other terms in a **green tower** are of the form $(2^s)(6j+3)$, $s=1,2,3…$

The successor of any odd term is an even term $2j+1 \rightarrow 6j+4$ that leaves a remainder of one when divided by three. Since no even term that leaves a remainder of one when divided by three appears above the $6j+3$ terms, no odd term can appear above a $6j+3$ term in a **green tower**. $6j+3$ terms can only appear at the beginning of a branch. $(2^s)(6j+3)$ equals $24k$, $24k+6$, $24k+12$, or $24k+18$.

- $24k \rightarrow 12k \rightarrow 6k \rightarrow 3k = 6j+3$ ($k = 2j+1$),
- $24k+6 \rightarrow 12k+3 = 6j+3$ ($j = 2k$),
- $24k+12 \rightarrow 12k+6 \rightarrow 6j+3$, ($j = k$),
- $24k+18 \rightarrow 12k+9 = 6j+3$ ($j = 2k+1$).

All terms in towers have been accounted for and $6j+3$ terms are at the beginning of a branch. We will prove in section 5 that all $24m+4$, $24m+10$, $24m+22$, $6j+1$ and $6j+5$ terms appear in the middle of a branch.

We have accounted for all terms in the Collatz Structure

- $24k$ **green tower**
- $24k+2$ successor of $24j+4$, $j=2k$
- $24k+4$ middle of a branch
- $24k+6$ **green tower**
- $24k+8$ **red tower** successor of $24j+16$, $j = 2k$
- $24k+10$ middle of a branch
- $24k+12$ **green tower**
- $24k+14$ successor of $24j+4$, $j=2k-1$
- $24k+16$ **red tower** end of a branch
- $24k+18$ **green tower**
- $24k+20$ **red tower** successor of $24j+16$, $j = 2k-1$
- $24k+22$ middle of a branch
- $6j + 1$ middle of a branch
- $6j + 3$ beginning of a branch
- $6j + 5$ middle of a branch

$24k_n+16 \rightarrow 12k_n+8 \rightarrow 24k_n+16 \rightarrow \ldots 24k+16 \rightarrow 12k+8 \rightarrow 24k+16 \rightarrow 6k+4 = 24m+s$, $s=4,10$, or 22. Every $24k+16$ term can be written as $4^j a$, $j = 1,2,3…$. $a = 24m+4$, $24m+10$, or $24m+22$, $m=0,1,2,3…$

The Collatz Structure starts with the **Trunk Tower**. Each $(4^j)(4)$, $j=1,2,3…$ Trunk Tower term is the last term in a branch. At every $a=24m+4$, $24m+10$, and $24m+22$ base term in the Trunk Tower branches is a $4^j a$, $j=1,2,3…$ secondary **red tower**. Each of these $4^j a$ terms in the secondary **red towers** is the last term in a branch. At every $a=24m+4$, $24m+10$, and $24m+22$ base term in these secondary branches is a $4^j a$ secondary **red tower**. Each $4^j a$ is the last term in a branch. This process is repeated indefinitely.
Section 2

Showing that every positive integer is in a branch or a tower exactly once.

Every $6j+3$ term is at the beginning of a branch, and every $24k+16$ term is the last term in a branch.

Multiplying each of $24m+4$, $24m+10$, and $24m+22$ by four gives a $24k+16$ *red tower* term so all $24m+4$, $24m+10$, and $24m+22$ terms are *red tower* bases.

As discussed above, all $12j+2$ ($24k+2$, $24k+14$) terms are in branches. In section 5 we will prove all $6j+1$, and $6j+5$ are in branches. All $(2^i)(6j+3)$ $24k$, $24k+6$, $24k+12$, and $24k+18$ terms appear above $6j+3$ terms in *green towers*. Since all $24j+16$ are in *red towers* (as well as being the last term in a branch), all $12j+8$ ($24k+8$, $24k+20$) terms are in *red towers*.

There can be no duplicate terms in a branch. All the predecessors of a duplicate pair of terms would be duplicates. This would require $24h+3$, $24h+9$, or $24h+15$ to be a duplicate term, and those terms only appear at the beginning of a branch. $24h+21$ have a $24(3h+2)+16$ term as an immediate successor without duplicates. There can be no duplicates in a tower. They are strictly increasing sequences. Since they all start with a different base, no duplicates can appear in different towers. Finally, no duplicate terms can appear in different branches. From the second term forward until the last term is reached all terms in branches have unique predecessors and successors.

Thus, if it is connected, all positive integers appear in the Collatz Structure exactly once. We will use the concept of a branch “*binary series*” to show that the Collatz Structure is connected, and that every branch has a beginning $6j+3$ term and an ending $24k+16$ term, and every $6j+1$ and $6j+5$ term is in the middle of a branch.

Section 3

Defining the “*binary series*” of a branch.

The $6n+3$ branch first terms are sub-divided into four types: $24h+3$, $24h+9$, $24h+15$ and $24h+21$, $h \geq 0$. A branch *binary series* counts the number of divisions by two on its *red tower* base terms: $24m+4$ (2), $24m+10$ (1), and $24m+22$ (1). The binary series will be used to show that there are no unending branches. Only $24h+3$, $24h+9$, and $24h+15$ first terms appear in branches with binary series. These three groups of branches are characterized by their first term $24h+3$, $24h+9$ or $24h+15$ and a binary series of 1’s and 2’s (see 2,1,1,2 below) counting the divisions by two on their *red tower* base terms $24m+4$ (2), $24m+10$ (1), or $24m+22$ (1) and a last term $24k+16$. The length r of its binary series is the number of *red tower* base terms in a branch. If the sum of r ’s and 2’s in the binary series is s, there are three groups of branches with each branch in a group having the same binary series.

The first terms are:

- $24h+3+(p-1)(24)(2^0)$,
- $24h+9+(p-1)(24)(2^0)$
- $24h+15+(p-1)(24)(2^0)$, $p=1,2,3…2^r-h \geq 0$.

Each individual value of h is part of a different group with the same binary series.

All groups end with $24k+16+(p-1)(24)(3^{s+1})$, $3^{s+1} > k \geq 0$, $r \geq 0$, $p=1,2,3…$.

$24h+21$ has no binary series. However, there are branches that begin with $24h+21$ followed immediately by the branch last term $(24)(3h+2)+16$, $h \geq 0$.

Using the formula $24h+9+(p-1)(24)(2^0)$, with $p=0,1,2$ and $s=6$. We have 3 branches with the binary series $(2,1,1,2)$ counting divisions by two on their *red tower* base terms $24m+4$ (2), $24m+10$ (1), and $24m+22$ (1).

The first branch is $9, 28(2), 14, 7, 22(1), 11, 34(1), 17, 52(2), 26, 13, 40$.

The second branch is $1545, 4636(2), 2318, 1159, 3478(1), 1739, 5218(1), 2609, 7828(2), 3914 1957, 5872$.

The third branch is $3081, 9244(2), 4622, 2311, 6934(1), 3467, 10402(1), 5201, 15604(2), 7802, 3901, 11704$.

The sum of this binary series is six. These are a series of branches whose first terms differ by $(24)(2^0)=1536$. The first term sequence is $9+(p-1)(24)(2^0)$ 9, 1545, 3081… The last terms differ by $(24)(3^5)=5832$.$\text{The last term sequence is 40+(p-1)(24)(3^5) 40, 5872, 11704…}$
Section 4

Proving the formula for branches with the same binary series.

Let r be the length of the binary series. If the sum of r 1’s and 2’s in a $24h+9$ binary series is s,

The first terms are: $24h+9+(p-1)(24)(2^r)$.

All groups end with $24k+16+(p-1)(24)(3^{r+1})$, $p=1,2,3…k \geq 0$.

We have two branches with the binary series $(2,1,1,2)$ counting divisions by two on their red tower base terms $24m+4$ (2), $24m+10$ (1), and $24m+22$ (1).

The first branch is 9, $28(2)$, 14, 7, $22(1)$, 11, $34(1)$, 17, $52(2)$, 26, 13, 40.

The second branch is 1545, $4636(2)$, 2318, 1159, $3478(1)$, 1739, $5218(1)$, 2609, $7828(2)$, 3914 1957, 5872.

Start with the first branch $24h+9$ (9) term, and second branch $24h+9+(p)(24)(2^r)(9+(24)(2^r)=1545)$ term.

Multiplying by three and adding one $(2j+1 \rightarrow 6j+4)$ gives two terms that differ by $(p)(24)(2^r)(3)$.

$72h+28$ (28) and $72h+28+(p)(24)(2^r)(3)$. $(28+(24)(2^r)=4636)$.

A total of $r+1$ applications of $2j+1 \rightarrow 6j+4$ to $24h+9$, and its odd successors $(r+1=5$ applications of $2j+1 \rightarrow 6j+4$ to 9, and its green odd successors), and successor terms by two on $72h+28$ and its even successors ($s=6$ $(2)+(1)+(1)+(2)$ divisions by two on 28, and its red even successors), which cause $24k+16$ (40) term to appear, are mirrored in $24h+9+(p)(24)(2^r)$ and its odd successors $(9+(2^r)(24)=1545$ and its green odd successors), and $72h+28+(p)(24)(2^r)(3)$ and its even successors $(28+(24)(2^r)(3)=4636$ and its red even successors), so that a $24k+16+(p)(24)(3^{r+1})$ $(40+(24)(3^r)=5872)$ term appears.

The same proof holds for groups with the first terms $24h+3+(p-1)(24)(2^r)$, and $24h+15+(p-1)(24)(2^r)$.

Section 5

Showing there are no unending branches or unending branch segments.

A branch segment has a first term of the form $24h+1$, $24h+7$, $24h+13$, $24h+19$, $24h+5$, $24h+11$, $24h+17$, or $24h+23$ and a $24k+16$ last term.

Section 5.1 $24k+16$ are the last terms of branches with binary series of every combination of 1’s and 2’s for every value of r.

Put all $24k+16$ terms in a sequence $24k+16$, $k=0,1,2,3…$.

Theorem 5.1: The proportion of $24k+16$ terms in branches with a binary series of length $r \geq 0$ is $2^r/3^{r+1}$.

Lemma 5.1.1: The proportion of $24k+16$ terms in branches without a binary series is $1/3$.

A branch with no binary series has the form: $24h+21 \rightarrow 72h+64 = 24(3h+2)+16$.

$24(3h+2)+16$, $h=0,1,2,3…24(2)+16$, $24(5)+16$, $24(8)+16$ $2,5,8…$ is $1/3$ of the terms in the sequence $24k+16$, $k=0,1,2,3…$.

Lemma 5.1.2: The proportion of all $24k+16$ terms with the same binary series of length r is $1/3^{r+1}$ of the terms in the sequence.

The formula for the last term in a group of branches with the same binary series of length r is $24k+16+(p-1)(24)(3^{r+1}) p=1,2,3…0 \leq k < 3^{r+1}$. They comprise $1/3^{r+1}$ of the terms in the $24k+16$ sequence.

By lemma 5.1.2 The proportion of all $24k+16$ terms with the same binary series of length r is $1/3^{r+1}$ of the terms in the sequence. Assume there are 2^r different binary series of length r. The proportion of $24k+16$ terms in branches with a binary series of length r would be $2^r/3^{r+1}$.
By lemma 5.1.1 the proportion for length 0 is $2^0/3^{0+1}=1/3$. The total proportion of all $24k+16$ terms is one.

Summing the geometric series of proportions $2^r/3^{r+1}$ for $r=0,1,2,3,...$ gives $(1/3)(1 – 2/3) = 1/3$.

This accounts for all terms in the sequence $24k+16, k=0,1,2,3...$ Thus, the proportion of $24k+16$ terms in branches with a binary series of length $r+1$ is $(2/3)(2/3^{r+1})=2^{r+1}/3^{r+2}$, there are 2^{r+1} different binary series of length $r+1$. The proportion of $24k+16$ terms in branches with a binary series of length r is $2^r/3^{r+1}$.

There are branches with $24k+16$ last terms with binary series of every combination of 1’s and 2’s for every value of r.

Section 5.2 $24h+3$, $24h+9$, and $24h+15$ are the first terms of branches with binary series of every combination of 1’s and 2’s for every value of r.

There are three groups of branches whose binary series sums to s:

$$24h+3+(p-1)(24)(2^r),$$
$$24h+9+(p-1)(24)(2^r)$$
$$24h+15+(p-1)(24)(2^r), p=1,2,3... 0 ≤ h < 2^r.$$

If all $24h+3$, $24h+9$, and $24h+15$ $h=0,1,2,3,...$ terms are put in three separate ascending sequences, terms with the same binary series occur every 2^r terms: $1/2^r$ proportion of the sequence terms. We show by induction arguments that each of $24h+3$, $24h+9$, and $24h+15$ have formulas for the proportion of terms that are in branches with a binary series of length r. We show that collectively all $24h+3$, $24h+9$, and $24h+15$ terms are in branches with binary series of every combination of 1’s and 2’s for every value of r.

Theorem 5.2.1: The proportion of $24h+3$ terms in branches with a binary series of length $r ≥ 2$ is $3^{r-2}/2^{2r-1}$.

Lemma 5.2.1.1: The first two $24h+3$ binary series are (1) if $h=2$ and $(1,2)$ if $h=3$.

$24h+3→72h+10→36h+5→108h+16.$
For $h=2$, $51→154(1)→77→232=24(9)+16.$
For $h=3$, $75→226(1)→113→340=24(10)+16$

For $r=2$, $3^{r-2}/2^{2r-1} = 1/2^3$. By Lemma 5.2.1.1 The binary series for $r=2$ is $(1,2) = 1/2^3$.

Assume the proportion of $24h+3$ terms in branches with a binary series of length $r ≥ 2$ is $3^{r-2}/2^{2r-1}$.

The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two. This increases the distance between $24h+3$ terms with the same binary series by a factor of 2 for (1) and 2^2 for (2), decreasing the proportion by a factor of $1/2$ for (1) and $1/2^2$ for (2).

The proportion of $24h+3$ terms of binary series length $r+1$ is $(1/2)(3^{r-2}/2^{2r-1})+(1/2^2)(3^{r-2}/2^{2r-1}) = (3/4)(3^{r-2}/2^{2r-1}) = 3^{r-1}/2^{2r+1}$.

Starting with $1/2$ for length one and summing the geometric series $3^{r-2}/2^{2r-1}$ for length $r = 2,3,4,...$ gives

$$1/2+1/8+3/32+9/128+... = 1/2+(1/8)/(1-3/4)=1.$$

That accounts for all terms in the sequence $24h+3, h=0,1,2,3,...$

The first two $24h+3$ binary series are (1) for h even and $(1,2)$ if $h=3,11,19,...$

All other binary series with h odd begin with $(1,2,...)$.

Theorem 5.2.2: The proportion of $24h+9$ terms in branches with a binary series of length $r ≥ 1$ is $3^{r-1}/2^{2r}$.

Lemma 5.2.2.1: For $h=3$ the $24h+9$ branch binary series binary series is (2).

$24h+9→72h+28→18h+7→54h+22.$
For $h=3$, $81→244(2)→61→184=24(7)+16$.

For $r=1$, $3^{r-1}/2^{2r} = 1/2^2$. By Lemma 5.2.2.1 The binary series for $r=1$ is $(2) = 1/2^2$.

[5]
Assume the proportion of \(24h+9 \) terms in branches with a binary series of length \(r \geq 1 \) is \(3^{r-1}/2^{2r} \).

The proportion of \(24h+9 \) terms of binary series length \(r+1 \) is

\[
(1/2)(3^{r-1}/2^{2r})+1/2(3^{r+1}/2^{2r}) = (3/4)(3^{r-1}/2^{2r}) = 3^{r-1}/2^{2(r+1)}.
\]

Summing the geometric series \(3^{r-1}/2^{2r} \) for length \(r = 1, 2, 3, \ldots \) gives \(1/4+3/16+9/64+\ldots = (1/4)/(1-3/4)=1. \)

That accounts for all terms in the sequence \(24h+9 \) \(h=0,1,2,3,\ldots \).

For \(h=3,7,11,\ldots \) the \(24h+9 \) branch binary series binary series is (2).

All other binary series begin with (2,\ldots).

Theorem 5.2.3: The proportion of \(24h+15 \) terms in branches with a binary series of length \(r \geq 2 \) is \(3^{r-2}/2^{2r-2} \).

Lemma 5.2.3.1: For \(h=3 \) the \(24h+15 \) branch binary series binary series is (1,1).

\[
24h+15 \rightarrow 72h+46 \rightarrow 36h+23 \rightarrow 108h+70 \rightarrow 54h+35 \rightarrow 162h+106.
\]

\[
87 \rightarrow 262(1) \rightarrow 131 \rightarrow 394(1) \rightarrow 197 \rightarrow 592=24(24)=16.
\]

For \(r=2, 3^{r-2}/2^{2r-2} = 1/2^2 \). By Lemma 5.2.3.1 The binary series for \(r=2 \) is (1,1) = \(1/2^2 \).

Assume the proportion of \(24h+15 \) terms in branches with a binary series of length \(r \geq 2 \) is \(3^{r-2}/2^{2r-2} \).

The proportion of \(24h+15 \) terms of binary series length \(r+1 \) is

\[
(1/2)(3^{r-2}/2^{2r-2})+1/2(3^{r+2}/2^{2r-2}) = (3/4)(3^{r-2}/2^{2r-2}) = 3^{r-2}/2^{2(r+1)-2}.
\]

Summing the geometric series \(3^{r-2}/2^{2r-2} \) for length \(r = 2, 3, 4, \ldots \) gives \(1/4+3/16+9/64+\ldots = (1/4)/(1-3/4)=1. \)

That accounts for all terms in the sequence \(24h+15 \) \(h=0,1,2,3,\ldots \).

For \(h=3,7,11,\ldots \) the \(24h+15 \) branch binary series binary series is (1,1).

All other binary series begin with (1,1,\ldots).

Collectively all \(24h+3, 24h+9, \) and \(24h+15 \) are first terms in branches with binary series of all \(2^r \) combinations of \(1 \)'s and \(2 \)'s for every value of \(r \). All \(24h+16 \) are last terms in branches with binary series of all \(2^r \) combinations of \(1 \)'s and \(2 \)'s for every value of \(r \). Thus, there are no unending branches.

Section 5.3 \(24h+1, 24h+7, \) and \(24h+19 \) are the first terms of branch segments with binary series of every combination of \(1 \)'s and \(2 \)'s for every value of \(r \).

A branch segment with no binary series has the form: \(24h+13 \rightarrow 72h+40 = 24(3h+1)+16. \)

There are three groups of branches whose binary series sums to \(s \):

\[
24h+1+(p-1)(24)(2^r),
24h+7+(p-1)(24)(2^r)
24h+19+(p-1)(24)(2^r), p=1,2,3 \ldots 0 \leq h < 2^r.
\]

If all \(24h+1, 24h+7, \) and \(24h+19 \) terms are put in three separate ascending sequences, terms with the same binary series occur every \(2^r \) terms: \(1/2^r \) proportion of the sequence terms. We show by induction arguments that each of \(24h+1, 24h+7, \) and \(24h+19 \) have formulas using length \(r \) for the proportion of terms that are in branches with a binary series of length \(r \). We show that collectively all \(24h+1, 24h+7, \) and \(24h+19 \) terms are in branches with binary series of every combination of \(1 \)'s and \(2 \)'s for every value of \(r \).

Theorem 5.3.1: The proportion of \(24h+19 \) terms in branches with a binary series length \(r \geq 2 \) is \(3^{r-2}/2^{2r-1} \).

Lemma 5.3.1.1: The first two \(24h+19 \) binary series are (1) if \(h=2 \) and (1,2) if \(h=5. \)

\[
24h+19 \rightarrow 72h+58 \rightarrow 36h+29 \rightarrow 108h+88.
\]

For \(h=2, 67 \rightarrow 202(1) \rightarrow 101 \rightarrow 304=24(12)+16 \)

For \(h=5, 139 \rightarrow 418(1) \rightarrow 209 \rightarrow 628(2) \rightarrow 157 \rightarrow 472=24(19)+16 \)

For \(r=2, 3^{r-2}/2^{2r-1} = 1/2^3 \). By Lemma 5.3.1.1 The binary series for \(r=2 \) is (1,2) = \(1/2^3 \).
Assume the proportion of $24h+19$ terms in branches with a binary series of length $r \geq 2$ is $3^{r-2}/2^{2r-1}$.
The total proportion of all $24h+19$ terms is one.
Starting with $1/2$ for length one and summing the geometric series of proportion $3^{r-2}/2^{2r-1}$ for length $r = 2, 3, 4, \ldots$ gives
$$1/2+1/8+3/32+9/128+\ldots = 1/2+(1/8)/(1-3/4)=1.$$
The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two.
The proportion of $24h+19$ terms of binary series length $r+1$ is
$$(1/2)(3^{r-2}/2^{2r-1})+(1/2)(3^{r-2}/2^{2r-1}) = (3/4)(3^{r-2}/2^{2r-1}) = 3^{r-1}/2^{2(r+1)-1}.$$

The first two $24h+19$ binary series are (1) for h even and (1,2) if $h=5,13,21,\ldots$
All other binary series with h odd begin with (1,2,\ldots).

Theorem 5.3.2: The proportion of $24h+1$ terms in branches with a binary series of length $r \geq 1$ is $3^{r-1}/2^r$.

Lemma 5.3.2.1: For $h=2$ the $24h+1$ branch binary series binary series is (2).

$$24h+1 \rightarrow 72h+4 \rightarrow 18h+1 \rightarrow 54h+4.$$
For $h=2$, 49 \rightarrow 148(2) \rightarrow 37 \rightarrow 112 $= 24(4)+16.$

For $r=1$, $3^{r-1}/2^r = 1/2^2$. By Lemma 5.3.2.1 The binary series for $r=1$ is (2) = $1/2^2$.
Assume the proportion of $24h+1$ terms in branches with a binary series of length $r \geq 1$ is $3^{r-1}/2^r$.
The total proportion of all $24h+1$ terms is one.
Summing the geometric series $3^{r-1}/2^r$ for length $r = 1, 2, 3, \ldots$ gives
$$1/4+3/16+9/64+\ldots = (1/4)/(1-3/4)=1.$$
The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two.
The proportion of $24h+1$ terms of binary series length $r+1$ is
$$(1/2)(3^{r-1}/2^r)+(1/2)(3^{r-1}/2^r) = (3/4)(3^{r-1}/2^r) = 3^{r-1}/2^{2(r+1)}. $$

For $h=2,6,10,\ldots$ the $24h+1$ branch binary series binary series is (2).
All other binary series begin with (2,\ldots).

Theorem 5.3.3: The proportion of $24h+7$ terms in branches with a binary series of length $r \geq 2$ is $3^{r-2}/2^{2r-2}$.

Lemma 5.3.3.1: For $h=2$ the $24h+7$ branch binary series binary series is (1,1).

$$24h+7 \rightarrow 72h+22 \rightarrow 36h+11 \rightarrow 108h+34 \rightarrow 54h+17 \rightarrow 108h+52.$$

55 \rightarrow 166(1) \rightarrow 83 \rightarrow 250(1) \rightarrow 125 \rightarrow 376 $= 24(15)+16.$

For $r=2$, $3^{r-2}/2^{2r-2} = 1/2^2$. By Lemma 5.3.3.1 The binary series for $r=2$ is (1,1) = $1/2^2$.
Assume the proportion of $24h+7$ terms in branches with a binary series of length $r \geq 2$ is $3^{r-2}/2^{2r-2}$.
The total proportion of all $24h+7$ terms is one.
Summing the geometric series $3^{r-2}/2^{2r-2}$ for length $r = 2, 3, 4, \ldots$ gives
$$1/4+3/16+9/64+\ldots = (1/4)/(1-3/4)=1.$$
The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two.
The proportion of $24h+7$ terms of binary series length $r+1$ is
$$(1/2)(3^{r-2}/2^{2r-2})+(1/2)(3^{r-2}/2^{2r-2}) = (3/4)(3^{r-2}/2^{2r-2}) = 3^{r-1}/2^{2(r+1)}. $$

For $h=2,6,10,\ldots$ the $24h+7$ branch binary series binary series is (1,1).
All other binary series begin with (1,1,\ldots).
Collectively all $24h+1$, $24h+7$, and $24h+19$ are first terms in branches with binary series of all 2^r combinations of 1’s and 2’s for every value of r. There are no unending $24h+1$, $24h+7$, or $24h+19$ branch segments.

Section 5.4 $24h+11$, $24h+17$, and $24h+23$ are the first terms of branch segments with binary series of every combination of 1’s and 2’s for every value of r.

A branch segment with no binary series has the form: $24h+5 \rightarrow 72h+16 = 24(3h)+16$.

There are three groups of branches whose binary series sums to s:

$$24h+11+(p-1)(24)(2^r),$$
$$24h+17+(p-1)(24)(2^r),$$
$$24h+23+(p-1)(24)(2^r), \ p=1,2,3 \ldots 0 \leq h < 2^r.$$

If all $24h+11$, $24h+17$, and $24h+23$ terms are put in three separate ascending sequences, terms with the same binary series are in branches with a binary series of length r. We show by induction arguments that each of $24h+11$, $24h+17$, and $24h+23$ have formulas using length r for the proportion of terms that are in branches with a binary series of length r. We show that collectively all $24h+11$, $24h+17$, and $24h+23$ terms are in branches with binary series of every combination of 1’s and 2’s for every value of r.

Theorem 5.4.1: The proportion of $24h+19$ terms in branches with a binary series length $r \geq 2$ is $3^{r-2}/2^{2r-1}$.

Lemma 5.4.1.1: The first two $24h+11$ binary series are (1) if $h=1$ and $(1,2)$ if $h=8$.

$$24h+11 \rightarrow 72h+34 \rightarrow 36h+17 \rightarrow 108h+52.$$
For $h=1$, $35 \rightarrow 106(1) \rightarrow 53 \rightarrow 160=24(6)+16$
For $h=8$, $203 \rightarrow 610(1) \rightarrow 305 \rightarrow 916(2) \rightarrow 229 \rightarrow 688=24(28)+16$

For $r=2$, $3^{r-2}/2^{2r-1} = 1/2^3$. By Lemma 5.4.1.1 The binary series for $r=2$ is $(1,2) = 1/2^3$.

Assume the proportion of $24h+11$ terms in branches with a binary series of length $r \geq 2$ is $3^{r-2}/2^{2r-1}$.

The total proportion of all $24h+11$ terms is one.

Starting with $1/2$ for length one and summing the geometric series $3^{r-2}/2^{2r-1}$ for length $r = 2,3,4,...$ gives

$$1/2+1/8+3/32+9/128+... = 1/2+(1/8)/(1-3/4)=1.$$
The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two.

The proportion of $24h+11$ terms of binary series length $r+1$ is

$$(1/2)(3^{r-2}/2^{2r-1})+(1/2^3)(3^{r-2}/2^{2r-1}) = (3/4)(3^{r-2}/2^{2r-1}) = 3^{r-1}/2^{2r+1}.$$

The first two $24h+11$ binary series are (1) for $h=1,3,5,...$ and $(1,2)$ if $h=8,16,24,...$

All other binary series with h even begin with $(1,2,...)$.

Theorem 5.4.2: The proportion of $24h+17$ terms in branches with a binary series of length $r \geq 1$ is $3^{r-1}/2^{2r}$.

Lemma 5.4.2.1: For $h=4$ the $24h+17$ branch binary series binary series is (2).

$$24h+17 \rightarrow 72h+52 \rightarrow 18h+13 \rightarrow 54h+40.$$
For $h=4$, $113 \rightarrow 340(2) \rightarrow 85 \rightarrow 256=24(10)+16.$

For $r=1$, $3^{r-1}/2^{2r} = 1/2^2$. By Lemma 5.4.2.1 The binary series for $r=1$ is $(2) = 1/2^2$.

Assume the proportion of $24h+17$ terms in branches with a binary series of length $r \geq 1$ is $3^{r-1}/2^{2r}$.

The total proportion of all $24h+17$ terms is one.

Summing the geometric series $3^{r-1}/2^{2r}$ for length $r = 1,2,3,...$ gives

$$1/4+3/16+9/64+... = (1/4)/(1-3/4)=1.$$
The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two.

[8]
The proportion of $24h+17$ terms of binary series length $r+1$ is

$$(1/2)(3^{-1}/2r^2)+(1/2)(3^{1-r}/2r^2) = (3/4)(3^{1-r}/2r^2) = 3^r/2^{(r+1)}.$$***

For $h=4,8,12,\ldots$ the $24h+17$ branch binary series binary series is (2).

All other binary series begin with (2,\ldots).

Theorem 5.4.3: The proportion of $24h+23$ terms in branches with a binary series of length $r \geq 2$ is $3^{r-2}/2^{2r-2}$.

Lemma 5.4.3.1: For $h=4$ the $24h+23$ branch binary series binary series is (1,1).

$$24h+23 \rightarrow 72h+70 \rightarrow 36h+35 \rightarrow 108h+106 \rightarrow 54h+53 \rightarrow 108h+160.$$

For $r=2, 3^{r-2}/2^{2r-2}=1/2^2$. By Lemma 5.4.3.1 The binary series for $r=2$ is (1,1) = 1/2^2.

Assume the proportion of $24h+23$ terms in branches with a binary series of length $r \geq 2$ is $3^{r-2}/2^{2r-2}$.

The total proportion of all $24h+17$ terms is one.

Summing the geometric series $3^{r-2}/2^{2r-2}$ for length $r=2,3,4,\ldots$ gives

$$1/4+3/16+9/64+\ldots = (1/4)/(1-3/4)=1.$$

The $r+1$ position of every binary series of that length contains either (1) one or (2) two divisions by two.

The proportion of $24h+23$ terms of binary series length $r+1$ is

$$(1/2)(3^{r-2}/2^{2r-2})+(1/2^2)(3^{1-r}/2^{2r-2}) = (3/4)(3^{1-r}/2^{2r-2}) = 3^r/2^{(r+1)}.$$***

For $h=4,8,12,\ldots$ the $24h+23$ branch binary series binary series is (1,1).

All other binary series begin with (1,1,\ldots).

Collectively all $24h+11$, $24h+17$, and $24h+23$ are first terms in branches with binary series of all 2^r combinations of 1's and 2's for every value of r. There are no unending $24h+11$, $24h+17$, or $24h+23$ branch segments.

Thus, all odd terms and all $(2n+1 \rightarrow 6n+4)$ $24m+4$ ($n = 4m$), $24m+10$ ($n = 4m+1$), $24m+16$ ($n = 4m+2$), and $24m+22$ ($n = 4m+3$) are in branches.

Section 6

The repeating binary series structure of towers.

Within a tower if the sum of r 1's and 2's in the binary series of a branch is s, there are three groups of branches having the same binary series.

The first begins with

$$24h+3+(2^r)(24k+16)(4^{(s)(p-1)}-1)/3^{r+1}, h=0,1,2,3,\ldots, x=3^{r+1}, p=1,2,3,\ldots$$

and ends with

$$(24k+16)(4^{(s)(p-1)}), k=0,1,2,3,\ldots, x=3^{r+1}, p=1,2,3,\ldots$$

The other two groups that begin with $24h+9$... and $24h+15$... have the same form as $24h+3$...

$r+1$ applications of $2j+1 \rightarrow 6j+4$ applied to $24h+3$ and its odd successors

and applied to $(2^r)(24k+16)(4^{(s)(p-1)}-1)/3^{r+1}$

and s divisions by two applied to $72h+10$ and its even successors

and applied to $(2^r)(24k+16)(4^{(s)(p-1)}-1)/3^{r}$ gives

$$(24k+16)+(24k+16)(4^{(s)(p-1)}-1) = (24k+16)(4^{(s)(p-1)}).$$

A branch with no binary series starts with $24h+21+(24)(3h+2)+16(4^{(s)(p-1)}-1)/3$

and ends with $((24)(3h+2)+16)(4^{(s)(p-1)})$.

[9]
Link between the formulas for branch and tower first terms.

For some t, $24h+3+(t-1)(24)' = 24h+3+(2^t)(24k+16)(4^p(p-1) – 1) / 3^{r+1}$.

For $x = 3^{r+1}$ every power of three in $4^p(p-1) – 1 = (3+1)^{(p-1)} – 1$ has a coefficient divisible by 3^{r+1}.

$(24k+16)(4^p(p-1) – 1) / 3^{r+1}$ is a multiple of 24. The same is true for the forms beginning with $24h+9…$, $24h+15…$, and $24h+21…$. Each tower’s branch binary series structure is a microcosm of the total branch binary series structure, $4^p(p-1) = 3^{r+1}$ replaces 3^{r+1}. In each case the last terms of tower branches with the same binary series occur in intervals of 3^{r+1}. $2^r/3^{r+1}$ is the proportion of the 2^r last terms of tower branches with a binary series of length r.

For length $r \geq 0$ $1/3 + 2/9 + 4/27… = 1$ is the total proportion.

There are tower branches with binary series of all 2^r combinations of r 1’s and 2’s for every value of r. The first branch with a binary series of length r comes within the first 3^{r+1} branches in the tower.

Section 7

The Collatz Structure containing all positive integers is a connected structure. There are no circular or unending Collatz sequences.

To prove this we need to define a new item that is a part of all Collatz sequences. An L_a begins with a $24k+16$ 424 term in a secondary tower. The Collatz algorithm is applied until the red tower base term appears 106. The Collatz algorithm is applied to the branch segment until a $24k+16$ term appears (in an adjoining tower) 160. Thus we have an L_a. It has an L shape and joins two $24k+16$ terms both divisable by eight. The adjoining L_a begins with 106. The Collatz algorithm is applied until a red tower base term 10 appears. The Collatz algorithm is applied to the branch segment until a $24k+16$ term appears (in an adjoining tower) 16. We have reached the Trunk Tower. The process stops.

\[
\begin{align*}
424 \\
212 \\
160 \leftarrow 53 \leftarrow 106 (I) \\
80 \\
40 \\
20 \\
16 \leftarrow 5 \leftarrow 10 (I)
\end{align*}
\]

A chain of adjoining L_a moves through Collatz Structure until reaching a $24k+16$ Trunk Tower term. An L_a chain binary series is built from the number of divisions by two on all the red tower base terms in the L_a chain. The above L_a chain has a binary series of $(1,1)$. The usage factor for the L_a chain binary series is calculated by inverting the powers of two in the even factors of the red tower base terms. We will prove by induction that the usage factor of all L_a chains with a binary series of length r is $3^r/4^r$. The binary series of an L_a chain with one tower base term is 1, or 2. The usage factor is $1/2^1 + 1/2^2 = 3/4$ verifying for $r = 1$. If the length r usage factor is $3^r/4^r$, the length $r+1$ usage factor is $(1/2)(3^r/4^r) + 1/4(3^r/4^r) = 3^{r+1}/4^{r+1}$.

Every $24m+4$, $24m+10$, and $24m+22$ red tower base term in an L_a chain is in a branch with a first term of $24h+3$, $24h+9$, or $24h+15$. The sum of the geometric series of the L_a chain binary series is $3/4 + 9/16 + 27/64 + … = (3/4)/(1 – 3/4) = 3$. This equals the total proportion of $24h+3$, $24h+9$, and $24h+15$ terms in branches. This total proportion is the sum of three geometric series, which are based on the powers of two of even factors in red tower base terms. The equality between the total proportion of $24h+3$, $24h+9$, and $24h+15$ terms in branches and the L_a chain usage factor shows that every $24j+4$, $24j+10$, and $24j+22$ tower base term in all $24h+3$, $24h+9$, and $24h+15$ branches appears in an L_a chain.

Since every L_a chain ends in a Trunk Tower term, no L_a chain can be part of a circular or unending Collatz sequence. Since all $24h+3$, $24h+9$, and $24h+15$ branches are part of some L_a chain, the Collatz Structure containing all positive integers is a connected structure. Thus, every positive integer forms a Collatz sequence with unique terms terminating in the number one.
Appendix 1. A branch cannot have more than two consecutive even terms, and only the even terms 24m+4, 24m+10, 24m+16, or 24m+22 are the immediate successors of odds terms.

6n+1 → 18n+4
If n = 4j, 18n+4 = 72j+4 = (24m+4, m=3j) → 36j+2 → 18j+1.
If n = 4j+1, 18n+4 = 72j+22 = (24m+22, m=3j) → 36j+11.
If n = 4j+2, 18n+4 = 72j+40 = (24m+16, m=3j+1) Last term in the branch.
If n = 4j+3, 18n+4 = 72j+58 = (24m+10, m=3j+2) → 36j+29
6n+3 → 18n+10.
If n = 4j, 18n+10 = 72j+10 = (24m+10, m=3j) → 36j+5.
If n = 4j+1, 18n+10 = 72j+28 = (24m+4, m=3j+1) → 36j+14 → 18j+7.
If n = 4j+2, 18n+10 = 72j+46 = (24m+22, m=3j+1) → 36j+23.
If n = 4j+3, 18n+10 = 72j+64 = (24m+16, m=3j+2) Last term in the branch.
6n+5 → 18n+16.
If n = 4j, 18n+16 = 72j+16 = (24m+16, m=3j) Last term in the branch.
If n = 4j+1, 18n+16 = 72j+34 = (24m+10, m=3j+1) → 36j+17.
If n = 4j+2, 18n+16 = 72j+52 = (24m+4, m=3j+2) → 36j+26 → 18j+13.
If n = 4j+3, 18n+16 = 72j+70 = (24m+22, m=3j+2) → 36j+35.

Appendix 2. Collatz structure details.

Groups of similar Collatz sequence segments. If a Collatz sequence segment has a first term a and a last term b with r, 2j+1→6j+4 and s divisions by two, there is a series of Collatz sequence segments containing the same number of terms and the same number of adjoining Ls of the same size and structure with a first term a+(p-1)(24)(2s) and last term b+(p-1)(24)(3s), p=1,2,3...

The average branch binary series length: 3r=(1)(3/4)+(2)(9/16)+(3)(27/64)+… 3r – (3)(3/4)r = 3, r=4. The binary series usage factor is three. Three lengths are being calculated. 3/4 is the proportion of length one. 9/16 of length two…Multiply the equation by 3/4 and subtract. 3r – (3)(3/4)r = 3/4 + 9/16 + …. = 3.

The average branch binary series sum: ((2,1,1,1)+(2,2,1,1)+(2,1,1,1))/3 = (5+6+5)/3 = 5.333… There are twice as many binary series components with one division by two 24j+10 (1), 24j+22 (1) than there are components with two divisions by two 24j+4 (2). Three binary series of length four with twice as many 1’s as 2’s make up the computation.

Calculating the decrease in term size for Ls with the fewest 24k+16 terms. 2/3 (1 – 1/3) of the branches in a tower have binary series of length one or more. 4/9 (1 – 1/3 – 2/9) have binary series of length two or more. The geometric series terms are increased by 3/2 to base the calculation on the branches that have binary series. The average length of the Ls binary series is:

(1+2)(2/3)+(3)(4/9)+… – (2/3)(1+2)(2/3)+(3)(4/9)+…)=I+2/3+4/9+...=3

Adjusting the proportion of branches with binary series from three to one. 9/3=3.
The average Ls binary series sum is (1,1,2)=4.

1/3 of all branches have no binary series. The average number of divisions by two to reach the tower base term is 2+4+2=2.67. Let 2j+1→6j+4 be represented by an increase of 1.56 multiples of two. The average decrease in Ls term values is -2.67 – 2 + 1.56 = -1.56. The ratio between the initial 24j+16 term in an Ls with minimum number of tower terms and the last 24j+16 term is on average 4/1.

A circular sequence I₁→4→2→1 can be used to generate a sequence of arbitrary length with the same number and positions of 2j+1→6j+4 and divisions by two. The binary series of length s is (2,2,2,…)

I+(2s)(24)(p−1) is the beginning term and I+(3s)(24)(p−1) end term.
For s=3, p=2, 1537→4612→2306→1153→3460→1730→865→2596→1298→649.
24k+16 first term sequence segments
s=1 2 3 4 5 6 (2^{s-1} - 1)(24) + 16 + (p - 1)(24) / 2^s \) The binary series is (1,1,...) The length \(r = s - 3 \).

k=0 1 3 7 15 31
2 5 11 23 47 95
4 9 19 39 79 159

first term \(\rightarrow \) last term last term formula
16 \(\rightarrow \) 8 40 \(\rightarrow \) 10 88 \(\rightarrow \) 11 184 \(\rightarrow \) 35 376 \(\rightarrow \) 107 \(s=1,2,3 \) 8,10,11+(24)(p-1)
64 \(\rightarrow \) 32 136 \(\rightarrow \) 34 280 \(\rightarrow \) 35 528 \(\rightarrow \) 1144 \(\rightarrow \) 323 \(s \geq 4 \) 11 + s = 4 to m \(\sum (24)(3^{s-d}) + (24)(3^{s-4})(p - 1) \)

History The Collatz conjecture was made in 1937 by Lothar Collatz. Through 2017 the conjecture has been checked for all starting values up to \((87)(2^60) \), but very little progress has been made toward proving the conjecture. Paul Erdős said about the Collatz conjecture: “Mathematics may not be ready for such problems.” https://en.wikipedia.org/wiki/Collatz_conjecture

Thank you for your interest in this paper. If you wish to make comments send them to Jim Rock at collatz3106@gmail.com.

© 2018 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.