Original article

The collapse of the Liemmann Empire

Toshiro Takami
mmm82889@yahoo.co.jp

Abstract
I tried to prove that (Riemann hypothesis), but I realized that I can not prove how I did it.

When we calculate by the sum method of (1) we found that the nontrivial zero point will never converge to zero.

Calculating \(\zeta(2) \), \(\zeta(3) \), \(\zeta(4) \), \(\zeta(5) \) etc. by the method of the sum of (1) gives the correct calculation result.

This can be considered because convergence is extremely slow in the case of complex numbers, but there is no tendency to converge at all. Rather, it tends to diffuse.

In other words, it is inevitable to conclude that Riemann's hypothesis is a mistake.

We will fundamentally completely erroneous ones, For 150 years, We were trying to prove it.

Introduction
\begin{align}
\zeta(s) &= \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (1) \\
\zeta(s) &= \frac{2^s}{2^s - 1} \frac{3^s}{3^s - 1} \frac{5^s}{5^s - 1} \frac{7^s}{7^s - 1} \ldots \quad (2)
\end{align}

from (2)

\(2^s, \ s = a + bi \)

if \(a = 2, \ b = 0, \) \(\zeta(s) = (4/3)*(9/8)*(25/24)*(49/48) \ldots \ldots = \infty \)

if \(a = 1, \ b = 0, \) \(\zeta(s) = (2/1)*(3/2)*(5/4)*(7/6) \ldots \ldots = \infty \)

if \(a = 0.5, \ b = 0, \) \(\zeta(s) = \ldots \ldots \)

from (1)

\[
\begin{align*}
\text{sum}_{n=1}^{960} \frac{1}{n^2} &= 1.6438929425279 \ldots \\
\text{sum}_{n=1}^{3000} \frac{1}{n^2} &= 1.644600789064275819 \ldots \\
\text{sum}_{n=1}^{6000} \frac{1}{n^2} &= 1.6447674140697705 \ldots \\
\text{sum}_{n=1}^{19000} \frac{1}{n^2} &= 1.64488143665429632 \ldots \\
\text{sum}_{n=1}^{960} \frac{1}{n^3} &= 1.202056361189718 \ldots \\
\text{sum}_{n=1}^{3000} \frac{1}{n^3} &= 1.2020569031595942 \ldots \\
\text{sum}_{n=1}^{100} \frac{1}{n^4} &= 1.082322905344473 \ldots \\
\text{sum}_{n=1}^{960} \frac{1}{n^5} &= 1.036927755 \ldots \\
\text{sum}_{n=1}^{19000} \frac{1}{n^{0.5+i14.1347}} &= 0.4174005 + 3.85034 i \\
\text{sum}_{n=1}^{5000} \frac{1}{n^{0.5+i14.1347}} &= 4.3224 + 2.512729 i \\
\text{sum}_{n=1}^{9000} \frac{1}{n^{0.5+i14.1347}} &= 0.48920272 - 6.6898815 i \\
\text{sum}_{n=1}^{9160} \frac{1}{n^{0.5+i14.1347}} &= -1.185309 - 6.662485 i \\
\text{sum}_{n=1}^{19000} \frac{1}{n^{0.5+i14.1347}} &= 8.5184 + 4.7350212617 i \\
\text{sum}_{n=1}^{19160} \frac{1}{n^{0.5+i14.1347}} &= 9.05644139 + 3.710020 i \\
\text{sum}_{n=1}^{19960} \frac{1}{n^{0.5+i14.1347}} &= 9.81059359 - 1.880355 i \\
\text{sum}_{n=1}^{29000} \frac{1}{n^{0.5+i14.1347}} &= 8.2696693 + 8.751341 i \\
\text{sum}_{n=1}^{39000} \frac{1}{n^{0.5+i14.1347}} &= -13.587942799 + 3.21424 i \\
\text{sum}_{n=1}^{19000} \frac{1}{n^{0.5+i14.1347}} &= 9.81059359 - 1.880355 i \\
\text{sum}_{n=1}^{29000} \frac{1}{n^{0.5+i14.1347}} &= 8.2696693 + 8.751341 i \\
\text{sum}_{n=1}^{39000} \frac{1}{n^{0.5+i14.1347}} &= -13.587942799 + 3.21424 i
\end{align*}
\]

Discussion

\text{sum}_{n=1}^{960} \frac{1}{n^2} = 1.6438929425279 \ldots
\text{sum}_{n=1}^{3000} \frac{1}{n^2} = 1.644600789064275819 \ldots
\text{sum}_{n=1}^{6000} \frac{1}{n^2} = 1.6447674140697705 \ldots
\text{sum}_{n=1}^{19000} \frac{1}{n^2} = 1.64488143665429632 \ldots
\text{sum}_{n=1}^{960} \frac{1}{n^3} = 1.202056361189718 \ldots
\text{sum}_{n=1}^{3000} \frac{1}{n^3} = 1.2020569031595942 \ldots
\text{sum}_{n=1}^{100} \frac{1}{n^4} = 1.082322905344473 \ldots
\text{sum}_{n=1}^{960} \frac{1}{n^5} = 1.036927755 \ldots
\sum_{n=1}^{19000} \frac{1}{n^{0.5+i14.1347}} = 0.4174005 + 3.85034 i
\sum_{n=1}^{5000} \frac{1}{n^{0.5+i14.1347}} = 4.3224 + 2.512729 i
\sum_{n=1}^{9000} \frac{1}{n^{0.5+i14.1347}} = 0.48920272 - 6.6898815 i
\sum_{n=1}^{9160} \frac{1}{n^{0.5+i14.1347}} = -1.185309 - 6.662485 i
\sum_{n=1}^{19000} \frac{1}{n^{0.5+i14.1347}} = 8.5184 + 4.7350212617 i
\sum_{n=1}^{19160} \frac{1}{n^{0.5+i14.1347}} = 9.05644139 + 3.710020 i
\sum_{n=1}^{19960} \frac{1}{n^{0.5+i14.1347}} = 9.81059359 - 1.880355 i
\sum_{n=1}^{29000} \frac{1}{n^{0.5+i14.1347}} = 8.2696693 + 8.751341 i
\sum_{n=1}^{39000} \frac{1}{n^{0.5+i14.1347}} = -13.587942799 + 3.21424 i
\[
\sum_{n=1}^{49000} \frac{1}{n^{0.5 + 14.1347i}} \approx 14.87108966 - 4.87901i
\]
\[
\sum_{n=1}^{59000} \frac{1}{n^{0.5 + 14.1347i}} \approx -16.8331588 - 3.404215i
\]
\[
\sum_{n=1}^{65000} \frac{1}{n^{0.5 + 14.1347i}} \approx 7.0429770 + 16.593182i
\]
\[
\sum_{n=1}^{70000} \frac{1}{n^{0.5 + 14.1347i}} \text{...unable calculate??}
\]
\[
\sum_{n=1}^{960} \frac{1}{n^{0.5 + 14.1347i}} \approx 1.047016... - 0.662357... i
\]
\[
\sum_{n=1}^{960} \frac{1}{n^{0.5 - 14.1347i}} \approx 1.047016... + 0.662357... i
\]
\[
\sum_{n=1}^{9960} \frac{1}{n^{0.5 + 14.1347i}} \approx -3.22926 - 2.3427i
\]
\[
\sum_{n=1}^{9960} \frac{1}{n^{0.5 - 14.1347i}} \approx -3.22926 + 2.3427i
\]
\[
\sum_{n=1}^{19960} \frac{1}{n^{0.5 + 14.1347i}} \approx 2.8093359 - 4.8994i
\]
\[
\sum_{n=1}^{19960} \frac{1}{n^{0.5 - 14.1347i}} \approx 2.8093359 + 4.8994i
\]
\[
\sum_{n=1}^{29960} \frac{1}{n^{0.5 + 14.1347i}} \approx 1.4566464 + 6.76418i
\]
\[
\sum_{n=1}^{29960} \frac{1}{n^{0.5 - 14.1347i}} \approx 1.4566464 + 6.76418i
\]
\[
\sum_{n=1}^{39960} \frac{1}{n^{0.5 + 14.1347i}} \approx 7.235095 + 3.39252i
\]
\[
\sum_{n=1}^{39960} \frac{1}{n^{0.5 - 14.1347i}} \approx 7.235095 - 3.39252i
\]
\[
\sum_{n=1}^{49960} \frac{1}{n^{0.5 + 14.1347i}} \approx 3.76619 + 8.10254i
\]
\[
\sum_{n=1}^{49960} \frac{1}{n^{0.5 - 14.1347i}} \approx 3.76619 - 8.10254i
\]
\[
\sum_{n=1}^{59960} \frac{1}{n^{0.5 + 14.1347i}} \approx -9.390834 + 2.761776i
\]
sum_(n=1)^{59960} \frac{1}{n^{0.5 - I 25.01085}} \approx -9.390834 - 2.761776 i
sum_(n=1)^{69960} \frac{1}{n^{0.5 + I 25.01085}} \approx 5.6929367 - 8.90986585 i
sum_(n=1)^{69960} \frac{1}{n^{0.5 - I 25.01085}} \approx 5.6929367 + 8.90986585 i
sum_(n=1)^{70000} \frac{1}{n^{0.5 + I 25.01085}} \approx 5.566575 - 8.992907 i
sum_(n=1)^{79960} \frac{1}{n^{0.5 + I 25.01085}} \ldots \text{unable calculate??}

References

postscript

Did Riemann hypothesis seem to be a conspiracy because I was caught in a protracted cold, because I stayed at home and solved Riemann hypothesis for a long time?

☃〜☃〜☃〜☃〜☃〜☃〜☃〜☃〜☃〜☃〜☃〜

I am a psychiatrist now and also a doctor of brain surgery before.
I would like to receive an email. I will not answer the phone.
Currently 57 years old
Born on November 26, 1961
(I am very poor of English. Almost all document are google-translation.) When converted to English by Google translation, it becomes cryptic to me.
But, I read letter by google translation. In my case, if you translate it into English by google translation, I do not know what is written in my paper. For me, foreign languages such as English (actually not good at Japanese) is a demon. As soon as it is translated into English, it turns into a cipher for me.

postscript

The cold when I found the first one is still continuing now and this may be my last post. I may have discovered another by surging my energy and it may not be counter example.
It may be written as a will.
I am writing this at the limit of power.
I write this with spitting blood.