http://www.TheoryOfEverything.org

Even FibBinary Numbers and the Golden Ratio

J Gregory Moxness*
TheoryOfEverything.org
(Dated: December 30, 2018)

Abstract

A determination of the relationship between the nth odd fibbinary numbers and the Golden Ratio has recently been proven. Specifically, if the j th odd fibbinary is the nth odd fibbinary number, then $j=\lfloor n(\Phi+2)-1\rfloor$. This note documents a completion of the relationship for the even fibbinary numbers, such that if the j th even fibbinary is the nth even fibbinary number, then $j=\lfloor(n(\phi+1)+\phi\rfloor$.

PACS numbers: 02.10.Ox
Keywords: Combinatorics

I. INTRODUCTION

For an introduction to the topic, please reference [1], [2] and [3].

II. VERIFICATON FOR ODD AND EVEN FIBBINARY NUMBERS

The following tables list the fibbinary related elements, up to $\mathrm{N}=100$ for odd ($\mathrm{n}=38$) and $\mathrm{N}=98$ even fibbinary numbers ($\mathrm{n}=62$).

Fig. 1 shows the related elements of the odd fibbinaries. Please note that prime N are highlighted in red.
Fig. 2 shows the related elements of the even fibbinaries. Please note that prime N are highlighted in red.

III. CONCLUSION

While the proof of the even fibbinary numbers sequence is not yet formulated in this quick note, the symmetry of the pattern compared to the odd fibbinary numbers combined with the confirmation for n to several million is reassuring.

Acknowledgments

I would like to thank my wife for her love and patience and those in academia who have taken the time to review this work.

[^0][1] L. Lindroos, Electronic Theses and Dissertations.13: Integer Compositions, Gray Code, and the Fibonacci Sequence (2012).
[2] L. Lindroos, ArXiv e-prints math.CO/1812.02107 (2018), 1812.02107.
[3] J. G. Moxness, theoryofeverything.org blog post: Integer Compositions, Gray Code, and the Fibonacci Sequence (2018).

N	Floor@ $n(\phi+2)-1$	Zeckendorf (N)	$\mathrm{Fib}_{\mathrm{k}}$ (N)	n	nth Odd FibBinary	nFib Bin	Composition Binary $\{1,2\}$	nFib Gray	nFib Gray Bin	Composition GrayCode
1	1	\{1\}	\{2\}	1	1	000000000012	$\{1,1,1,1,1,1,1,1,1,2\}$,	00000000001_{2}	$\{1,1,1,1,1,1,1,1,1,2\}$
4	4	\{3, 1\}	$\{4,2\}$	2	5	00000000101_{2}	$\{1,1,1,1,1,1,1,2,2\}$	7	00000000111_{2}	$\{1,1,1,1,1,1,1,4\}$
6	6	$\{5,1\}$	$\{5,2\}$	3	9	00000001001_{2}	$\{1,1,1,1,1,1,2,1,2\}$	13	00000001101_{2}	$\{1,1,1,1,1,1,3,2\}$
9	9	\{8, 1\}	$\{6,2\}$	4	17	00000010001_{2}	$\{1,1,1,1,1,2,1,1,2\}$	25	00000011001_{2}	$\{1,1,1,1,1,3,1,2\}$
12	12	$\{8,3,1\}$	$\{6,4,2\}$	5	21	00000010101_{2}	$\{1,1,1,1,1,2,2,2\}$	31	000000111112	$\{1,1,1,1,1,6\}$
14	14	$\{13,1\}$	$\{7,2\}$	6	33	00000100001_{2}	\{1, 1, 1, 1, 2, 1, 1, 1, 2\}	49	00000110001_{2}	$\{1,1,1,1,3,1,1,2\}$
17	17	$\{13,3,1\}$	$\{7,4,2\}$	7	37	00000100101_{2}	$\{1,1,1,1,2,1,2,2\}$	55	00000110111_{2}	$\{1,1,1,1,3,4\}$
19	19	$\{13,5,1\}$	$\{7,5,2\}$	8	41	00000101001_{2}	$\{1,1,1,1,2,2,1,2\}$	61	00000111101_{2}	$\{1,1,1,1,5,2\}$
22	22	\{21, 1\}	$\{8,2\}$	9	65	00001000001_{2}	$\{1,1,1,2,1,1,1,1,2\}$	97	00001100001_{2}	$\{1,1,1,3,1,1,1,2\}$
25	25	$\{21,3,1\}$	$\{8,4,2\}$	10	69	00001000101_{2}	$\{1,1,1,2,1,1,2,2\}$	103	000011001112	$\{1,1,1,3,1,4\}$
27	27	$\{21,5,1\}$	$\{8,5,2\}$	11	73	00001001001_{2}	$\{1,1,1,2,1,2,1,2\}$	109	00001101101_{2}	$\{1,1,1,3,3,2\}$
30	30	$\{21,8,1\}$	$\{8,6,2\}$	12	81	00001010001_{2}	$\{1,1,1,2,2,1,1,2\}$	121	00001111001_{2}	$\{1,1,1,5,1,2\}$
33	33	$\{21,8,3,1\}$	$\{8,6,4,2\}$	13	85	000010101012	$\{1,1,1,2,2,2,2\}$	127	00001111111_{2}	$\{1,1,1,8\}$
35	35	$\{34,1\}$	$\{9,2\}$	14	129	00010000001_{2}	\{1, 1, 2, 1, 1, 1, 1, 1, 2\}	193	00011000001_{2}	$\{1,1,3,1,1,1,1,2\}$
38	38	\{34, 3, 1\}	$\{9,4,2\}$	15	133	00010000101_{2}	$\{1,1,2,1,1,1,2,2\}$	199	000110001112	$\{1,1,3,1,1,4\}$
40	40	$\{34,5,1\}$	$\{9,5,2\}$	16	137	00010001001_{2}	$\{1,1,2,1,1,2,1,2\}$	205	00011001101_{2}	$\{1,1,3,1,3,2\}$
43	43	$\{34,8,1\}$	$\{9,6,2\}$	17	145	00010010001_{2}	$\{1,1,2,1,2,1,1,2\}$	217	00011011001_{2}	$\{1,1,3,3,1,2\}$
46	46	$\{34,8,3,1\}$	$\{9,6,4,2\}$	18	149	00010010101_{2}	$\{1,1,2,1,2,2,2\}$	223	000110111112	\{1, 1, 3, 6\}
48	48	$\{34,13,1\}$	$\{9,7,2\}$	19	161	00010100001_{2}	$\{1,1,2,2,1,1,1,2\}$	241	00011110001_{2}	$\{1,1,5,1,1,2\}$
51	51	$\{34,13,3,1\}$	$\{9,7,4,2\}$	20	165	00010100101_{2}	$\{1,1,2,2,1,2,2\}$	247	000111101112	$\{1,1,5,4\}$
53	53	$\{34,13,5,1\}$	$\{9,7,5,2\}$	21	169	00010101001_{2}	$\{1,1,2,2,2,1,2\}$	253	00011111101_{2}	$\{1,1,7,2\}$
56	56	$\{55,1\}$	$\{10,2\}$	22	257	00100000001_{2}	$\{1,2,1,1,1,1,1,1,2\}$	385	00110000001_{2}	$\{1,3,1,1,1,1,1,2\}$
59	59	$\{55,3,1\}$	$\{10,4,2\}$	23	261	00100000101_{2}	$\{1,2,1,1,1,1,2,2\}$	391	00110000111_{2}	$\{1,3,1,1,1,4\}$
61	61	$\{55,5,1\}$	$\{10,5,2\}$	24	265	00100001001_{2}	$\{1,2,1,1,1,2,1,2\}$	397	00110001101_{2}	$\{1,3,1,1,3,2\}$
64	64	$\{55,8,1\}$	$\{10,6,2\}$	25	273	00100010001_{2}	$\{1,2,1,1,2,1,1,2\}$	409	00110011001_{2}	$\{1,3,1,3,1,2\}$
67	67	$\{55,8,3,1\}$	$\{10,6,4,2\}$	26	277	001000101012	$\{1,2,1,1,2,2,2\}$	415	00110011111_{2}	$\{1,3,1,6\}$
69	69	$\{55,13,1\}$	$\{10,7,2\}$	27	289	00100100001_{2}	$\{1,2,1,2,1,1,1,2\}$	433	00110110001_{2}	$\{1,3,3,1,1,2\}$
72	72	$\{55,13,3,1\}$	$\{10,7,4,2\}$	28	293	001001001012	$\{1,2,1,2,1,2,2\}$	439	001101101112	$\{1,3,3,4\}$
74	74	$\{55,13,5,1\}$	$\{10,7,5,2\}$	29	297	00100101001_{2}	$\{1,2,1,2,2,1,2\}$	445	00110111101_{2}	$\{1,3,5,2\}$
77	77	$\{55,21,1\}$	$\{10,8,2\}$	30	321	00101000001_{2}	$\{1,2,2,1,1,1,1,2\}$	481	00111100001_{2}	$\{1,5,1,1,1,2\}$
80	80	$\{55,21,3,1\}$	\{10, 8, 4, 2\}	31	325	00101000101_{2}	$\{1,2,2,1,1,2,2\}$	487	001111001112	$\{1,5,1,4\}$
82	82	$\{55,21,5,1\}$	\{10, 8, 5, 2\}	32	329	00101001001_{2}	$\{1,2,2,1,2,1,2\}$	493	001111011012	$\{1,5,3,2\}$
85	85	$\{55,21,8,1\}$	\{10, 8, 6, 2\}	33	337	00101010001_{2}	$\{1,2,2,2,1,1,2\}$	505	001111110012	$\{1,7,1,2\}$
88	88	$\{55,21,8,3,1\}$	$\{10,8,6,4,2\}$	34	341	00101010101_{2}	$\{1,2,2,2,2,2\}$	511	001111111112	\{1, 10\}
90	90	$\{89,1\}$	$\{11,2\}$	35	513	01000000001_{2}	$\{2,1,1,1,1,1,1,1,2\}$	769	01100000001_{2}	$\{3,1,1,1,1,1,1,2\}$
93	93	$\{89,3,1\}$	$\{11,4,2\}$	36	517	01000000101_{2}	$\{2,1,1,1,1,1,2,2\}$	775	011000001112	$\{3,1,1,1,1,4\}$
95	95	$\{89,5,1\}$	$\{11,5,2\}$	37	521	01000001001_{2}	$\{2,1,1,1,1,2,1,2\}$	781	01100001101_{2}	$\{3,1,1,1,3,2\}$
98	98	$\{89,8,1\}$	$\{11,6,2\}$	38	529	01000010001_{2}	$\{2,1,1,1,2,1,1,2\}$	793	01100011001_{2}	$\{3,1,1,3,1,2\}$

FIG. 1: Comprehensive list of odd fibbinary related elements

N	Floor@ $\mathrm{n}(\phi+1)+\phi$	Zeckendorf (N)	$\mathrm{Fib}_{\mathrm{k}}$ (N)	n	nth Even FibBinary	nFib Bin	Composition Binary \{1,2\}	nFib Gray	nFib Gray Bin	Composition GrayCode
2	2	\{2\}	\{3\}	1	2	000000000102	$\{1,1,1,1,1,1,1,1,2,1\}$,	000000000112	$\{1,1,1,1,1,1,1,1,3\}$
3	3	\{3\}	\{4\}	2	4	00000000100_{2}	$\{1,1,1,1,1,1,1,2,1,1\}$	6	00000000110_{2}	$\{1,1,1,1,1,1,1,3,1\}$
5	5	\{5\}	\{5\}	3	8	$00000001000{ }_{2}$	$\{1,1,1,1,1,1,2,1,1,1\}$	12	000000011002	$\{1,1,1,1,1,1,3,1,1\}$
7	7	\{5, 2\}	\{5, 3\}	4	10	00000001010_{2}	$\{1,1,1,1,1,1,2,2,1\}$	15	000000011112	$\{1,1,1,1,1,1,5\}$
8	8	\{8\}	\{6\}	5	16	00000010000_{2}	$\{1,1,1,1,1,2,1,1,1,1\}$	24	000000110002	$\{1,1,1,1,1,3,1,1,1\}$
10	10	$\{8,2\}$	$\{6,3\}$	6	18	00000010010_{2}	$\{1,1,1,1,1,2,1,2,1\}$	27	00000011011_{2}	$\{1,1,1,1,1,3,3\}$
11	11	\{8,3\}	$\{6,4\}$	7	20	00000010100_{2}	$\{1,1,1,1,1,2,2,1,1\}$	30	00000011110_{2}	$\{1,1,1,1,1,5,1\}$
13	13	\{13\}	\{7\}	8	32	00000100000_{2}	$\{1,1,1,1,2,1,1,1,1,1\}$	48	$00000110000{ }_{2}$	$\{1,1,1,1,3,1,1,1,1\}$
15	15	$\{13,2\}$	$\{7,3\}$	9	34	00000100010_{2}	$\{1,1,1,1,2,1,1,2,1\}$	51	00000110011_{2}	$\{1,1,1,1,3,1,3\}$
16	16	$\{13,3\}$	$\{7,4\}$	10	36	00000100100_{2}	$\{1,1,1,1,2,1,2,1,1\}$	54	00000110110_{2}	$\{1,1,1,1,3,3,1\}$
18	18	$\{13,5\}$	$\{7,5\}$	11	40	00000101000_{2}	$\{1,1,1,1,2,2,1,1,1\}$	60	00000111100_{2}	$\{1,1,1,1,5,1,1\}$
20	20	$\{13,5,2\}$	$\{7,5,3\}$	12	42	00000101010_{2}	$\{1,1,1,1,2,2,2,1\}$	63	00000111111_{2}	$\{1,1,1,1,7\}$
21	21	\{21\}	\{8\}	13	64	00001000000_{2}	$\{1,1,1,2,1,1,1,1,1,1\}$	96	00001100000_{2}	$\{1,1,1,3,1,1,1,1,1\}$
23	23	$\{21,2\}$	\{8, 3\}	14	66	000010000102	$\{1,1,1,2,1,1,1,2,1\}$	99	00001100011_{2}	$\{1,1,1,3,1,1,3\}$
24	24	\{21, 3\}	$\{8,4\}$	15	68	00001000100_{2}	$\{1,1,1,2,1,1,2,1,1\}$	102	000011001102	$\{1,1,1,3,1,3,1\}$
26	26	\{21, 5\}	\{8,5\}	16	72	00001001000_{2}	$\{1,1,1,2,1,2,1,1,1\}$	108	00001101100_{2}	$\{1,1,1,3,3,1,1\}$
28	28	$\{21,5,2\}$	\{8, 5, 3\}	17	74	00001001010_{2}	$\{1,1,1,2,1,2,2,1\}$	111	00001101111_{2}	$\{1,1,1,3,5\}$
29	29	$\{21,8\}$	$\{8,6\}$	18	80	00001010000_{2}	$\{1,1,1,2,2,1,1,1,1\}$	120	00001111000_{2}	$\{1,1,1,5,1,1,1\}$
31	31	$\{21,8,2\}$	$\{8,6,3\}$	19	82	00001010010_{2}	$\{1,1,1,2,2,1,2,1\}$	123	00001111011_{2}	$\{1,1,1,5,3\}$
32	32	$\{21,8,3\}$	$\{8,6,4\}$	20	84	00001010100_{2}	$\{1,1,1,2,2,2,1,1\}$	126	000011111102	$\{1,1,1,7,1\}$
34	34	\{34\}	\{9\}	21	128	00010000000_{2}	$\{1,1,2,1,1,1,1,1,1,1\}$	192	00011000000_{2}	$\{1,1,3,1,1,1,1,1,1\}$
36	36	$\{34,2\}$	$\{9,3\}$	22	130	00010000010_{2}	$\{1,1,2,1,1,1,1,2,1\}$	195	000110000112	$\{1,1,3,1,1,1,3\}$
37	37	$\{34,3\}$	$\{9,4\}$	23	132	00010000100_{2}	$\{1,1,2,1,1,1,2,1,1\}$	198	000110001102	$\{1,1,3,1,1,3,1\}$
39	39	$\{34,5\}$	$\{9,5\}$	24	136	00010001000_{2}	$\{1,1,2,1,1,2,1,1,1\}$	204	000110011002	$\{1,1,3,1,3,1,1\}$
41	41	$\{34,5,2\}$	$\{9,5,3\}$	25	138	00010001010	$\{1,1,2,1,1,2,2,1\}$	207	00011001111_{2}	$\{1,1,3,1,5\}$
42	42	$\{34,8\}$	$\{9,6\}$	26	144	$00010010000{ }_{2}$	$\{1,1,2,1,2,1,1,1,1\}$	216	00011011000_{2}	$\{1,1,3,3,1,1,1\}$
44	44	$\{34,8,2\}$	$\{9,6,3\}$	27	146	00010010010_{2}	$\{1,1,2,1,2,1,2,1\}$	219	000110110112	$\{1,1,3,3,3\}$
45	45	$\{34,8,3\}$	$\{9,6,4\}$	28	148	00010010100_{2}	$\{1,1,2,1,2,2,1,1\}$	222	000110111102	$\{1,1,3,5,1\}$
47	47	$\{34,13\}$	$\{9,7\}$	29	160	$00010100000{ }_{2}$	$\{1,1,2,2,1,1,1,1,1\}$	240	00011110000_{2}	$\{1,1,5,1,1,1,1\}$
49	49	$\{34,13,2\}$	$\{9,7,3\}$	30	162	00010100010_{2}	$\{1,1,2,2,1,1,2,1\}$	243	00011110011_{2}	$\{1,1,5,1,3\}$
50	50	$\{34,13,3\}$	$\{9,7,4\}$	31	164	00010100100_{2}	$\{1,1,2,2,1,2,1,1\}$	246	000111101102	$\{1,1,5,3,1\}$
52	52	$\{34,13,5\}$	$\{9,7,5\}$	32	168	00010101000_{2}	$\{1,1,2,2,2,1,1,1\}$	252	00011111100_{2}	$\{1,1,7,1,1\}$
54	54	$\{34,13,5,2\}$	$\{9,7,5,3\}$	33	170	00010101010_{2}	$\{1,1,2,2,2,2,1\}$	255	00011111111_{2}	$\{1,1,9\}$
55	55	\{55\}	\{10\}	34	256	00100000000_{2}	$\{1,2,1,1,1,1,1,1,1,1\}$	384	00110000000_{2}	$\{1,3,1,1,1,1,1,1,1\}$
57	57	$\{55,2\}$	$\{10,3\}$	35	258	00100000010	$\{1,2,1,1,1,1,1,2,1\}$	387	001100000112	$\{1,3,1,1,1,1,3\}$
58	58	$\{55,3\}$	$\{10,4\}$	36	260	00100000100_{2}	$\{1,2,1,1,1,1,2,1,1\}$	390	001100001102	$\{1,3,1,1,1,3,1\}$
60	60	$\{55,5\}$	$\{10,5\}$	37	264	$00100001000{ }_{2}$	$\{1,2,1,1,1,2,1,1,1\}$	396	00110001100_{2}	$\{1,3,1,1,3,1,1\}$
62	62	$\{55,5,2\}$	$\{10,5,3\}$	38	266	00100001010	$\{1,2,1,1,1,2,2,1\}$	399	001100011112	$\{1,3,1,1,5\}$
63	63	$\{55,8\}$	$\{10,6\}$	39	272	00100010000_{2}	$\{1,2,1,1,2,1,1,1,1\}$	408	00110011000_{2}	$\{1,3,1,3,1,1,1\}$
65	65	$\{55,8,2\}$	$\{10,6,3\}$	40	274	00100010010_{2}	$\{1,2,1,1,2,1,2,1\}$	411	00110011011_{2}	$\{1,3,1,3,3\}$
66	66	$\{55,8,3\}$	$\{10,6,4\}$	41	276	00100010100_{2}	$\{1,2,1,1,2,2,1,1\}$	414	001100111102	$\{1,3,1,5,1\}$
68	68	$\{55,13\}$	$\{10,7\}$	42	288	00100100000_{2}	$\{1,2,1,2,1,1,1,1,1\}$	432	00110110000_{2}	$\{1,3,3,1,1,1,1\}$
70	70	$\{55,13,2\}$	$\{10,7,3\}$	43	290	00100100010_{2}	$\{1,2,1,2,1,1,2,1\}$	435	001101100112	$\{1,3,3,1,3\}$
71	71	$\{55,13,3\}$	$\{10,7,4\}$	44	292	00100100100_{2}	$\{1,2,1,2,1,2,1,1\}$	438	001101101102	$\{1,3,3,3,1\}$
73	73	$\{55,13,5\}$	$\{10,7,5\}$	45	296	$00100101000{ }_{2}$	$\{1,2,1,2,2,1,1,1\}$	444	00110111100_{2}	$\{1,3,5,1,1\}$
75	75	$\{55,13,5,2\}$	$\{10,7,5,3\}$	46	298	00100101010	$\{1,2,1,2,2,2,1\}$	447	001101111112	$\{1,3,7\}$
76	76	$\{55,21\}$	$\{10,8\}$	47	320	00101000000_{2}	$\{1,2,2,1,1,1,1,1,1\}$	480	00111100000_{2}	$\{1,5,1,1,1,1,1\}$
78	78	$\{55,21,2\}$	$\{10,8,3\}$	48	322	00101000010_{2}	$\{1,2,2,1,1,1,2,1\}$	483	001111000112	$\{1,5,1,1,3\}$
79	79	$\{55,21,3\}$	$\{10,8,4\}$	49	324	00101000100_{2}	$\{1,2,2,1,1,2,1,1\}$	486	001111001102	$\{1,5,1,3,1\}$
81	81	$\{55,21,5\}$	$\{10,8,5\}$	50	328	$00101001000{ }_{2}$	$\{1,2,2,1,2,1,1,1\}$	492	00111101100_{2}	$\{1,5,3,1,1\}$
83	83	$\{55,21,5,2\}$	$\{10,8,5,3\}$	51	330	00101001010_{2}	$\{1,2,2,1,2,2,1\}$	495	00111101111_{2}	$\{1,5,5\}$
84	84	$\{55,21,8\}$	$\{10,8,6\}$	52	336	00101010000_{2}	$\{1,2,2,2,1,1,1,1\}$	504	00111111000_{2}	$\{1,7,1,1,1\}$
86	86	$\{55,21,8,2\}$	$\{10,8,6,3\}$	53	338	00101010010_{2}	$\{1,2,2,2,1,2,1\}$	507	00111111011_{2}	$\{1,7,3\}$
87	87	$\{55,21,8,3\}$	$\{10,8,6,4\}$	54	340	00101010100_{2}	$\{1,2,2,2,2,1,1\}$	510	001111111102	$\{1,9,1\}$
89	89	\{89)	$\{11\}$	55	512	01000000000_{2}	$\{2,1,1,1,1,1,1,1,1,1\}$	768	01100000000_{2}	$\{3,1,1,1,1,1,1,1,1\}$
91	91	\{89, 2\}	$\{11,3\}$	56	514	01000000010_{2}	$\{2,1,1,1,1,1,1,2,1\}$	771	011000000112	$\{3,1,1,1,1,1,3\}$
92	92	$\{89,3\}$	$\{11,4\}$	57	516	01000000100_{2}	$\{2,1,1,1,1,1,2,1,1\}$	774	011000001102	$\{3,1,1,1,1,3,1\}$
94	94	\{89, 5\}	\{11, 5\}	58	520	01000001000_{2}	$\{2,1,1,1,1,2,1,1,1\}$	780	01100001100_{2}	$\{3,1,1,1,3,1,1\}$
96	96	$\{89,5,2\}$	$\{11,5,3\}$	59	522	01000001010_{2}	$\{2,1,1,1,1,2,2,1\}$	783	011000011112	$\{3,1,1,1,5\}$
97	97	$\{89,8\}$	$\{11,6\}$	60	528	01000010000_{2}	$\{2,1,1,1,2,1,1,1,1\}$	792	011000110002	$\{3,1,1,3,1,1,1\}$
99	99	$\{89,8,2\}$	$\{11,6,3\}$	61	530	01000010010_{2}	$\{2,1,1,1,2,1,2,1\}$	795	011000110112	$\{3,1,1,3,3\}$
100	100	$\{89,8,3\}$	$\{11,6,4\}$	62	532	01000010100_{2}	$\{2,1,1,1,2,2,1,1\}$	798	011000111102	$\{3,1,1,5,1\}$

FIG. 2: Comprehensive list of even fibbinary related elements

[^0]: *URL: http://www.TheoryOfEverything.org/TOE/JGM; mailto:jgmoxness@TheoryOfEverything.org

