
The curvature and dimension of a closed surface

S. Halayka ∗

January 8, 2020

Abstract

In this short memorandum, the curvature and dimension properties of the 2-sphere
surface of a 3-dimensional ball and the 2.x-dimensional surface of a 3-dimensional
fractal set are considered. Tessellation is used to approximate each surface, primarily
because the 2.x-dimensional surface of a 3-dimensional fractal set is otherwise non-
differentiable (having no well-defined surface normals). It is found that the curvature
of a closed surface must lead to fractional dimension. Notes are then given, including
how this tessellation model applies to a toy Universe.

1 Overview

Unlike in traditional geometry where dimension is an integer (e.g. (3+1)-dimensional space-
time), fractional (non-integer) dimension occurs in fractal geometry. In fractal geometry,
there are currently many ways to calculate the dimension of a surface [1, 2]. This memo uses
a new method of calculating the fractional dimension of a surface – it is curvature that leads
to this fractional dimension. Note that the Planck length `P = 1.0, and so the fundamental
constants c = G = h̄ = 1.0 as well.

Our main focus will be on the curvature and dimension of tessellated closed surfaces.
For example, Marching Cubes [3] can be used to generate triangular tessellations (meshes),
where dimension D ∈ (2.0, 3.0).

Our attention will be drawn to the difference in curvature and dimension between a 2-
sphere and the 2.x-dimensional surface of a 3-dimensional fractal set. We will generate both
a 2-sphere and the 2.x-dimensional surface of a 3-dimensional fractal set by using iterative
quaternion equations.

Some notes are given at the end of this memo.

2 The tessellation of a closed surface

Approximating the surface of a 3-dimensional shape as a mesh allows us to calculate the
surface’s dimension D ∈ (2.0, 3.0). This includes approximation of both a 2-sphere and the
2.x-dimensional surface of a 3-dimensional fractal set.

∗sjhalayka@gmail.com

1

First we calculate, for each triangle, the average dot product of the triangle’s face normal
n̂i and its 3 neighbouring triangles’ face normals ô1, ô2, ô3:

di =
n̂i · ô1 + n̂i · ô2 + n̂i · ô3

3
∈ (−1.0, 1.0]. (1)

Because we assume that there are 3 neighbours per triangle, the mesh must be closed (no
cracks or holes, precisely 2 triangles per edge). The reason why the value −1.0 is not
achievable is because that would lead to intersecting triangles.

Then we calculate the normalized measure of curvature, where Ai is the triangle area,
and Alargest is the largest triangle area in the mesh:

ki =

(
1− di

2

)(
Ai

Alargest

)
∈ [0.0, 1.0). (2)

The triangle area is used like this because there are sliver triangles produced by Marching
Cubes.

Once ki has been calculated for all triangles, we can then calculate the average normalized
measure of curvature K, where t is the number of triangles in the mesh:

K =
1

t

t∑
i=1

ki =
k1 + k2 + ... + kt

t
∈ (0.0, 1.0). (3)

The reason why the value 0.0 is not achievable is because we are dealing with a closed surface,
and so there’s bound to be some curvature.

The dimension of the closed surface is:

D = 2 + K ∈ (2.0, 3.0). (4)

As far as we know, this method of calculating the dimension of a closed surface is new.
The entire C++ code for generating a mesh can be found at [4]. The entire C++ code for
calculating a mesh’s curvature-based dimension can be found at [5].

3 Vanishing versus non-vanishing curvature

Where r ∈ [2,∞) is the integer sampling resolution, gmax ∈ (−∞,∞) is the sampling grid
maximum extent, gmin ∈ (−∞,∞) is the sampling grid minimum extent, and gmax > gmin,
the Marching Cubes step size is:

` =
gmax − gmin

r − 1
∈ (0.0, 1.0). (5)

In this memo gmax = 1.5, gmin = −1.5, and r is variable. Although ` can go up to almost
infinity, we shall enforce a virtual cap at almost unity, as is traditionally done in the research.

On one hand, a 2-sphere can be generated by the iterative quaternion Julia set equation

Z = Z2 + C, (6)

2

where the translation constant is C = 0.0, 0.0, 0.0, 0.0. For a 2-sphere, the local curvature all
but vanishes as ` decreases (as r increases):

lim
`→0.0

K(`) = 0.0. (7)

This results in a dimension of practically (but never quite) 2.0, which is to be expected from
a non-fractal surface. See Figures 1 - 3.

On the other hand, the 2.x-dimensional surface of a 3-dimensional fractal set can be
generated by the iterative quaternion equation

Z = Z cos(Z). (8)

For the 2.x-dimensional surface of a 3-dimensional fractal set, the local curvature does not
necessarily vanish as ` decreases:

lim
`→0.0

K(`) 6= 0.0. (9)

This results in a dimension considerably greater than 2.0 (but not equal to or greater than
3.0), which is to be expected from a fractal surface. See Figures 4 - 7.

For more information on iterative quaternion equations, and how to perform quaternion
multiplication, addition, and cos, see [6].

4 Notes

4.1 Box-counting dimension for the 2.x-dimensional surface of a
3-dimensional fractal set

One may wish to compare the curvature-based dimension given in this memo against the
traditional box-counting (Minkowski-Bouligand) dimension. Thanks to Marching Cubes, it
is very simple to obtain the number of boxes that are required to cover the 2.x-dimensional
surface of a 3-dimensional fractal set. One can simply ask: how many triangles are generated
per this or that marched cube? If the answer is greater than zero, then that particular
marched cube covers the surface – the integer box count N is increased by one. The box-
counting dimension Dbox is calculated as usual, and is implemented in the mesh generation
source code [4]:

Dbox = lim
`→0.0

log(N)

log (1/`)
∈ [0.0,∞), (10)

where, again, 0.0 < ` < 1.0, and `P = 1.0.

4.2 Comparing Marching Squares to Marching Cubes

Marching Squares [7] can be used to generate closed line paths, where dimension D ∈
(1.0, 2.0). For each line segment, the average dot product of the line segment’s surface
normal n̂i and its 2 neighbouring line segments’ surface normals ô1, ô2 is:

di =
n̂i · ô1 + n̂i · ô2

2
∈ (−1.0, 1.0]. (11)

3

Because we assume that there are 2 neighbours per line segment, the line segment mesh
must be closed (precisely 2 line segments per end point). The reason why the value −1.0 is
not achievable is because that would lead to intersecting line segments.

See Figure 8 for an example input (a 2-dimensional greyscale image, consisting of 8x8
pixels) and output (a 1.x-dimensional closed set of line segments) of the Marching Squares
algorithm, approximating a 1-sphere (a circle), where sampling resolution is r = 8. Note
that for Marching Cubes, the input is a 3-dimensional ‘greyscale image’, consisting of voxels,
and the output is a 2.x-dimensional closed set of triangles.

Illustrated in Figure 9 is a section of a closed line path, with surface normals. The average
dot product of neighbouring line segments is di = 0.0. This leads to a normalized measure
of curvature ki = 0.5, which in turn leads to an average normalized measure of curvature
K = 0.5. The dimension is D = 1 +K = 1.5. Note that for Marching Cubes, the dimension
is D = 2 + K.

See Figure 10 for a section of a closed line path as it goes from dimension 1.0 (at top)
to 1.9999 (at bottom). In the end, where the dimension is 1.9999, the result is practically
a rectangle. The reason why the dimension cannot be 2.0 is because that would lead to
intersecting line segments. Note that for Marching Cubes, the dimension cannot be 3.0
because that would lead to intersecting triangles.

4.3 Introduction to Marching Hypercubes

There is research on Marching Hypercubes at [8, 9, 10]: where dimension D ∈ (3.0, 4.0), the
output can be a closed set of tetrahedra. For example, where PTC is the ith tetrahedron
centre, PFC is the first face’s centre, and PNTC is the first neighbouring tetrahedron’s centre:

n̂1 = normalize(PTC − PFC), (12)

ô1 = normalize(PFC − PNTC), (13)

and likewise for the other 3 neighbouring tetrahedra, the value of di is:

di =
n̂1 · ô1 + n̂2 · ô2 + n̂3 · ô3 + n̂4 · ô4

4
∈ (−1.0, 1.0]. (14)

Because we assume that there are 4 neighbours per tetrahedron, the tetrahedral mesh must
be closed (precisely 2 tetrahedra per face). The reason why the value −1.0 is not achievable
is because that would lead to intersecting tetrahedra.

Imagine wrinkly space, begetting curvature, and thus increased dimension. Space would
technically be a ‘3.x-sphere’ – practically a 3-sphere globally, with the exception of some
local curvature. This is not to say that in real life space is quantized into tetrahedra [11],
nor that the topology of the Universe is closed [12, 13]. That said, if space on the computer
is quantized as such, then there is a minimum non-zero curvature because there is no such
thing as a tessellation via regular tetrahedra alone – irregularity, and thus curvature, are
required. This curvature is above and beyond the minimum non-zero curvature that is due
to the fact that a 3.x-sphere is closed, and thus inherently curved. Where the Planck energy
Ep = 1.0, average curvature is related to average energy [12]:

K ∝ E. (15)

4

Note that for Marching Hypercubes, the dimension cannot be 4.0 because that would
lead to intersecting tetrahedra – that is, unless we are attempting to describe the Big Bang
event, where all of space was overlapping, and time did not yet exist. Since we are considering
regions instead of points, there is no singularity.

It appears that at the beginning of our toy Universe, space was 4-dimensional, and now
(some time later) it is not – as space ages, the dimension reduces from 4.0 to 3.x, and thus
time emerges just to ensure that the total number of dimensions equals 4.0, as is experienced.
We are dealing with (3.x + (1.0− 0.x))-dimensional spacetime, where the magnitude of the
basis vector of the time dimension is variable:

||~T || = 1.0− 0.x ∈ (0.0, 1.0). (16)

4.4 Acknowledgements

Thanks to JJ, SB, TT, and GV.

5

References

[1] Mandelbrot, B. (1967). ”How Long is the Coast of Britain? Statistical Self-Similarity
and Fractional Dimension”. Science. 156 (3775): 636–8.

[2] Mandelbrot, B. (1982). ”The Fractal Geometry of Nature”. ISBN 978-0716711865.

[3] Lorensen, W. E.; Cline, H. E. (1987). ”Marching cubes: A high resolution 3d surface
construction algorithm”. ACM Computer Graphics. 21 (4): 163–169

[4] https://github.com/sjhalayka/marching_cubes

[5] https://github.com/sjhalayka/meshdim

[6] Halayka, S. (2009) ”Some visually interesting non-standard quaternion fractal sets”.
Chaos, Solitons & Fractals. Volume 41, Issue 5.

[7] Maple, C. (2003). ”Geometric design and space planning using the marching squares and
marching cube algorithms”. Proc. 2003 Intl. Conf. Geometric Modeling and Graphics.
pp. 90–95

[8] Bhaniramka, P.; Wenger, R.; Crawfis, R. (2000) ”Isosurfacing in higher dimensions,”
Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145), Salt Lake City, UT,
USA, 2000, pp. 267-273.

[9] Bhaniramka, P.; Wenger, R.; Crawfis, R. (2004) ”Isosurface construction in any dimen-
sion using convex hulls” in IEEE Transactions on Visualization and Computer Graphics,
vol. 10, no. 2, pp. 130-141, March-April 2004.

[10] Wenger, R. (2013) ”Isosurfaces: Geometry, Topology, and Algorithms” ISBN: 978-
1466570979

[11] Baggott, J. (2019) ”Quantum Space” ISBN: 978-0198809111

[12] Misner, C.W.; Thorne, K.S.; Wheeler, J.A. (1973) ”Gravitation” ISBN: 978-0716703440

[13] Di Valentino, E.; Melchiorri, A; Silk, J. (2019) ”Planck evidence for a closed Universe
and a possible crisis for cosmology” Nat Astron doi:10.1038/s41550-019-0906-9

6

Figure 1: Low resolution (r = 10) surface for the iterative quaternion equation Z = Z2 +C,
where C = 0.0, 0.0, 0.0, 0.0. The surface’s dimension is 2.02.

Figure 2: Medium resolution (r = 100) surface for the iterative quaternion equation Z =
Z2 + C, where C = 0.0, 0.0, 0.0, 0.0. The surface’s dimension is 2.06.

Figure 3: High resolution (r = 1000) surface for the iterative quaternion equation Z = Z2+C,
where C = 0.0, 0.0, 0.0, 0.0. The surface’s dimension is practically 2.0.

7

Figure 4: Low resolution (r = 10) surface for the iterative quaternion equation Z = Z cos(Z).
The surface’s dimension is 2.05.

Figure 5: Medium resolution (r = 100) surface for the iterative quaternion equation Z =
Z cos(Z). The surface’s dimension is 2.11.

Figure 6: High resolution (r = 1000) surface for the iterative quaternion equation Z =
Z cos(Z). The surface’s dimension is 2.08.

8

Figure 7: A 2-dimensional slice of the iterative quaternion equation Z = Z cos(Z), showing
the self-similar nature of the set at all scales.

9

Figure 8: Marching Squares input and output.

Figure 9: D = 1.5.

Figure 10: D = 1 to D = 1.9999.

10

