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Abstract

The curvature of a closed surface can lead to fractional dimension. In this paper, the
properties of the 2-sphere surface of a three-dimensional ball and the 2.x-dimensional
surface of a three-dimensional fractal set are considered. Tessellation is used to approxi-
mate each surface, primarily because the 2.x-dimensional surface of a three-dimensional
fractal set is otherwise non-differentiable (having no well-defined surface normals).

1 Overview

Unlike in traditional geometry where dimension is an integer, fractional (non-integer) di-
mension occurs in fractal geometry. In fractal geometry, there are currently many ways to
calculate the dimension of a surface [1, 2]. This paper uses a new method of calculating the
fractional dimension of a surface – it is curvature that leads to this fractional dimension.

In this paper we will focus on the tessellation of closed surfaces. For instance, Marching
Cubes [3, 4] can be used to generate triangular tessellations (meshes), where dimension
D ∈ (2.0, 3.0).

We will focus on the difference between the curvature and dimension of a 2-sphere and
the 2.x-dimensional surface of a three-dimensional fractal set. We will generate both a 2-
sphere and the 2.x-dimensional surface of a three-dimensional fractal set by using iterative
quaternion equations. For example, a 2-sphere is generated by the iterative quaternion Julia
set equation

Z = Z2 + C, (1)

but where C = 0.0, 0.0, 0.0, 0.0. Also for example, the 2.x-dimensional surface of a three-
dimensional fractal set is generated by the iterative quaternion equation

Z = Z cos(Z). (2)

See [5] for information on how to perform quaternion multiplication, addition, cos, etc.
In the end, some notes are given.
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2 The tessellation of a closed surface

Approximating the surface of a three-dimensional shape as a mesh allows us to calculate the
surface’s dimension D ∈ (2.0, 3.0). This includes approximation of both a 2-sphere and the
2.x-dimensional surface of a three-dimensional fractal set.

First we calculate, for each triangle, the average dot product of the triangle’s face normal
n̂i and its three neighbouring triangles’ face normals ô1, ô2, ô3:

di =
n̂i · ô1 + n̂i · ô2 + n̂i · ô3

3
∈ (−1.0, 1.0]. (3)

Because we assume that there are three neighbours per triangle, the mesh must be closed
(no cracks or holes, precisely two triangles per edge). The reasion why the value −1.0 is not
achievable is because that would lead to intersecting triangles.

Then we calculate the normalized measure of curvature:

ki =
1− di

2
∈ [0.0, 1.0). (4)

Once ki has been calculated for all triangles, we can then calculate the average normalized
measure of curvature K, where t is the number of triangles in the mesh:

K =
1

t

t∑
i=1

ki =
k1 + k2 + ... + kt

t
∈ (0.0, 1.0). (5)

The reason why the value 0.0 is not achievable is because we are dealing with a closed surface,
and so there’s bound to be some curvature.

The dimension of the closed surface is:

D = 2 + K ∈ (2.0, 3.0). (6)

As far as we know, this method of calculating the dimension of a closed surface is new
[6, 7]. The entire C++ code for generating a mesh can be found at [8]. The entire C++
code for calculating a mesh’s dimension can be found at [9].

3 Vanishing versus non-vanishing curvature

Where r ∈ [2,∞) is the integer sampling resolution, gmax ∈ (−∞,∞) is the sampling grid
maximum extent, gmin ∈ (−∞,∞) is the sampling grid minimum extent, and gmax > gmin,
the Marching Cubes step size is:

` =
gmax − gmin

r − 1
∈ (0.0,∞). (7)

In this paper gmax = 1.5, gmin = −1.5, and r is variable.
For a 2-sphere, the local curvature all but vanishes as ` decreases (as r increases):

lim
`→0.0

K(`) = 0.0. (8)
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This results in a dimension of practically (but never quite) 2.0, which is to be expected from
a non-fractal surface. See Figures 1 - 3.

On the other hand, for the 2.x-dimensional surface of a three-dimensional fractal set, the
local curvature does not vanish as ` decreases:

lim
`→0.0

K(`) 6= 0.0. (9)

This results in a dimension considerably greater than 2.0, but not equal to or greater than
3.0, which is to be expected from a fractal surface. See Figures 4 - 7.

4 Notes

The minimum Marching Cubes step size, in real life, is the Planck length `P .
Marching Squares [10, 11, 12] can be used to generate closed line paths, where dimension

D ∈ (1.0, 2.0). See Figures 8 - 10 for some examples of a line path. These figures might be
helpful if there is difficulty envisioning the curvature in the case of Marching Cubes.
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Figure 1: Low resolution (r = 10) surface for the iterative quaternion equation is Z = Z2.
The surface’s dimension is 2.02.

Figure 2: Medium resolution (r = 100) surface for the iterative quaternion equation is
Z = Z2. The surface’s dimension is 2.06.

Figure 3: High resolution (r = 1000) surface for the iterative quaternion equation is Z = Z2.
The surface’s dimension is practically 2.0.
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Figure 4: Low resolution (r = 10) surface for the iterative quaternion equation is Z =
Z cos(Z). The surface’s dimension is 2.05.

Figure 5: Medium resolution (r = 100) surface for the iterative quaternion equation is
Z = Z cos(Z). The surface’s dimension is 2.11.

Figure 6: High resolution (r = 1000) surface for the iterative quaternion equation is Z =
Z cos(Z). The surface’s dimension is 2.08.
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Figure 7: A two-dimensional slice of the iterative quaternion equation Z = Z cos(Z), showing
the fractal nature of the set.
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Figure 8: Example input (a two-dimensional greyscale image, consisting of pixels) and output
(a 1.x-dimensional closed set of line segments) of the Marching Squares algorithm, approx-
imating a 1-sphere (a circle), where sampling resolution is r = 8. Note that for Marching
Cubes, the input is a three-dimensional ‘greyscale image’, consisting of voxels, and the output
is a 2.x-dimensional closed set of triangles.

Figure 9: Illustrated is a section of a closed line path, with surface normals. The average
dot product of neighbouring line segments is di = 0.0. This leads to a normalized measure
of curvature ki = (1− di)/2 = 0.5, which in turn leads to an average normalized measure of
curvature K = 0.5. The dimension is D = 1 + K = 1.5.

Figure 10: A section of a closed line path as it goes from dimension 1.0 (at top) to 1.9999
(at bottom). In the end, where the dimension is 1.9999, the result is practically a rectangle.
The reason why the dimension cannot be 2.0 is because that would lead to intersecting line
segments.
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