Positivity of the Fourier Transform of the Shortest Maximal Order Convolution Mask for Cardinal B-splines

Markus Sprecher
December 18, 2018

In [2] approximations of functions into manifolds were studied. For the transformation of function values to B-spline coefficients convolution masks were considered. Some of the proofs required that the convolution mask had a positive Fourier transform. This property was used to show that the inverse of the convolution exists and that the spatial dependency decays exponentially. For splines of degree \(m \) the existence of such convolution masks of length \(m^2/2 \) were constructively proven. It was posed as an open question if families with shorter sequences could satisfy this property. For \(m \leq 21 \) it was computationally verified that the shortest possible sequence that satisfies the polynomial reproduction property also has a positive Fourier transform. This sequence has length \(m \). It was conjectured that this holds true for all odd \(m > 0 \). In Section 1 of this work we will prove this fact. In Section 2 we describe how the convolution masks can be computed.

1 Theory

We start by defining cardinal B-splines

Definition 1. Cardinal B-splines can recursively be defined by

\[
B_0 = 1_{[-\frac{1}{2}, \frac{1}{2}]} \text{ and } B_m = B_{m-1} \ast B_0 \text{ for all } m \geq 1
\]

where \(1_{[-\frac{1}{2}, \frac{1}{2}]} \) denotes the indicator function on the interval \([-\frac{1}{2}, \frac{1}{2}] \) and \(\ast \) denotes the convolution.

Next we consider the polynomial reproduction property

\[
\sum_{i \in \mathbb{Z}} \sum_{j=-S}^{S} B_m(x - i) p(i - j) \lambda_j = p(x) \text{ for all } x \in \mathbb{R}
\] (1)
and for all polynomials p of degree $\leq m$. As in [2] we will use the functions $N_m, \Lambda: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$N_m(z) = \sum_{j=-(m-1)/2}^{(m-1)/2} B_m(j)z^j, \quad \Lambda(z) = \sum_{j=-S}^{S} \lambda_j z^j. \quad (2)$$

We will now proof an equivalent formulation of the polynomial reproduction property.

Lemma 1. The polynomial reproduction property (1) is equivalent to

$$\left. \frac{d^l}{dz^l} (N_m(z)\Lambda(z)) \right|_{z=1} = \begin{cases} 1 & l = 0 \\ 0 & l \in \{1, \ldots, m\} \end{cases}. \quad (3)$$

Proof. We have

$$\left. \frac{d^l}{dz^l} (N_m(z)\Lambda(z)) \right|_{z=1} = \left. \frac{d^l}{dz^l} \left(\sum_{k=-(m-1)/2}^{(m-1)/2} B_m(k)z^k \right) \left(\sum_{j=-S}^{S} \lambda_j z^j \right) \right|_{z=1} \quad (4)$$

$$= \left. \frac{d^l}{dz^l} \left(\sum_{k=-(m-1)/2}^{S+(m-1)/2} \sum_{j=-S}^{S} B_m(k-j)\lambda_j z^{k} \right) \right|_{z=1} \quad (5)$$

$$= \left. \left(\sum_{k=-(m-1)/2}^{S+(m-1)/2} \sum_{j=-S}^{S} B_m(k-j)\lambda_j z^{k} \right) \right|_{z=1} \quad (6)$$

$$= \left. \left(\sum_{k=-S-(m-1)/2}^{S+(m-1)/2} \sum_{j=-S}^{S} B_m(k-j)\lambda_j p_l(-k) \right) \right|_{z=1} \quad (7)$$

where $p_0 = 1, p_l(x) = (-x)(-x-1)\ldots(-x-(l-1))$. If the polynomial reproduction property (1) holds Expression (8) is equal to

$$p_l(0) = \begin{cases} 1 & l = 0 \\ 0 & l \in \{1, \ldots, m\} \end{cases}. \quad (8)$$

On the other hand if (3) holds the polynomial reproduction property (1) holds for $x = 0$ and $p = p_l$ for all $l \in \{0, \ldots, m\}$. As the polynomials p_0, \ldots, p_m build a basis for the space of polynomials of degree $\leq m$ the polynomial reproduction property (1) holds for all polynomials p of degree $\leq m$ at $x = 0$. By replacing x resp. i by $x+1$ resp. $i+1$ it follows that the polynomial reproduction property holds at all integer points. Now consider the function

$$f(x) = \sum_{i \in \mathbb{Z}} \sum_{j=-S}^{S} B_m(x-i)p(i-j)\lambda_j.$$
Since \(B'_m(x) = B_{m-1}(x + \frac{1}{2}) - B_{m-1}(x - \frac{1}{2}) = \delta B_{m-1}(x - \frac{1}{2}) \) where \(\delta \) is the discrete difference operator \(\delta u(x) = u(x + 1) - u(x) \) it follows inductively that \(B^{(m)}_m(x) = \delta^m B_0(x - \frac{m}{2}) \). Since \(\delta \) commutes with the convolution it follows that

\[
 f^{(m)}(x) = \sum_{i=0}^{S} \sum_{j=-S}^{S} B^{(m)}_m(x - i)p(i - j)\lambda_j
\]

\[
 = \sum_{i=0}^{S} \sum_{j=-S}^{S} \delta^m B_0 \left(x - i - \frac{m}{2} \right) p(i - j)\lambda_j
\]

\[
 = \sum_{i=0}^{S} \sum_{j=-S}^{S} B_0 \left(x - i - \frac{m}{2} \right) \delta^m p(i - j)\lambda_j
\]

Note that every time \(\delta \) is applied the polynomial degree decreases by 1. Hence \(\delta^m p(i - j) \) and therefore \(f^{(m)} \) is constant. It follows that \(f \) is a polynomial and since \(p \) coincides with \(f \) on all integers that \(f = p \). Hence the polynomial reproduction property holds for all polynomials of degree \(\leq m \) and all \(x \in \mathbb{R} \). \(\square \)

We can now formulate and proof our theorem.

Theorem 1. Let \(k \geq 0 \) be an nonnegative integer. Then there exist a unique symmetric (i.e. \(\lambda_{-i} = \lambda_i \)) sequence \((\lambda_j)_{j=-k}^{k} \subset \mathbb{R} \) that satisfies the polynomial reproduction property (1) for \(m = 2k + 1 \). Furthermore we have

\[
 \sum_{j=-k}^{k} \lambda_{j} e^{2\pi i j \omega} \geq 1 > 0 \text{ for all } \omega \in \mathbb{R}.
\]

Proof. Since \(\lambda \) and \(B_m \) are symmetric, i.e. \(\lambda_{-i} = \lambda_i \) and \(B_m(-x) = B_m(x) \), both \(N_m(z) \) and \(\Lambda(z) \) can be written as polynomials of degree \(k \) in

\[
x = z + z^{-1} = 2 \left(\frac{z - 1}{z} \right), \text{ i.e. } N_m(z) = p \left(\frac{(z - 1)^2}{z} \right), \quad \Lambda(z) = q \left(\frac{(z - 1)^2}{z} \right)
\]

for polynomials \(p, q \) of degree \(k \). Condition (3) is by Lemma 1 equivalent to

\[
p(x)q(x) = 1 + x^{k+1}(\ldots),
\]

i.e. that the constant coefficient of \(p(x)q(x) \) is one and coefficients of order 1 up to order \(k \) are zero. We first prove uniqueness of \(q \) and therefore of \((\lambda_j)_{j=-k}^{k} \subset \mathbb{R} \). Let \(q_1, q_2 \) be two polynomials of degree \(k \) satisfying (12). Then it follows that

\[
p(x)(q_1(x) - q_2(x)) = x^{k+1}(\ldots)
\]

and since \(p(0) = 1 \neq 0 \) that \(q_1(x) - q_2(x) = x^{k+1}(\ldots) \) and since \(q_1 \) and \(q_2 \) are polynomials of degree \(k \) that \(q_1 = q_2 \).

The polynomial \(N_m(z)z^{(m-1)/2m} \) is known as the Eulerian polynomial. By [1] the Eulerian polynomial and therefore \(N_m \) has only negative and simple
real roots. If \(z_1 \) is a root of \(N_m \) then \(x_i = z_i + z_1^{-1} - 2 \leq -4 \) is a root of \(p \). Furthermore all \(k \) roots \(x_1, \ldots, x_k \) of \(p \) can be constructed in this way. Therefore the roots of \(p \) are all smaller or equal to \(-4\). Note that for \(|x| < 4 \) we have

\[
\frac{1}{p(x)} = \frac{1}{\prod_{i=1}^{k} \left(1 - \frac{x}{z_i}\right)} = \prod_{i=1}^{k} \sum_{j=0}^{\infty} \frac{x^j}{x_i^j}.
\]

Define \(q \) by the truncating this power series at order \(k + 1 \), i.e. such that

\[
\frac{1}{p(x)} = q(x) + x^{k+1}(\ldots)
\]

Then we have

\[
p(x)q(x) = p(x) \left(\frac{1}{p(x)} + x^{k+1}(\ldots) \right) = 1 + x^{k+1}(\ldots),
\]

which shows that (12) is satisfied, i.e. the sequence \((\lambda_j)_{j=-k}^{k} \) corresponding to \(q \) satisfies the polynomial reproduction property.

The statement for the Fourier transform is equivalent to

\[
\Lambda(z) \geq 1 \text{ for all } |z|=1
\]

which is equivalent to

\[
q(x) \geq 1 \text{ for all } -4 \leq x \leq 0.
\]

Since all roots \(x_1, \ldots, x_k \) of \(p \) are negative all terms \(\frac{x^j}{x_i^j} \) in the power series of \(\frac{1}{p(x)} \) are positive for \(x \in (-4,0) \). Therefore also all terms of the power series of \(\frac{1}{p(x)} \) and therefore also all polynomial terms of \(q(x) \) are positive and since the zero-order term is one we have \(q(x) \geq 1 \). The special cases \(x = -4 \) and \(x = 0 \) follow from continuity.

\[
\square
\]

2 Construction

In this section, we describe how to construct the coefficients. It is tedious even for small \(m \) to compute the roots of the polynomial \(p \) and the power series of \(1/p \) used in the proof in the previous section. To get the coefficients it is easier to determine the polynomial coefficients the polynomial \(q \) recursively. To compute the coefficients of the \(N_m \), i.e. the values of the B-splines at integers de Boors 3-point recursion can be used which for our case of uniform grids reads

\[
B_m(x) = \frac{(m+1)}{m} B_{m-1}(x + \frac{1}{2}) + \frac{(m+1)}{m} B_{m-1}(x - \frac{1}{2}).
\]

(13)
2.1 The cases $m = 3$ and $m = 5$

For $m = 3$ we have

\[
N_m(z) = \frac{1}{6} z^{-1} + \frac{4}{6} + \frac{1}{6} z^1 = 1 + \frac{1}{6} (z + z^{-1} - 2) \tag{14}
\]

\[
p(x) = 1 + \frac{x}{6} \tag{15}
\]

\[
\frac{1}{p(x)} = 1 - \frac{x}{6} + \left(\frac{x}{6}\right)^2 - \cdots \tag{16}
\]

\[
q(x) = 1 - \frac{1}{6} x \tag{17}
\]

\[
\Lambda(z) = 1 - \frac{1}{6} (z + z^{-1} - 2) = -\frac{1}{6} z^{-1} + \frac{4}{3} - \frac{1}{6} z^1 \tag{18}
\]

\[
(\lambda_j)^k = \left(-\frac{1}{6}, \frac{4}{3}, \frac{1}{6} \right) \tag{19}
\]

For $m = 5$ we have

\[
N_m(z) = \frac{1}{120} z^{-2} + \frac{26}{120} z^{-1} + \frac{66}{120} + \frac{26}{120} z^1 + \frac{1}{120} z^2 \tag{20}
\]

\[
= 1 + \frac{1}{4} (z + z^{-1} - 2) + \frac{1}{120} (z + z^{-1} - 2)^2 \tag{21}
\]

\[
p(x) = 1 + \frac{x}{4} + \frac{x^2}{120} \tag{22}
\]

\[
q(x) = 1 - \frac{x}{4} + \frac{13 x^2}{240} \tag{23}
\]

\[
\Lambda(z) = 1 - \frac{1}{4} (z + z^{-1} - 2) + \frac{13}{240} (z + z^{-1} - 2)^2 \tag{24}
\]

\[
= \frac{13}{240} z^{-2} - \frac{7}{15} z^{-1} + \frac{73}{40} - \frac{7}{15} z^1 + \frac{13}{240} z^2 \tag{25}
\]

\[
(\lambda_j)^k = \left(\frac{13}{240}, \frac{7}{15}, \frac{73}{40}, \frac{7}{15}, \frac{13}{240} \right) \tag{26}
\]

2.2 Code to construct convolution mask for arbitrary m

Below an octave/matlab code for computing the convolution mask.

```matlab
function lambda = conv_mask(m)
    assert(mod(m,2)==1,'m must be an odd positive integer')
    k=(m-1)/2;
    %compute B-spline at integer by de Boor three point recursion
    b=1;
    for j=2:m
        x=(j-1)/2*linspace(-1,1,j);
        %
```
b = (((j+1)/2+x).*[b 0]+((j+1)/2-x).*[0 b])/j;
end

%coefficient wrt z of powers of x=1/z+z-2
powx=cell(1,k);
powx{1}=[1 -2 1];
for j=2:k
 powx{j}=conv(powx{1},powx{j-1});
end

%determine recursively coefficients of p(x)
cp=zeros(1,k+1);
for j=1:k
 cp(j)=b(1)/powx{k+1-j}(end);
 b=b-b(1)*powx{k+1-j};
 %remove first and last coefficient which is zero
 b([1 end])=[];
end

%determine coefficients of q
cq=zeros(1,k+1);
cq(k+1)=1;
for j=k:-1:1
 cq(j)=-sum(cq(j+1:end).*cp(end-1:-1:j));
end

%determine coefficients of lambda(z)
lambda=cq(end);
for j=1:k
 lambda=[0 lambda 0]+cq(end-j)*powx{j};
end
end

References
