Abstract: We evaluate the Lyndon interpolation on the logic GL. Each is not tautologous, and the combination is not tautologous, hence rendering both refuted.

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, F as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal. The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

Definition 2.2. The least normal logic is called K.

\[K = \Box (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \]
\[(#(p>q)>(#p>#q)) ; \quad \text{T T T T T T T T T T T T} \]

GL = K + {\Box (\Box p \rightarrow p) \rightarrow \Box p}
\[(#(p>q)>(#p>#q))&((#(p>p)>(#p)) ; \quad \text{C T C T C T C T C T C T} \]

Eq. 2.2.1.2 as GL is not tautologous. This means logic GL is not a logic proved as a theorem.

Definition 2.5. We say a logic L enjoys the Lyndon interpolation property (LIP) if for any formulas \(\phi \) and \(\psi \), if L \(\vdash \)

\[\phi \rightarrow \psi, \]
\[p>q ; \quad \text{T F T T T F T T T F T T} \]

then there exists a formula \(\theta \) satisfying the following properties:

1. \(v+(\theta) \subseteq v+(\phi) \cap v+(\psi); \)
\[\sim((r\&p)\&(r\&q)<(r\&s)) = (p=p) ; \quad \text{T T T T F T T T T T T T} \]
2. \(v-(\theta) \subseteq v-(\phi) \cap v-(\psi) \);
\[(2.5.2.1) \]
\[\neg(((\neg r \& p) \& (\neg r \& q)) \leq (\neg r \& s)) = (p=p); \]
\[TTTT TTTT TTTT TTTT \]
\[(2.5.2.2) \]

3. \(L \vdash \phi \rightarrow \theta; \)
\[(2.5.3.1) \]
\[p>s ; \]
\[TTTT TTTT TTTT TTTT \]
\[(2.5.3.2) \]

4. \(L \vdash 0 \rightarrow \psi. \)
\[(2.5.4.1) \]
\[s>q ; \]
\[TTTT TTTT FFFT FFFT \]
\[(2.5.4.2) \]

Such a formula \(\theta \) is said to be a Lyndon interpolant of \(\phi \rightarrow \psi \) in \(L \).

The argument becomes: \(\phi \rightarrow \psi \) implies that if \((v+(\theta) \subseteq v+(\phi) \cap v+(\psi))\) and \((v-(\theta) \subseteq v-(\phi) \cap v-(\psi))\) and \(\phi \rightarrow \theta \) and \(\theta \rightarrow \psi \), then \(\theta \) as Lyndon interpolant.

\[(p>q)>((((\neg r \& p) \& (\neg r \& q)) \leq (\neg r \& s)) \]
\[\& \neg(((r \& p) \& (r \& q)) \leq (r \& s))) \& (p>s) \& (s>q)))>s) ; \]
\[FFFT FFTT TTTT TTTT \]
\[(2.5.5.2) \]

Eq. 2.5.5.2 as rendered is not tautologous. This means the Lyndon interpolation is refuted.

Remark 5: To assert that the non-tautologous Lyndon interpolation applies to the non-tautologous logic \(GL \) is a further mistake.

\[((p>q)>((((\neg r \& p) \& (\neg r \& q)) \leq (\neg r \& s)) \]
\[\& \neg(((r \& p) \& (r \& q)) \leq (r \& s))) \& ((p>s) \& (s>q)))>s)) \&
\[((\#(p>q)>(\#p>\#q)) \& (\#(p>\#p)) ; \]
\[FFTT FFTT CTCT CTCT \]
\[(5.0.1.2) \]