Solution of a Sangaku “Tangency” Problem via Geometric Algebra

July 26, 2019

James Smith
nitac14b@yahoo.com
https://mx.linkedin.com/in/james-smith-1b195047

Abstract

Because the shortage of worked-out examples at introductory levels is an obstacle to widespread adoption of Geometric Algebra (GA), we use GA to solve one of the beautiful sangaku problems from 19th-Century Japan. Among the GA operations that prove useful is the rotation of vectors via the unit bivector i.

“The center of the red circle and the base of the isosceles triangle lie along the same diameter of the green circle. The blue circle is tangent to the other three figures. Prove that the line connecting its center to the point of contact between the red circle and the triangle is perpendicular to the above-mentioned diameter.”
Figure 1: The center of the red circle and the base of the isosceles triangle lie along the same diameter of the green circle. The blue circle is tangent to the other three figures. Prove that the line connecting its center to the point of contact between the red circle and the triangle is perpendicular to the above-mentioned diameter.

1 Problem Statement

In Fig. 1, the center of the red circle and the base of the isosceles triangle lie along the same diameter of the green circle. The blue circle is tangent to the other three figures. Prove that the line connecting its center to the point of contact between the red circle and the triangle is perpendicular to the above-mentioned diameter.

2 Formulation of the Problem in Geometric-Algebra Terms

Fig. 2 defines the vectors that we will use. (Later, we will use an additional, slightly-modified formulation.) Note the notation used to distinguish between points and vectors: for example, \(\mathbf{c}_1 \) (bolded) is the vector from the origin to the point \(c_1 \) (italicized). Also, \(c_1^2 \) denotes \(||c_1||^2 \).

In GA terms, we are to prove that \(\mathbf{c}_3 \cdot \hat{b} = 0 \). Other formulations are possible; for example, that \(\mathbf{c}_3 \hat{b} = \hat{b} \mathbf{c}_3 \).
Figure 2: The vectors and frame of reference that we will use in our first solution.
3 Observations

From Fig. 2, two key observations are that

\[r_3 = c_3 \cdot \hat{a} \]

(3.1)

and that, in turn,

\[
\hat{a} = \hat{p} \cdot i \\
= - \left[\frac{\sqrt{r_1^2 - r_2^2}}{\sqrt{2 r_1 (r_1 - r_2)}} \right] \hat{b} + \left[\frac{r_1 - r_2}{\sqrt{2 r_1 (r_1 - r_2)}} \right] \hat{b} .
\]

(3.2)

We also see that by expressing the distance between \(c_1 \) and \(c_3 \) as \(r_1 - r_3 \) and \(\| c_3 - c_1 \| \), we obtain

\[(c_3 - c_1)^2 = (r_1 - r_3)^2 , \]

which after simplification becomes

\[c_3^2 + 2 (2 r_1 - r_2) c_3 \cdot \hat{b} + 4 r_2 (r_2 - r_1) = r_3^2 - r_3 r_1 . \]

(3.3)

Similarly, because \(\| c_3 - c_2 \| = r_2 + r_3 \),

\[c_3^2 + 2 r_2 c_3 \cdot \hat{b} = r_3^2 + 2 r_3 r_2 . \]

(3.4)

4 Solutions

For more information on the features of GA that we will use in these solutions, please see References [1] and [2].

4.1 Solution Strategy

We will derive equations, by two methods, for the center and radius of the smallest circle. We will see that those equations are satisfied by distinct two circles, for one of which \(c_3 \cdot \hat{b} = 0 \).

4.2 First Solution

4.2.1 Derivation of the Equation that We Seek

We begin by subtracting Eq. (3.4) from Eq. (3.3), then solving for \(r_3 \):

\[r_3 = \left(\frac{r_1 - r_2}{r_1 + r_2} \right) \left(2 r_2 + c_3 \cdot \hat{b} \right) . \]

(4.1)
Substituting that expression for r_3 in Eq. (3.4), then simplifying,

$$c_3^2 - \left(\frac{r_1 - r_2}{r_1 + r_2} \right)^2 (c_3 \cdot b)^2 - 4r_1r_2 \left[\frac{r_1 - r_2}{(r_1 + r_2)^2} \right] c_3 \cdot b = \frac{8r_1r_2^2 (r_1 - r_2)}{(r_1 + r_2)^2}.$$

Now, we write c_3^2 as $(c_3 \cdot b)^2 + [c_3 \cdot (\hat{b})]^2$, obtaining

$$\left[c_3 \cdot (\hat{b}) \right]^2 + \left[\frac{4r_1r_2}{(r_1 + r_2)^2} \right] (c_3 \cdot b)^2 - 4r_1r_2 \left[\frac{r_1 - r_2}{(r_1 + r_2)^2} \right] c_3 \cdot b = \frac{8r_1r_2^2 (r_1 - r_2)}{(r_1 + r_2)^2}. \tag{4.2}$$

An expression for $\left[c_3 \cdot (\hat{b}) \right]^2$ in terms of $c_3 \cdot b$ by equating the expressions for r_3 given by Eqs. (3.1) and (4.1),

$$c_3 \cdot \hat{a} = \left(\frac{r_1 - r_2}{r_1 + r_2} \right) \left(2r_2 + c_3 \cdot b \right),$$

then expressing \hat{a} via Eq. (4.2):

$$c_3 \cdot \left\{ - \left[\frac{\sqrt{r_1^2 - r_2^2}}{\sqrt{2r_1 (r_1 - r_2)}} \right] b + \left[\frac{r_1 - r_2}{\sqrt{2r_1 (r_1 - r_2)}} \right] b \right\} = \left(\frac{r_1 - r_2}{r_1 + r_2} \right) \left(2r_2 + c_3 \cdot \hat{b} \right). \tag{4.3}$$

Thus,

$$\left[c_3 \cdot (\hat{b}) \right]^2 = \left[\frac{\sqrt{2r_1 (r_1 - r_2)}}{r_1 + r_2} \right]^2 (c_3 \cdot b)^2 + 4r_2 \left[\frac{2r_1 (r_1 - r_2)}{(r_1 + r_2)^2} + \sqrt{\frac{2r_1}{r_1 + r_2}} c_3 \cdot \hat{b} + \frac{8r_1r_2 (r_1 - r_2)}{(r_1 + r_2)^2}. \tag{4.4}$$

Substituting that expression for $\left[c_3 \cdot (\hat{b}) \right]^2$ in Eq. (5.2),

$$0 = \left\{ \left[\frac{\sqrt{2r_1 (r_1 - r_2)}}{r_1 + r_2} + \sqrt{\frac{2r_1}{r_1 + r_2}} \right]^2 + \frac{4r_1r_2}{(r_1 + r_2)^2} \right\} (c_3 \cdot b)^2 + 4r_2 \left[\frac{3r_1 (r_1 - r_2)}{(r_1 + r_2)^2} + \sqrt{\frac{2r_1}{r_1 + r_2}} c_3 \cdot \hat{b}. \tag{4.5}$$

The two roots are

1. $c_3 \cdot b = 0$, with $c_3 \cdot \hat{b} = \frac{2r_2 \sqrt{2r_1 (r_1 - r_2)}}{r_1 + r_2}$ and $r_3 = \frac{2r_2 (r_1 - r_2)}{r_1 + r_2}$; and
Figure 3: The two solutions to Eq. (4.5). For our purposes, the magenta circle is extraneous: it is tangent to the extension of the side of the isosceles triangle, but not to the triangle itself.

2. \(\mathbf{c}_3 \cdot \hat{\mathbf{b}} = -4r_2 (r_1 - r_2) \left[\frac{r_1 + \sqrt{2r_1 (r_1 + r_2)}}{2 (r_1 - r_2) \sqrt{2r_1 (r_1 + r_2) + 3r_1^2 + r_2^2}} \right] \),

 \[\mathbf{c}_3 \cdot (\hat{\mathbf{b}} i) = -\frac{2r_2 (r_1 + r_2) \sqrt{2r_1 (r_1 - r_2) + 4r_1 r_2 \sqrt{r_1^2 - r_2^2}}}{2 (r_1 - r_2) \sqrt{2r_1 (r_1 + r_2) + 3r_1^2 + r_2^2}}, \]

 \[r_3 = \frac{2r_1 r_2 (r_1 - r_2)}{2 (r_1 - r_2) \sqrt{2r_1 (r_1 + r_2) + 3r_1^2 + r_2^2}} \].

The circle for which \(\mathbf{c}_3 \cdot \hat{\mathbf{b}} = 0 \) is in red in Fig. 3; the magenta circle is extraneous. It is tangent to the extension of the side of the isosceles triangle, but not to the triangle itself.

4.3 Second Solution

This approach is more conventional than the first, and (arguably) makes better use of GA. We begin by modifying Fig. 2 slightly, to produce Fig. 4. The unit vectors \(\mathbf{e}_1 \) and \(\mathbf{e}_2 \) are perpendicular; their product \(\mathbf{i} = \mathbf{e}_1 \mathbf{e}_2 \) is the unit bivector.
Figure 4: The vectors and frame of reference that we will use in our second solution. The vector \hat{b} from Fig. 2 has been renamed e_1. Together, e_1 and e_2 form an orthonormal basis for the plane that contains the triangle and the three circles. The unit bivector for said plane is $e_1 e_2$. Thus, the vector $i \hat{p}$ is the clockwise rotation, through $\pi/2$ radians, of \hat{p}.

for the plane that contains the triangle and the three circles.

Now, we’ll obtain expressions for the radii of the two solution circles, and the corresponding values of $c_3 \cdot e_1$ (which is identical to $c_3 \cdot \hat{b}$ in the first solution.) First, we return to Eq. (3.4),

$$c_3^2 + 2r_2 c \cdot \hat{b} = r_3^2 + 2r_2 r_3,$$

and make the substitutions $c_3 \cdot \hat{b} = c_3 \cdot e_1$ and $c_3 = (c_3 \cdot e_1) e_1 + (c_3 \cdot e_2) e_2$. Thus,

$$[(c_3 \cdot e_1) e_1 + (c_3 \cdot e_2) e_2]^2 + 2r_2 (c_3 \cdot e_1) = r_3^2 + 2r_2 r_3,$$

$$\therefore (c_3 \cdot e_1)^2 + (c_3 \cdot e_2)^2 + 2r_2 (c_3 \cdot e_1) = r_3^2 + 2r_2 r_3.$$

From Eq. (4.5),

$$c_3 \cdot e_1 = \left[\frac{r_1 + r_2}{r_1 - r_2} \right] r_3 - 2r_1. \quad (4.6)$$
After making that substitution in the previous result, then solving for $c_3 \cdot e_2$, we find that

$$c_3 \cdot e_2 = \frac{2\sqrt{r_1 r_2 r_3 (r_1 - r_2 - r_3)}}{r_1 - r_2}. \quad (4.7)$$

Using that result, and Eq. (4.6), we can write c_3 in terms of r_3:

$$c_3 = \left\{ \frac{r_1 + r_2}{r_1 - r_2} r_3 - 2r_1 \right\} e_1 + \left\{ \frac{2\sqrt{r_1 r_2 r_3 (r_1 - r_2 - r_3)}}{r_1 - r_2} \right\} e_2. \quad (4.8)$$

Next, we note, from Fig. 4, that the vector $c_3 + r_3 (i \hat{p})$ is a scalar multiple of p. Therefore,

$$\{c_3 + r_3 (i \hat{p})\} \land p = 0.$$

Using $c_3 = (c_3 \cdot e_1) e_1 + (c_3 \cdot e_2) e_2$, then rearranging,

$$(c_3 \cdot e_1) e_1 \land p + (c_3 \cdot e_2) e_2 \land p = -r_3 (i \hat{p}) \land p$$

$$= -r_3 ||p||,$$

because $(i \hat{p}) \land p = \langle (i \hat{p}) p \rangle_2 = \langle i (\hat{p} p) \rangle_2 = \langle i ||p|| \rangle_2 = i ||p||$.

From Fig. 4, $p = (r_1 - r_2) e_1 + \left[\sqrt{r_1^2 - r_2^2} \right] e_2$. Thus, $||p|| = \sqrt{2r_1 (r_1 - r_2)}$. Making those substitutions, and using Eqs. (4.6) and (4.7), plus $i = e_1 e_2$, Eq. (4.3) becomes (after considerable simplification),

$$2\sqrt{r_1 r_2 r_3 (r_1 - r_2 - r_3)} = 2r_2 \sqrt{r_1^2 - r_2^2}$$

$$+ r_3 \left[\sqrt{2r_1 (r_1 - r_2)} - \left(\frac{r_2 + r_3}{r_1 - r_2} \right) \sqrt{r_1^2 - r_2^2} \right]. \quad (4.10)$$

The two values of r_3 that satisfy that equation, and the value of $c_3 \cdot e_1$, are as given at the end of Section 4.2.1 As we saw there, $c_3 \cdot e_1 = 0$ for the small circle shown in the problem statement.

References
