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Abstract

Because the shortage of worked-out examples at introductory levels is

an obstacle to widespread adoption of Geometric Algebra (GA), we use

GA to solve one of the beautiful sangaku problems from 19th-Century

Japan. Among the GA operations that prove useful is the rotation of

vectors via the unit bivector i.

“The center of the red circle and the base of the isosceles triangle

lie along the same diameter of the green circle. The blue circle is

tangent to the other three figures. Prove that the line connecting its

center to the point of contact between the red circle and the triangle

is perpendicular to the above-mentioned diameter.”
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Figure 1: The center of the red circle and the base of the isosceles triangle lie

along the same diameter of the green circle. The blue circle is tangent to the other

three figures. Prove that the line connecting its center to the point of contact

between the red circle and the triangle is perpendicular to the above-mentioned

diameter.

1 Problem Statement

In Fig. 1, the center of the red circle and the base of the isosceles

triangle lie along the same diameter of the green circle. The blue circle

is tangent to the other three figures. Prove that the line connecting its

center to the point of contact between the red circle and the triangle

is perpendicular to the above-mentioned diameter.

2 Formulation of the Problem in Geometric-Algebra

Terms

Fig. 2 defines the vectors that we will use. Note the notation used to distinguish

between points and vectors: for example, c1 is the vector from the origin to the

point c1. Also, c21 denotes ‖c1‖2.

In GA terms, we are to prove that c3 · b̂ = 0. Other formulations are

possible; for example, that c3b̂ = b̂c3.

3 Solution Strategy

We will derive an equation that that is satisfied by two circles. For one of them,

c3 · b̂ = 0.



Figure 2: The vectors and frame of reference that we will use in our solution.
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4 Observations

Two key observations are that

r3 = c3 · â (4.1)

and that, in turn,

â = p̂i

= −

[ √
r21 − r22√

2r1 (r1 − r2)

]
b̂ +

[
r1 − r2√

2r1 (r1 − r2)

]
b̂i . (4.2)

We also see that by expressing the distance between c1 and c3 as r1 − r3
and ‖c3 − c1‖, we obtain

(c3 − c1)
2

= (r1 − r3)
2
,

which after simplification becomes

c23 + 2 (2r2 − r1) c3 · b̂ + 4r2 (r2 − r1) = r23 − r3r1 . (4.3)

Similarly, because ‖c3 − c2‖ = r2 + r3,

c23 + 2r2c3 · b̂ = r23 + 2r3r2 . (4.4)

5 Derivation of the Equation that We Seek

We begin by subtracting Eq. (4.4) from Eq. (4.3), then solving for r3:

r3 =

(
r1 − r2
r1 + r2

)(
2r2 + c3 · b̂

)
. (5.1)

Substituting that expression for r3 in Eq. (4.4), then simplifying,

c23 −
(
r1 − r2
r1 + r2

)2 (
c3 · b̂

)2
− 4r1r2

[
r1 − r2

(r1 + r2)
2

]
c3 · b̂ =

8r1r
2
2 (r1 − r2)

(r1 + r2)
2 .

Now, we write c23 as
(
c3 · b̂

)2
+
[
c3 ·

(
b̂i
)]2

, obtaining

[
c3 ·

(
b̂i
)]2

+

[
4r1r2

(r1 + r2)
2

](
c3 · b̂

)2
− 4r1r2

[
r1 − r2

(r1 + r2)
2

]
c3 · b̂ =

8r1r
2
2 (r1 − r2)

(r1 + r2)
2 .

(5.2)
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An expression for
[
c3 ·

(
b̂i
)]2

in terms of c3 · b̂ by equating the expressions for

r3 given by Eqs. (4.1) and (5.1),

c3 · â =

(
r1 − r2
r1 + r2

)(
2r2 + c3 · b̂

)
,

then expressing â via Eq. (4.2):

c3 ·

{
−

[ √
r21 − r22√

2r1 (r1 − r2)

]
b̂ +

[
r1 − r2√

2r1 (r1 − r2)

]
b̂i

}
=

(
r1 − r2
r1 + r2

)(
2r2 + c3 · b̂

)
.

(5.3)

Thus,

[
c3 ·

(
b̂i
)]2

=

[√
2r1 (r1 − r2)

r1 + r2

]2 (
c3 · b̂

)2
+ 4r2

[
2r1 (r1 − r2)

(r1 + r2)
2 +

√
2r1

r1 + r2

]
c3 · b̂

+
8r1r2 (R1 −R2)

(r1 + r2)
2 . (5.4)

Substituting that expression for
[
c3 ·

(
b̂i
)]2

in Eq. (5.2),

0 =


[√

2r1 (r1 − r2)

r1 + r2
+

√
2r1

r1 + r2

]2
+

4r1r2

(r1 + r2)
2

(c3 · b̂)2
+ 4r2

{
3r1 (r1 − r2)

(r1 + r2)
2 +

√
2r1

r1 + r2

}
c3 · b̂. (5.5)

The two roots are

1. c3 · b̂ = 0, with c3 ·
(
b̂i
)

=
2r2
√

2r1 (r1 − r2)

r1 + r2
and r3 =

2r2 (r1 − r2)

r1 + r2
; and

2. c3 · b̂ = −4r2 (r1 − r2)

[
r1 +

√
2r1 (r1 + r2)

2 (r1 − r2)
√

2r1 (r1 + r2) + 3r21 + r22

]
,

c3 ·
(
b̂i
)

= −
2r2 (r1 + r2)

√
2r1 (r1 − r2) + 4r1r2

√
r21 − r22

2 (r1 − r2)
√

2r1 (r1 + r2) + 3r21 + r22
, and

r3 =
2r1r2 (r1 − r2)

2 (r1 − r2)
√

2r1 (r1 + r2) + 3r21 + r22
.

The first solution is in red in Fig. 3; the second is in magenta. The first

demonstrates that which was to be proved, but the second is extraneous: the

magenta circle is tangent to the extension of the side of the isosceles triangle,

but not to the triangle itself.
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Figure 3: The two solutions to Eq. (5.5). For our purposes, the magenta circle

is extraneous: it is tangent to the extension of the side of the isosceles triangle,

but not to the triangle itself.
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