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ABSTRACT. An open problem is proving FLT simply (using Fermat’s toolbox)
for each n € N,n > 2. Our direct proof (not BWOC) of FLT is based on our
algebraic identity ((r + 2q")%)" — (2% Q™ = ((r — 2q”)%)” with arbitrary
values of n € N, and with r € R, ¢ € Q,n, q,r > 0. For convenience, we denote
(r+2q")% by s; we denote Z%q by t; and, we denote (r—2q”)% by u. For any
given n > 2 : Since the term ¢ or Q%q with ¢ € Q is not rational, this identity
allows us to relate null set {(s,t,u)|s,t,u € Q,s,t,u > 0,s" —t" = u™} with
subsequently proven null set {z,y,z|z,y,z € Q,z,y,xz > 0,2" — y™ = z"}:
We show it is true, for n > 0, that {t|s,t,u € Q,s,t,u > 0,s" — " = u"} =
{ylz,y,z € Q,z,y,z > 0,z" —y™ = z"}. Hence, for any given n € N,n > 2, it
is a true statement that {(z,y, 2)|z,y,z € Nyz,y,z > 0,2" + y" = 2"} = 2.

1. INTRODUCTION

FLT states : ™ + y™ = 2™ does not hold for n > 2, n,z,y,z € N,z,y,z > 0.

A simple (using Fermat’s tools) proof of FLT for each n € N;n > 2 is lacking.

For n € N,n > 2 : We propose a simple direct proof (not the expected BWOC).

(A) 2" —y™ = 2™, for n > 0, with z,y,2 € Q,z,y,& > 0 for which (A) holds.
We want an algebraic identity, with an irrational term for n > 2, to relate to (A).

(B) ((r+2¢")")" — (25 q)" = ((r —2¢™)")" for n e N,g € Q,7 € R,n,q,7 >0
such that (r 4 2¢™)#,2% ¢, (r— 2q")% € Q for which (B) holds. From an infinity of
identities we choose (B). For values of n > 2 : Equation (B) clearly does not hold
for (r + 2q”)711,2%q7 (r— 2q")% € Q,q € Q,r € R, but, (B) is consistent with (A)
since for (z,y,x), no z,y, z € Q is known for which (A) holds. Denoting (r + 2q")%
by s;27q by t; (r— 2q")% by u : We show, below, for n > 2, with both sets empty,
that {(s,t,u)|s,t,u € N,s" —t" =u"} = {(2,y,2)|z,y,x € N, 2" —y" = 2"}

(C) (r+¢")=)" — (25q)" = ((r — ¢")=)" : For relating to (A), a simpler such
identity is (C), for n > 0, with (r +q")%,2%q, (r— q”)% €Q,qeQ,reR,q,r>0
for which (C) holds. But, for the values of n = 2,q € Q, equation (C) does not
hold for (r+4¢™)=,2%q, (r—¢")= € Q. So, (C) is not logically consistent with (A),
making statement (C) a false premise from which nothing follows in our argument.

(D) ((r + 20gm) 7)™ — (25 )" = ((r — 2Pq") %)™, for n > 0, with n € N, and
pel,p>0,andr €R,qge Q,r,q >0, and (r—|—2pq")%,2%q, (r—2rg")w € Q for
which the family of identities (D) holds. We have evaluated (D) for usefulness :

We reject (D) with even p > 0,¢ € Q since, for n = 2, the middle part, 2%(1,
is not rational. We reject (D) with odd p > 1, ¢ € Q since for 2%(] € Q, equation
(B) yields the composite set of all elements contained in every set that (D) yields.
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2. OUR DIRECT PROOF

Our argument is a direct proof, not deriving a contradiction as is generally ex-
pected in proofs. We start in the real realm, ending in the realm of natural numbers.
The algebraic identity we eventually relate to 2z — y™ = 2™, (A), is (1), below :

M) (+2m%) = 2% = (r—2)%)"

For all n € N,n > 0, identity (1) holds for all r,q € R,r,q > 0,r > 2¢™.

(2) ((r42¢™)%,27%q, (r —2¢™)=) is the triple for which (1) holds, such that

(r+2¢")w,2%q, (r —2¢")w,r,q € R,r,q > 0,7 > 2¢™.|. We relate (2) with (3) :

(3) 2™ —y™ = z". For all values of n € N,n > 0, equation (3) holds for triple
(z,y,2) with z,y,x € R, z,y,2 > 0.] The n-th triple for which (3) holds is (4) :

@) {z",y", 2"z, y,x € R, z,y,x > 0,2" — y™ = 2"}.| Expanding (1) yields (5) :

(5) (r +2¢™) — (4¢™) = (r — 2¢™). For some values of n > 0 : (5) holds for
(r+2q™, 4¢™,r —2¢™) such that r, q,r + 2¢™, 4¢™, r — 2¢™ € R,r > 2¢™.| So, per (5):

(6) {(r +2¢",4¢",r — 2¢")|r,q € R,r > 2¢", (r +2¢") — (4¢") = (r — 2¢")} is
the nth-triple for which identity (5) holds.| Therefore, (7), below, is true.

(7) Sets (6) = (4) : By definition, (4) includes (6) since (3) has the most general
such n-th form. And, (6) includes (4) : Let r + 2¢™ = 2™*. Let 4¢™ = y™**. Let

: L soluts olde g o— 2hda”
™ Simultanous solution of (*),(**), (***) yields r = =& #**

r—2q" =
and, ¢" = # . Since r, ¢ in identity (5) have unrestricted values, we can
substitute (****) for r in (5), and (*****) for ¢" in (5) to transform (5) into (3).
Taking a rational subset of each side of (7) : (r 4 2¢™, 4¢™,r — 2¢™) € Q implies
q",r € Q, resulting in (8) with both subsets empty, or both nonempty :
(8) {(r+2¢", 4¢™, 7 — 2¢")|r,¢" € Q,q € R,7 > 2¢", (r +2¢") — (4¢") =
(r—2¢")} ={z",y", 2"z, y,x € R, 2", y", 2™ € Q, 2" — y™ = 2"}. So, per (8) :
(9) r+2¢™ = 2", with ¢,z € R,r,¢", 2" € Q, for n > 0. Thus, per (8) :
(10) 4¢™ = y™, with ¢,y € R, ¢"™,y™ € Q, for n > 0. Therefore, per (8) :
(11) r — 2¢™ = 2™, with g, € R, r,¢", 2™ € Q for n > 0.
Taking the n-th root on each side of (9),(10),(11) yield, respectively, (12),(13),(14),
2),(13),(14) each having both sets empty or both nonempty, for n > 0 :
{(r+2¢")7|q € R, (r+2¢") 7, 7,¢" € Q,r > 2¢", ((r+2¢")% )" —((4¢") " )" =
((r—2¢™)%)"} = {z|z,y,x € R, 2",y", 2" € Q, 2" — y" = 2™} per (9), for n > 0.
(13) {(4¢")7|q € R, (4¢")7,7,¢" € Q.7 > 2¢", ((r + 2¢")7)" — ((4¢")7)" =
((r— Qq”)%)”} ={ylz,y,z € R, 2", y", 2" € Q, 2" — y™ = 2"} per (10), for n > 0.
(14) {(r—2¢")7 |g € R, (r—2¢") 7,7, ¢" € Q.7 > 2", ((r+2¢") )"~ ((4¢") )" =
((r —2¢™)%)"} = {z]z,y,2 € R, 2", y", 2" € Q, 2" — y" = 2"} per (11), for n > 0.
So, per (12),(13), (14) we get (15) with both sets empty, or nonempty, for n > 0:
(15) {((r +2¢™)7, (4¢™) (= 2¢")" ')Iqel]R (r+2¢")7 (4q”) (r—2q")7,
rq" € Qr > 2¢", ((r +2¢")7)" —((4¢"))" = ((r = 29" )¥)"} =
{(z,y,2)|z,y,x € R, 2", ¢y, 2™ € Q, 2" —y" = z"}.
Taking a further rational subset, this time with each side of (15) yields (16),
below, with both Subsets empty, or both sets nonempty, for n > 0, with r > 2¢"

(16) {((r +2¢" )w , (44" ), (r — 2¢" )")Iq,(r+2q ), (4", (r — 2¢™) % € Q,
((r+2g")7)"—((4g")® )" = ((r—2¢")7)"} = {(2,y,2)|z,y,7 € Q, 2" —y" = 2"}
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3. RESuULTS AND CONCLUSION

Hence, per (16), values of ¢ that are solely ¢ € Q are sufficient for our proof.

In this section, for convenience only :
(17) Let (r+2¢™) = € (16) be s; let 27 q € (16) be t; let (r —2¢™)# € (16) be u.

(18) {(s,t,u)ls, t,u € (16)} = {(z,y,2)|z,y, = € (16)} per (16),(17), above.

Taking the integral subset of each side of (18) results in (19), below :
(19) {(s,t,u)|s, t,u € N,s" —t" =u"} = {(2,9,2)|2,y,x € N, 2" —y™ = z"}.

Some concrete examples of (19) : For n = 2, with z = 5,y = 4,z = 3, there
is a corresponding s = 5,t = 4,u = 3 resulting from r in (B) = 17 and ¢ in
(B)= 2. For n = 1, with z = 13,y = 12,2 = 1 in (A), there is a corresponding
s =13,t =12,u = 1 resulting from r in (B) =7 and ¢ in (B) = 3.

(20) {t|t € Q,s,u € R, s,t,u > 0,s" —t" = u"} = & for n > 2, which is true
since t is 27 ¢, per (17), so, 27 q is irrational with ¢ € Q.| Hence, per (19),(20) :
(21) {ylz,y,z € N, z,y,x > 0,2" —y™ = 2™} = & for n > 2.| Thus, per (A),(21):
(22) {(z,y,2)|z,y,z € N, z,y,x > 0,2" —y” = 2"} = & for n > 2.| So, per (22):
(23) 2" + y™ = 2", for n € N,n > 2, does not hold for z,y,z € N,z,y,z > 0.

(24) QED.



