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Abstract. An open problem is proving FLT simply (using Fermat’s toolbox)

for each n ∈ N, n > 2. Our direct proof (not BWOC) of FLT is based on our

algebraic identity ((r + 2qn)
1
n )n − (2

2
n q)n = ((r − 2qn)

1
n )n with arbitrary

values of n ∈ N, and with r ∈ R, q ∈ Q, n, q, r > 0. For convenience, we denote

(r+2qn)
1
n by s; we denote 2

2
n q by t; and, we denote (r−2qn)

1
n by u. For any

given n > 2 : Since the term t or 2
2
n q with q ∈ Q is not rational, this identity

allows us to relate null set {(s, t, u)|s, t, u ∈ Q, s, t, u > 0, sn − tn = un} with

subsequently proven null set {z, y, x|z, y, x ∈ Q, z, y, x > 0, zn − yn = xn}:
We show it is true, for n > 0, that {t|s, t, u ∈ Q, s, t, u > 0, sn − tn = un} =
{y|z, y, x ∈ Q, z, y, x > 0, zn − yn = xn}. Hence, for any given n ∈ N, n > 2, it

is a true statement that {(x, y, z)|x, y, z ∈ N, x, y, z > 0, xn + yn = zn} = ∅.

1. Introduction

FLT states : xn + yn = zn does not hold for n > 2, n, x, y, z ∈ N, x, y, z > 0.
A simple (using Fermat’s tools) proof of FLT for each n ∈ N, n > 2 is lacking.
For n ∈ N, n > 2 : We propose a simple direct proof (not the expected BWOC).
(A) zn − yn = xn, for n > 0, with z, y, x ∈ Q, z, y, x > 0 for which (A) holds.

We want an algebraic identity, with an irrational term for n > 2, to relate to (A).

(B) ((r + 2qn)
1
n )n − (2

2
n q)n = ((r − 2qn)

1
n )n for n ∈ N, q ∈ Q, r ∈ R, n, q, r > 0

such that (r + 2qn)
1
n , 2

2
n q, (r− 2qn)

1
n ∈ Q for which (B) holds. From an infinity of

identities we choose (B). For values of n > 2 : Equation (B) clearly does not hold

for (r + 2qn)
1
n , 2

2
n q, (r − 2qn)

1
n ∈ Q, q ∈ Q, r ∈ R, but, (B) is consistent with (A)

since for (z, y, x), no z, y, z ∈ Q is known for which (A) holds. Denoting (r+ 2qn)
1
n

by s; 2
2
n q by t; (r− 2qn)

1
n by u : We show, below, for n > 2, with both sets empty,

that {(s, t, u)|s, t, u ∈ N, sn − tn = un} = {(z, y, x)|z, y, x ∈ N, zn − yn = xn}
(C) (r + qn)

1
n )n − (2

1
n q)n = ((r − qn)

1
n )n : For relating to (A), a simpler such

identity is (C), for n > 0, with (r + qn)
1
n , 2

1
n q, (r− qn)

1
n ∈ Q, q ∈ Q, r ∈ R, q, r > 0

for which (C) holds. But, for the values of n = 2, q ∈ Q, equation (C) does not

hold for (r+ qn)
1
n , 2

1
n q, (r− qn)

1
n ∈ Q. So, (C) is not logically consistent with (A),

making statement (C) a false premise from which nothing follows in our argument.

(D) ((r + 2pqn)
1
n )n − (2

p+1
n q)n = ((r − 2pqn)

1
n )n, for n > 0, with n ∈ N, and

p ∈ I, p ≥ 0, and r ∈ R, q ∈ Q, r, q > 0, and (r + 2pqn)
1
n , 2

p+1
n q, (r− 2pqn)

1
n ∈ Q for

which the family of identities (D) holds. We have evaluated (D) for usefulness :

We reject (D) with even p ≥ 0, q ∈ Q since, for n = 2, the middle part, 2
p+1
n q,

is not rational. We reject (D) with odd p > 1, q ∈ Q since for 2
p+1
n q ∈ Q, equation

(B) yields the composite set of all elements contained in every set that (D) yields.
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2. Our Direct Proof

Our argument is a direct proof, not deriving a contradiction as is generally ex-
pected in proofs. We start in the real realm, ending in the realm of natural numbers.

The algebraic identity we eventually relate to zn − yn = xn, (A), is (1), below :

(1)
(

(r + 2qn)
1
n

)n

− (2
2
n q)n =

(
(r − 2qn)

1
n

)n

.

For all n ∈ N, n > 0, identity (1) holds for all r, q ∈ R, r, q > 0, r > 2qn.

(2) ((r + 2qn)
1
n , 2

2
n q, (r − 2qn)

1
n ) is the triple for which (1) holds, such that

(r + 2qn)
1
n , 2

2
n q, (r − 2qn)

1
n , r, q ∈ R, r, q > 0, r > 2qn.|. We relate (2) with (3) :

(3) zn − yn = xn. For all values of n ∈ N, n > 0, equation (3) holds for triple
(z, y, x) with z, y, x ∈ R, z, y, x > 0.| The n-th triple for which (3) holds is (4) :

(4) {zn, yn, xn|z, y, x ∈ R, z, y, x > 0, zn − yn = xn}.| Expanding (1) yields (5) :
(5) (r + 2qn) − (4qn) = (r − 2qn). For some values of n > 0 : (5) holds for

(r+ 2qn, 4qn, r− 2qn) such that r, q, r+ 2qn, 4qn, r− 2qn ∈ R, r > 2qn.| So, per (5):
(6) {(r + 2qn, 4qn, r − 2qn)|r, q ∈ R, r > 2qn, (r + 2qn) − (4qn) = (r − 2qn)} is

the nth-triple for which identity (5) holds.| Therefore, (7), below, is true.
(7) Sets (6) = (4) : By definition, (4) includes (6) since (3) has the most general

such n-th form. And, (6) includes (4) : Let r + 2qn = zn*. Let 4qn = yn**. Let

r − 2qn = xn***. Simultanous solution of (*),(**), (***) yields r = zn+xn

2 ****,

and, qn = zn−xn

4 ∗ ∗ ∗ ∗∗. Since r, q in identity (5) have unrestricted values, we can
substitute (****) for r in (5), and (*****) for qn in (5) to transform (5) into (3).

Taking a rational subset of each side of (7) : (r + 2qn, 4qn, r − 2qn) ∈ Q implies
qn, r ∈ Q, resulting in (8) with both subsets empty, or both nonempty :

(8) {(r + 2qn, 4qn, r − 2qn)|r, qn ∈ Q, q ∈ R, r > 2qn, (r + 2qn)− (4qn) =
(r − 2qn)} = {zn, yn, xn|z, y, x ∈ R, zn, yn, xn ∈ Q, zn − yn = xn}. So, per (8) :
(9) r + 2qn = zn, with q, z ∈ R, r, qn, zn ∈ Q, for n > 0. Thus, per (8) :
(10) 4qn = yn, with q, y ∈ R, qn, yn ∈ Q, for n > 0. Therefore, per (8) :
(11) r − 2qn = xn, with q, x ∈ R, r, qn, xn ∈ Q for n > 0.
Taking the n-th root on each side of (9),(10),(11) yield, respectively, (12),(13),(14),

with (12),(13),(14) each having both sets empty or both nonempty, for n > 0 :

(12) {(r+2qn)
1
n |q ∈ R, (r+2qn)

1
n , r, qn ∈ Q, r > 2qn, ((r+2qn)

1
n )n−((4qn)

1
n )n =

((r − 2qn)
1
n )n} = {z|z, y, x ∈ R, zn, yn, xn ∈ Q, zn − yn = xn} per (9), for n > 0.

(13) {(4qn)
1
n |q ∈ R, (4qn)

1
n , r, qn ∈ Q, r > 2qn, ((r + 2qn)

1
n )n − ((4qn)

1
n )n =

((r − 2qn)
1
n )n} = {y|z, y, x ∈ R, zn, yn, xn ∈ Q, zn − yn = xn} per (10), for n > 0.

(14) {(r−2qn)
1
n |q ∈ R, (r−2qn)

1
n , r, qn ∈ Q, r > 2qn, ((r+2qn)

1
n )n−((4qn)

1
n )n =

((r − 2qn)
1
n )n} = {x|z, y, x ∈ R, zn, yn, xn ∈ Q, zn − yn = xn} per (11), for n > 0.

So, per (12),(13),(14), we get (15) with both sets empty, or nonempty, for n > 0:

(15) {((r + 2qn)
1
n , (4qn)

1
n , (r − 2qn)

1
n )|q ∈ R, (r + 2qn)

1
n , (4qn)

1
n , (r − 2qn)

1
n ,

r, qn ∈ Q, r > 2qn, ((r + 2qn)
1
n )n − ((4qn)

1
n )n = ((r − 2qn)

1
n )n} =

{(z, y, x)|z, y, x ∈ R, zn, yn, xn ∈ Q, zn − yn = xn}.
Taking a further rational subset, this time with each side of (15) yields (16),

below, with both subsets empty, or both sets nonempty, for n > 0, with r > 2qn :
(16) {((r + 2qn)

1
n , (4qn)

1
n , (r − 2qn)

1
n )|q, (r + 2qn)

1
n , (4qn)

1
n , (r − 2qn)

1
n ∈ Q,

((r+2qn)
1
n )n−((4qn)

1
n )n = ((r−2qn)

1
n )n} = {(z, y, x)|z, y, x ∈ Q, zn−yn = xn}.
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3. Results and Conclusion

Hence, per (16), values of q that are solely q ∈ Q are sufficient for our proof.

In this section, for convenience only :
(17) Let (r + 2qn)

1
n ∈ (16) be s; let 2

2
n q ∈ (16) be t; let (r− 2qn)

1
n ∈ (16) be u.

(18) {(s, t, u)|s, t, u ∈ (16)} = {(z, y, x)|z, y, x ∈ (16)} per (16),(17), above.

Taking the integral subset of each side of (18) results in (19), below :
(19) {(s, t, u)|s, t, u ∈ N, sn − tn = un} = {(z, y, x)|z, y, x ∈ N, zn − yn = xn}.

Some concrete examples of (19) : For n = 2, with z = 5, y = 4, x = 3, there
is a corresponding s = 5, t = 4, u = 3 resulting from r in (B) = 17 and q in
(B)= 2. For n = 1, with z = 13, y = 12, x = 1 in (A), there is a corresponding
s = 13, t = 12, u = 1 resulting from r in (B) = 7 and q in (B) = 3.

(20) {t|t ∈ Q, s, u ∈ R, s, t, u > 0, sn − tn = un} = ∅ for n > 2, which is true

since t is 2
2
n q, per (17), so, 2

2
n q is irrational with q ∈ Q.| Hence, per (19),(20) :

(21) {y|z, y, x ∈ N, z, y, x > 0, zn− yn = xn} = ∅ for n > 2.| Thus, per (A),(21):
(22) {(z, y, x)|z, y, x ∈ N, z, y, x > 0, zn − yn = xn} = ∅ for n > 2.| So, per (22):
(23) xn + yn = zn, for n ∈ N, n > 2, does not hold for x, y, z ∈ N, x, y, z > 0.

(24) QED.


