A Note About the Determination of The Integer Coordinates of An Elliptic Curve: Part I

Abdelmajid Ben Hadj Salem

December 6, 2018

Abstract

In this paper, we give the elliptic curve (E) given by the equation:

$$y^2 = x^3 + px + q$$

(1)

with $p, q \in \mathbb{Z}$ not null simultaneous. We study a part of the conditions verified by (p, q) so that $\exists (x, y) \in \mathbb{Z}^2$ the coordinates of a point of the elliptic curve (E) given by the equation (1).

Key words: elliptic curves, integer points, solutions of degree three polynomial equations, solutions of Diophantine equations.

1 Introduction

Elliptic curves are related to number theory, geometry, cryptography and data transmission. We consider an elliptic curve (E) given by the equation:

$$y^2 = x^3 + px + q$$

(2)

where p and q are two integers and we assume in this article that p, q are not simultaneous equal to zero. For our proof, we consider the equation :

$$x^3 + px + q - y^2 = 0$$

(3)

of the unknown the parameter x, and p, q, y given with the condition that $y \in \mathbb{Z}^+$. We resolve the equation (3) and we discuss so that x is an integer.
2 Proof

We suppose that $y > 0$ is an integer, to resolve (3), let:

$$x = u + v$$

(4)

where u, v are two complexes numbers. Equation (3) becomes:

$$u^3 + v^3 + q - y^2 + (u + v)(3uv + p) = 0$$

(5)

With the choose of:

$$3uv + p = 0 \implies uv = -\frac{p}{3}$$

(6)

then, we obtain the two conditions:

$$uv = -\frac{p}{3}$$

(7)

$$u^3 + v^3 = y^2 - q$$

(8)

Hence, u^3, v^3 are solutions of the equation of second order:

$$X^2 - (y^2 - q)X - \frac{p^3}{27} = 0$$

(9)

Let Δ the discriminant of (9) given by:

$$\Delta = (y^2 - q)^2 + 4\frac{p^3}{27}$$

(10)

2.1 Case $\Delta = 0$

In this case, the (9) has one double root:

$$X_1 = X_2 = \frac{y^2 - q}{2}$$

(11)

As $\Delta = 0 \implies \frac{4p^3}{27} = -(y^2 - q)^2 \implies p < 0$. y, q are integers then $3|p \implies p = 3p_1$ and $4p_1^3 = -(y^2 - q)^2 \implies p_1 = -p_2^2 \implies y^2 - q = \pm 2p_2^3$ and $p = -3p_2^3$. As $y^2 = q \pm 2p_2^3$, it exists solutions if:

$$q \pm 2p_2^3 \text{ is a square}$$

(12)

We suppose that $q \pm 2p_2^3$ is a square. The solution $X = X_1 = X_2 = \pm p_2^3$. Using the unknowns u, v, we have two cases:

- $u^3 = v^3 = p_2^3$
- $u^3 = v^3 = -p_2^3$.
2.1.1 Case $u^3 = v^3 = p_2^3$

The solutions of $u^3 = p_2^3$ are:

- **a** - $u_1 = p_2$;
- **b** - $u_2 = j.p_2$ with $j = \frac{1 + i\sqrt{3}}{2}$ is the unitary cubic complex root;
- **c** - $u_3 = j^2.p_2$.

Case a - $u_1 = v_1 = p_2 \implies x = 2p_2$. The condition $u_1.v_1 = -p/3$ is verified. The integers coordinates of the elliptic curve (E) are:

$$
(2p_2, +\alpha) \quad (2p_2, -\alpha)
$$

(13) (14)

Case b - $u_2 = p_2.j$, $v_2 = p_2.j^2 = p_2\overline{j} \implies x = u_2 + v_2 = p_2(j + \overline{j}) = p_2$, in this case, the integers coordinates of the elliptic curve (E) are:

$$
(p_2, +\alpha) \quad (p_2, -\alpha)
$$

(15) (16)

Case c - $u_2 = p_2.j$, $v_2 = p_2.j^2 = p_2\overline{j}$, it is the same as case b above.

2.1.2 Case $u^3 = v^3 = -p_2^3$

The solutions of $u^3 = -p_2^3$ are:

- **d** - $u_1 = -p_2$;
- **e** - $u_2 = -j.p_2$;
- **f** - $u_3 = -j^2.p_2 = -\overline{j}p_2$.

Case d - $u_1 = v_1 = -p_2 \implies x = -2p_2$. The condition $u_1.v_1 = -p/3$ is verified. The integers coordinates of the elliptic curve (E) are:

$$
(2p_2, +\alpha) \quad (2p_2, -\alpha)
$$

(17)

Case e - $u_2 = -p_2.j$, $v_2 = -p_2.j^2 = -p_2\overline{j} \implies x = u_2 + v_2 = -p_2(j + \overline{j}) = -p_2$, in this case, the integers coordinates of the elliptic curve (E) are:

$$
(-p_2, +\alpha) \quad (-p_2, -\alpha)
$$

(18)

Case f - $u_2 = -p_2.j$, $v_2 = -p_2.j^2 = p_2\overline{j}$ it is the same of case e above.
2.2 Case $\Delta > 0$

We suppose that $\Delta > 0$ and $\Delta = m^2$ where m is a positive rational.

$$\Delta = (y^2 - q)^2 + \frac{4p^3}{27} = \frac{27(y^2 - q)^2 + 4p^3}{27} = m^2$$ \hspace{1em} (19)

$$27(y^2 - q)^2 + 4p^3 = 27m^2 \implies 27(m^2 - (y^2 - q)^2) = 4p^3$$ \hspace{1em} (20)

2.2.1 We suppose that $3|p$

We suppose that $3|p \implies p = 3p_1$. We consider firstly that $|p_1| = 1$.

Case $p_1 = 1$: the equation (20) is written as:

$$m^2 - (y^2 - q)^2 = 4 \implies (m + y^2 - q)(m - y^2 + q) = 2 \times 2$$ \hspace{1em} (21)

That gives the system of equations(with $m > 0$):

$$\begin{cases} m + y^2 - q = 1 \\ m - y^2 + q = 4 \end{cases} \implies m = 5/2 \text{ not an integer}$$ \hspace{1em} (22)

$$\begin{cases} m + y^2 - q = 2 \\ m - y^2 + q = 2 \end{cases} \implies m = 2 \text{ and } y^2 - q = 0$$ \hspace{1em} (23)

$$\begin{cases} m + y^2 - q = 4 \\ m - y^2 + q = 1 \end{cases} \implies m = 5/2 \text{ not an integer}$$ \hspace{1em} (24)

We obtain:

$$X_1 = u^3 = 1 \implies u_1 = 1; u_2 = j; u_3 = j^2 = \tilde{j}$$ \hspace{1em} (25)

$$X_2 = v^3 = -1 \implies v_1 = -1; v_2 = -j; v_3 = -j^2 = -\tilde{j}$$ \hspace{1em} (26)

$$x_1 = u_1 + v_1 = 0$$ \hspace{1em} (27)

$$x_2 = u_2 + v_3 = j - j^2 = i\sqrt{3} \text{ not an integer}$$ \hspace{1em} (28)

$$x_3 = u_3 + v_2 = j^2 - j = -i\sqrt{3} \text{ not an integer}$$ \hspace{1em} (29)

As $y^2 - q = 0$, if $q = q^2$ with q' a positive integer, we obtain the integer coordinates of the elliptic curve (E):

$$y^2 = x^3 + 3x + q^2$$ \hspace{1em} (30)

$$(0, q'); (0, -q')$$ \hspace{1em} (31)

Case $p_1 = -1$: using the same method as above, we arrive to the acceptable value $m = 0$, then $y^2 = q \pm 2 \implies q \pm 2$ must be a square to obtain the integer coordinates of the elliptic curve (E).
If \(y^2 = q + 2 \), a square \(\implies (X - 1)^2 = 0 \implies u^3 = v^3 = 1 \), then \(x_1 = 2, x_2 = 1 \). The integer coordinates of the elliptic curve \((E)\) are:

\[
y^2 = x^3 - 3x + q \tag{32}
\]

\[
(1, \sqrt{q + 2}); (1, -\sqrt{q + 2}); (2, \sqrt{q + 2}); (2, -\sqrt{q + 2}) \tag{33}
\]

If \(y^2 = q - 2 \), a square \(\implies (X + 1)^2 = 0 \implies u^3 = v^3 = -1 \), then \(x_1 = -2, x_2 = -1 \). The integer coordinates of the elliptic curve \((E)\) are:

\[
y^2 = x^3 - 3x + q \tag{34}
\]

\[
(-1, \sqrt{q - 2}); (-1, -\sqrt{q - 2}); (-2, \sqrt{q - 2}); (-2, -\sqrt{q - 2}) \tag{35}
\]

For the trivial case \(q = 2 \implies y^2 = x^3 - 3x + 2 \) and \(q - 2, q + 2 \) are squares, the integer coordinates of the elliptic curve are:

\[
y^2 = x^3 - 3x + 2 \tag{36}
\]

\[
(1, 0); (-2, 0); (2, 2); (2, -2); (-1, 2); (-1, -2) \tag{37}
\]

For \(q > 2, q - 2 \) and \(q + 2 \) can not be simultaneous square numbers.

Now, we consider that \(|p_1| > 1 \), the equation \([20]\) is written as:

\[
m^2 - (y^2 - q)^2 = 4p_1^3 \implies m^2 - (y^2 - q)^2 = 4p_1^3 \tag{38}
\]

From the last equation \([38]\), \((\pm m, \pm(y^2 - q))\) are solutions of the Diophantine equation:

\[
X^2 - Y^2 = N \tag{39}
\]

where \(N \) is a positive integer equal to \(4p_1^3 \). A solution \((X', Y')\) of \([39]\) is used if \(Y' = y^2 - q \implies q + Y' \) is a square, then \(X' = m > 0 \) and \(\pm y = \pm \sqrt{q + Y'} \).

We return to the general solutions of the equation \([39]\). Let \(Q(N) \) the number of solutions of \([39]\) and \(\tau(N) \) the number of factorization of \(N \), then we give the following result concerning the solutions of \([39]\) (see theorem 27.3 of \([S]\)):

- if \(N \equiv 2 (\text{mod} 4) \), then \(Q(N) = 0 \);
- if \(N \equiv 1 \) or \(N \equiv 3 (\text{mod} 4) \), then \(Q(N) = [\tau(N)/2] \);
- if \(N \equiv 0 (\text{mod} 4) \), then \(Q(N) = [\tau(N/4)/2]^1 \)

As \(N = 4p_1^3 \implies N \equiv 0 (\text{mod} 4) \), then \(Q(N) = [\tau(N/4)/2] = [\tau(p_1^3)/2] > 1 \), but \(Q(N) = 1 \), there is one solution \(X' > 0, Y' > 0 \) so that \(Y' + q \) is a square. Hence the contradiction, the hypothesis that \(3|p, |p| > 3 \) is impossible in the case \(\Delta > 0 \).

\(^1[x]\) is the largest integer less or equal to \(x \).
2.2.2 We suppose that $3 \nmid p$

We rewrite the equations (9-20):

\[X^2 - (y^2 - q)X - \frac{p^3}{27} = 0 \]

\[\Delta = (y^2 - q)^2 + \frac{4p^3}{27} = \frac{27(y^2 - q)^2 + 4p^3}{27} = m^2 \]

We call:

\[r = 27(y^2 - q)^2 + 4p^3 = \frac{r}{27} = \Delta \] \hspace{1cm} (40)

r can be written as:

\[l^2 - 3(3y^2 - 3q)^2 = 4p^3 \] \hspace{1cm} (41)

or $l, 3(y^2 - q)$ are solutions of the Diophantine equation:

\[A^2 - 3B^2 = N \] \hspace{1cm} (42)

where N is the $4p^3$. As we consider the last equation with A, B integers and the coefficient of B is 3 does not verify $\equiv 1 \pmod{4}$, then equation (42) has a solution if N can be written as:

\[N = \pm p_1^{h_1} ... p_k^{h_k} q_1^{2b_1} ... q_n^{2b_n} \] \hspace{1cm} (43)

where p_j, q_i are prime integers (see chapter 6 of [B]). Having A, B we calculate y^2:

\[y^2 = q + \frac{B}{3} \implies q + \frac{B}{3} \text{ a square} \] \hspace{1cm} (44)

Then:

\[y = \pm \sqrt{q + \frac{B}{3}} \] \hspace{1cm} (45)

We return to x. $m^2 = \frac{r}{27} = \frac{l^2}{27} \implies m = \frac{l}{\sqrt{3}} \frac{\sqrt{3}}{9}$. As $3 \nmid p \implies 3 \nmid r \implies 3 \nmid l^2 \implies 3 \nmid l$, then m is an irrational number. The roots of (9) are:

\[X_1 = \frac{y^2 - q + m}{2} = \frac{9(y^2 - q) + l\sqrt{3}}{18} \] \hspace{1cm} (46)

\[X_2 = \frac{y^2 - q - m}{2} = \frac{9(y^2 - q) - l\sqrt{3}}{18} \] \hspace{1cm} (47)

From the expressions of X_1, X_2, we conclude that X_1 and X_2 are irrational numbers $\in \mathbb{R} \setminus \mathbb{Q}$. For the unknowns u, v, we obtain:

\[u_1 = \sqrt[3]{X_1}, \quad u_2 = j\sqrt[3]{X_1}, \quad u_3 = j^2\sqrt[3]{X_1} \] \hspace{1cm} (48)

\[v_1 = \sqrt[3]{X_2}, \quad v_2 = j\sqrt[3]{X_2}, \quad v_3 = j^2\sqrt[3]{X_2} \] \hspace{1cm} (49)
As we choose \(x \) a real number, then \(x = u_1 + v_1 = \sqrt[3]{X_1} + \sqrt[3]{X_2} \). We search \(x, y \) to be integer numbers. We suppose that \(x = \sqrt[3]{X_1} + \sqrt[3]{X_2} \) is an integer:

\[
x = \sqrt[3]{X_1} + \sqrt[3]{X_2}
\]

\[
x.(\sqrt[3]{X_1^2} - \sqrt[3]{X_1 X_2} + \sqrt[3]{X_2^2}) = X_1 + X_2 = y^2 - q
\]

\[
x.(\sqrt[3]{X_1^2} + \sqrt[3]{X_2^2} + \frac{p}{3}) = y^2 - q
\]

\[
\sqrt[3]{X_1^2} + \sqrt[3]{X_2^2} = \frac{3(y^2 - q) - px}{3x} = t \in \mathbb{Q}^*
\]

(50)

with \(x \neq 0 \). As \(x = \sqrt[3]{X_1} + \sqrt[3]{X_2} \implies \sqrt[3]{X_2^2} = (x - \sqrt[3]{X_1})^2 \implies x^2 - 2x \sqrt[3]{X_1} + \sqrt[3]{X_1}^2 = \sqrt[3]{X_2^2} \). Adding to the two members of the last equation \(\sqrt[3]{X_1} \), we obtain:

\[
\sqrt[3]{X_1^2} - x \sqrt[3]{X_1} + \frac{x^2 - t}{2} = 0
\]

(51)

then \(\sqrt[3]{X_1} \) is a root of the equation:

\[
\alpha^2 - x\alpha + \frac{x^2 - t}{2} = 0
\]

(52)

The expression of the roots is:

\[
\alpha = \frac{x \pm \sqrt{\delta}}{2}
\]

(53)

\[
\delta = 2t - x^2 > 0
\]

(54)

\(\delta \) is > 0 because \(2t - x^2 = 2\sqrt[3]{X_1^2} + 2\sqrt[3]{X_2^2} - \sqrt[3]{X_1^2} - \sqrt[3]{X_2^2} - 2\sqrt[3]{X_1 X_2} = (\sqrt[3]{X_1^2} - \sqrt[3]{X_2^2})^2 > 0 \) as \(X_1 \neq X_2 \). Then \(\delta \) is a square. We conclude that \(\alpha \) is a rational number. It follows that \(\sqrt[3]{X_1} \) is a rational number that we note by \(s \), then \(X_1 = s^3 \) is also a rational number which is in contradiction with the precedent result above that \(X_1 \) is irrational. The hypothesis that \(x \) is an integer is false, it follows that \(x \) is a irrational number. Then, no integer coordinates exist when \(r \) is a square.

Case \(r \) is not a square: we write:

\[
r = 27(y^2 - q)^2 + 4p^3 \implies m^2 = \frac{r}{27} = \Delta \implies m = \frac{\sqrt{3r}}{9}
\]

As \(3 \nmid r \implies 3r \) is not a square, then \(m \) is irrational number. The roots of (9) are:

\[
X_1 = \frac{y^2 - q + m}{2} = \frac{9(y^2 - q) + \sqrt{3r}}{18}
\]

(55)

\[
X_2 = \frac{y^2 - q - m}{2} = \frac{9(y^2 - q) - \sqrt{3r}}{18}
\]

(56)
Using the same reasoning as for the case r is a square, there is no integer coordinates for (E) when r is not a square.

In the second part of the paper, we will study the case $\Delta < 0$.

References
