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Abstract

A modified Einstein equation of general relativity is obtained by using the principle of least action, a
decomposition of symmetric tensors on a time oriented Lorentzian manifold, and a fundamental postulate
of general relativity. The decomposition introduces a new symmetric tensor Φαβ which describes the
energy-momentum of the gravitational field itself. It completes Einstein’s equation and addresses the
energy localization problem. The positive part of Φ, the trace of the new tensor with respect to the
metric, describes dark energy. The cosmological constant must vanish and is dynamically replaced by
Φ. A cyclic universe which developed after the Big Bang is described. The dark energy density provides
a natural explanation of why the vacuum energy density is so small, and why it dominates the present
epoch of the universe. The negative part of Φ describes the attractive self-gravitating energy of the
gravitational field. Φαβ introduces two additional terms into the Newtonian radial force equation: the
force due to dark energy and the 1

r ”dark matter” force. When the dark energy force balances the
Newtonian force, the flat rotation curves and the baryonic Tully-Fisher relation are obtained. The
Newtonian rotation curves for galaxies with no flat orbital curves, and those with rising rotation curves
for large radii are described as examples of the flexibility of the orbital rotation curve equation.

This is a pre-print of an article published in General Relativity and Gravitation. The final authen-
ticated version is available online at: https://doi.org/10.1007/s10714-019-2537-y.

1. Introduction

It has been over a century since Einstein [1, 2, 3] formulated general relativity (GR) in 1915. He
was aware that the gravitational field must interact with itself, but was unable to produce a symmetric
tensor to properly describe the energy-momentum of the gravitational field. Instead, a non-covariant
pseudo-tensor was introduced. However, the difficulties associated with this pseudo-tensor led to the
problem of the localization of energy in GR. Over the decades, other pseudo-tensors were developed and
different approaches to describe the energy-momentum of the gravitational field were investigated, [4, 5,
6](and references therein) but the energy localization problem still exists today. Despite this deficiency,
general relativity is one of the two cornerstones of physics.

GR was developed by Einstein on a four-dimensional Riemannian manifold with a metric that
represented the gravitational field and described the geometry of spacetime. Today, we more properly
describe spacetime on a time oriented Lorentzian manifold with metric. The Lorentzian metric can be
associated with a Riemannian metric by using the line element field, (X,−X), that is known to exist.
A classical result in Riemannian geometry, namely the Berger-Ebin theorem [7], can then be adapted to
spacetime. This results in the Orthogonal Decomposition Theorem (ODT): an arbitrary second rank sym-
metric tensor on a time oriented Lorentzian manifold with a torsionless and metric compatible connection
can be orthogonally decomposed into a divergenceless tensor and a new geometrical tensor, Φαβ. It is a
symmetric tensor constructed from the Lie derivative of both the metric and the unit vectors collinear
with one of the pair of regular vectors in the line element field.
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The right hand side of Einstein’s equation 8πG
c4
Tαβ = Gαβ + Λgαβ involves symmetric divergence-

less tensors. The left hand side is defined by the variation of the action functional for all matter fields
with respect to the metric. This generates a divergenceless symmetric tensor that must contain all inter-
actions of the gravitational field with the matter fields, and with itself; otherwise, it would not be locally
conserved. However, there is nothing in this definition that deals explicitly with the self-interaction of the
gravitational field. If we define T̃αβ as a symmetric energy-momentum tensor generated from the matter
fields without the requirement that it completely describes the self-gravitating field as well, it cannot be
locally conserved and would not be divergenceless. Consequently, this second rank symmetric tensor can
be locally decomposed by the ODT into a linear sum of divergenceless tensors and Φαβ. Lovelock’s theorem
[8] proves that in four dimensions, the divergenceless tensors composed from the metric and its first two
derivatives can only consist of the metric and the tensor named after Einstein, Gαβ. Therefore, Einstein’s
equation in a four-dimensional Lorentzian spacetime should be expressed more generally by including the
Φαβ term.

It will be proved that 8πG
c4
T̃αβ = Gαβ + Λgαβ + Φαβ and that the tensor Tαβ = T̃αβ − c4

8πGΦαβ is
divergenceless which allows Einstein’s equation to be recovered. In that sense, Φαβ is hidden in GR. Thus,
general relativity is not complete; it is possible to construct a symmetric tensor from the metric and a
regular vector field that is independent of the energy-momentum tensor of the matter fields and represents
the energy-momentum of the gravitational field itself.

This differs with the presently and generally accepted belief that GR is complete. However, if
that notion was true, GR should be able to describe particular features of dark matter. That unfortunately
is not the case and is the reason why physicists invented the generally well accepted theory of Lambda
cold dark matter (ΛCDM) to explain, in particular, the flat rotation curves of some galaxies, while leaving
GR intact. Modified general relativity can describe those and other galactic rotation curves as discussed
in section 7.

Since Lie derivatives have the same form when expressed with covariant or partial derivatives,
Φαβ does not vanish when the connection coefficients vanish. The metric can be locally Minkowskian, as
in free fall, without forcing Φαβ to vanish. This contrasts free fall in GR where the connection coefficients
vanish locally and the gravitational field locally disappears; hence the well known conception that the
energy-momentum of the gravitational field is not localizable [9]. Φαβ has the structure to describe local
gravitational energy-momentum. Its trace with respect to the metric, Φ, can describe the self-energy of
the gravitational field. In free fall, the effective force of gravity disappears locally but the self-energy of
the gravitational field is intact accordingly.

In section 2, the Orthogonal Decomposition Theorem is proved. In section 3, a modified equation
of GR is derived by using the principle of least action, the ODT and a fundamental postulate of GR.
Φαβ appears naturally alongside the Einstein tensor and introduces Xµ from the line element field and its
collinear vector uµ as dynamical variables independent of the Riemannian metric. Variation of the action
functional with respect to uµ leads to an expression for its co-vector in terms of the magnitude f of Xα

and Φ: uµ = 3
Φ∂µf .

Section 4 discusses the conservation equation for the divergenceless energy-momentum tensor
Tαβ = T̃αβ − c4

8πGΦαβ where T̃αβ is the total matter energy-momentum tensor describing all types of
matter including baryonic and dark matter, massive neutrinos, massive gravitons and any other possible
particle; if dark matter particles exist. Some additional properties of Φαβ and Xµ are presented.

In section 5, another interesting result is apparent from the calculation of the interaction of the
gravitational field with its source, the energy-momentum tensor. Using the global constraint

∫
Φ
√
−gd4x =

0, it is shown that the cosmological constant Λ must vanish, and is dynamically replaced with Φ.
Section 6 is a discussion of the modified Einstein equation of GR in the Friedmann-Lemâıtre-

Robertson-Walker (FLRW) metric, and dark energy. A gravitationally repulsive condition is described by
Φ > −2Λd where Λd is the dark energy density. Φ > 0 defines dark energy. Dark energy describes the
inflation of the universe immediately after the Big Bang when no matter of any type was present. The
dark energy density then tends to the present value of the vacuum energy density. A cyclic universe is
born with maximum and minimum values of the cosmological scale factor in the FLRW metric. Dark
energy explains the small value of the vacuum energy density and why it now dominates the expansion
and acceleration of the present universe.
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Cyclic universes have been reported in the literature [10, 11, 12, 13, 14]. Dark energy has been
described by various scalar theories such as the quintessential [13], k-essence [14] (and references therein)
phantom or quintom theories [17] (and further references therein). Dark energy in this article not a scalar
theory; it is the positive part of the energy of the gravitational field.

The negative values of Φ represent the attractive energy of the gravitational field interacting
with itself. This brings into question the subject of dark matter. Since Einstein’s equation is incomplete
without the tensor Φαβ describing the self-interactions of the gravitational field, the plausibility of dark
matter is questionable; its existence is based on the assumption that general relativity is a complete theory.
Although the self-interactions in a weak gravitational field may be extremely small, in the gravitational
field of a galaxy, they may be significant enough to explain dark matter.

In section 7, the modified equation of GR is calculated with a spheroidal metric in a region of
spacetime outside of matter with the assumption that dark matter does not exist. Two additional terms
appear in the modified Newtonian force equation that provides it the flexibility to describe various types
of galaxies. By balancing the dark energy force with the Newtonian force, the Tully-Fisher relation is
established and the acceleration parameter in MOND is expressed in terms of the dark energy radial force
parameter.

2. Orthogonal Decomposition of Symmetric Tensors

Curved spacetime is described by the four-dimensional time oriented Lorentzian manifold with a
+2 signature metric, (M, gαβ). The connection on the manifold is torsionless and metric compatible. The
Lorentzian manifold is assumed to be compact with vanishing Euler-Poincaré characteristic. It admits a
smooth regular line element field (Xβ,−Xβ) [18, 19, 23].

The orthogonal decomposition of symmetric tensors on Riemannian manifolds has been docu-
mented in the literature [7, 20, 21, 22]. However, a decomposition of symmetric tensors on a time oriented
Lorentzian manifold is required.

Theorem 2.1. Orthogonal Decomposition Theorem (ODT): An arbitrary (0,2) symmetric tensor wαβ in
the symmetric cotangent bundle S2T ∗M on an n-dimensional time oriented Lorentzian manifold (M, gαβ)
with a torsionless and metric compatible connection can be orthogonally decomposed as

wαβ = vαβ + Φαβ (1)

where ∇αvαβ = 0 and Φαβ = 1
2£Xgαβ + £Xuαuβ with X a regular vector field on M and u a timelike unit

vector collinear with X.

Proof. Let the Lorentzian manifold (M, gαβ) be paracompact, or compact and orientable with vanishing
Euler-Poincaré characteristic. A smooth regular line element field (X,−X) exists as does a unit vector
u collinear with X, where X is one of the pair (X,−X). Let M be endowed with a smooth Riemannian
metric g+

αβ. The smooth Lorentzian metric gαβ is constructed from g+
αβ and the unit vector u by setting

[19, 23]
gαβ = g+

αβ − 2uαuβ. (2)

Let wαβ and vαβ belong to S2T ∗M , the cotangent bundle of symmetric (0, 2) tensors on M. In the Rie-
mannian open subset of S2T ∗M which contains g+

αβ, an arbitrary (0, 2) symmetric tensor wαβ can be
orthogonally decomposed by the Berger-Ebin theorem [7] according to

wαβ = vαβ +
1

2
£Xg

+
αβ (3)

where ∇+αvαβ = 0. Given the unit vector field u collinear with X, the Riemannian connection ∇+ on M
is the same as the Lorentzian connection ∇ on M because both connections have the same geodesics with
the same parameterization and both connections are torsionless [22]. Hence,

wαβ = vαβ +
1

2
£Xgαβ + £Xuαuβ

= vαβ + Φαβ

(4)
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where ∇αvαβ = 0 and

Φαβ =
1

2
(∇αXβ +∇βXα) + uλ(uα∇βXλ + uβ∇αXλ). (5)

3. Derivation of the modified equation of general relativity

A modified equation of general relativity of the form Cαβ = 0 is sought which contains a linear
combination of symmetric tensors that define the Einstein equation, and a new tensor which can describe
the energy-momentum of the gravitational field itself. This can be achieved by using the principle of least
action, the Orthogonal Decomposition Theorem (1), and a fundamental postulate of GR.

Firstly, the field equations contained in Cαβ which are sought to describe general relativity and
the energy-momentum of the gravitational field, must be derivable from the action functional

S = SF + SEH + SG (6)

where SF and LF refer to the action and Lagrangian, respectively, for all types of matter fields including
those of dark matter if dark matter particles exist. SEH is the Einstein-Hilbert action for general relativity
and SG is the action for the energy-momentum of the gravitational field with Lagrangian LG. The variation
of SF with respect to gαβ

δSF =

∫
(
δLF

δgαβ
− 1

2
LF gαβ)δgαβ

√
−gd4x (7)

generates the symmetric energy-momentum tensor T̃αβ which represents the interaction of all types of
matter fields and associated radiation in a gravitational field, but does not specifically include the self-
interaction of the gravitational field:

T̃αβ := −2c(
δLF

δgαβ
− 1

2
LF gαβ). (8)

Cαβ must then be expressed as

Cαβ =
a

c
T̃αβ + bwαβ (9)

where wαβ is an unknown symmetric tensor independent of T̃αβ; and a and b are arbitrary constants.
Secondly, wαβ can be orthogonally decomposed by the ODT into

wαβ = vαβ + Φαβ (10)

where Φαβ is given by (5) and ∇αvαβ = 0.
Thirdly, Einstein concluded [1] that the metric should describe both the geometry of spacetime

and the gravitational field. He postulated the totality of the matter energy-momentum tensor and the
energy-momentum of the gravitational field, to be the source of the gravitational field. Adhering to
this philosophy, the energy-momentum tensor Tαβ describing the totality of all types of matter and the
energy-momentum of the gravitational field, is postulated to be the source of the gravitational field.

Φαβ is independent of T̃αβ and is not divergenceless. Φαβ is therefore the sole candidate to describe
the energy-momentum of the gravitational field. Thus,

Tαβ = T̃αβ +
bc

a
Φαβ (11)

and the interaction of the gravitational field with its energy-momentum tensor can be defined with the
action

SG := −b
∫
gαβΦ

αβ√−gd4x. (12)
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It was proved by Lovelock [8] that the only tensors in a four-dimensional spacetime which are
symmetric, divergence free, and a concomitant of the metric tensor together with its first two derivatives
are the metric and the Einstein tensor, Gαβ = Rαβ − 1

2gαβR. vαβ must therefore contain the Lovelock
tensors.

Cαβ is then formally decomposed as

Cαβ =
a

c
Tαβ + bvαβ (13)

with ∇αvαβ = 0 and vαβ := Gαβ + Λgαβ. Λ is an integration constant (in hindsight identified as the cos-
mological constant). With the collection of tensors Cαβ defined to vanish, we obtain the modified Einstein
equation of general relativity with cosmological constant Λ and the gravitational energy-momentum term
Φαβ

−8πG

c4
T̃αβ +Rαβ −

1

2
gαβR+ Λgαβ + Φαβ = 0 (14)

by setting a = −1
2 and b = c3

16πG .
Ma and Wang [22] obtained a similar result to (14) with Λ = 0, but with an entirely different

Φαβ = ∇α∂βφ for some scalar φ by using a decomposition of symmetric tensors on a Riemannian manifold.
Equation (14) must be derived from the action functional (6). With (12):

S =

∫
LF (Aβ,∇αAβ, ..., gαβ)

√
−gd4x+ b

∫
(R− 2Λ)

√
−gd4x− b

∫
Φαβg

αβ√−gd4x. (15)

To calculate the variation of SG with respect to the inverse metric gαβ, the following results are used:
gαβ = g+αβ−2uαuβ is the inverse of gαβ; ∇µ(uαuβ) = 0; g+αβδgαβ = −gαβδg+αβ; δg+ρβ = −g+αβgλρδg+

αλ;
gαβδ(u

αuβ) = uαuβδg
αβ; and δ(uαuβ) = uλu

βδgλα. The variation of S with respect to gαβ is then

δS =

∫
[− 1

2c
T̃αβ + b(Rαβ −

1

2
gαβR) + bΛgαβ + b(∇αXβ + 2uλuβ∇αXλ

+∇µXν(−uαuβgµν + uµuνgαβ))]δgαβ
√
−g d4x (16)

after calculating δΓλαβ induced by the variations in the inverse metric, and integrating by parts several
times. The last term vanishes which follows by writing the tensor in brackets, −uαuβgµν +uµuνgαβ, as its
equivalent, 1

2(g+µνgαβ − g+
αβg

µν); and choosing an orthonormal basis (eα) at a point p ∈ M for g+ with

e0 = u. Then, u0u0 = 1, uiui = 0, g+
αβ = δαβ, g00 = −g+00 and g00 = −g+

00, with all other components

of the metric g equal to those of the metric g+. Since δgαβ is symmetric, the second last term can be
expressed as bΦαβ. With δS = 0 and arbitrary variations δgαβ, we have

− 1

2c
T̃αβ + b(Rαβ −

1

2
gαβR) + bΛgαβ + bΦαβ = 0. (17)

Setting b = c3

16πG yields the modified Einstein equation described in (14).
Xβ from the line element field and its collinear vector uβ are dynamical variables independent of

the Riemannian metric in (2). Varying (15) with respect to uµ yields the equation

−3uα∇µXα − Φuµ + uα∇αXµ + 4uλuµu
α∇αXλ = 0 (18)

using (14). With Xα = fuα, where f > 0 is a scalar representing the length of the regular vector Xα,
the third term of (18) is a geodesic of the form Xα∇αXµ = kXµ where k is an arbitrary function on the
geodesic curve. However, it vanishes if the curve is affinely reparameterized; and both of the geodesic
terms in (18) can then be set to zero. Since

XαXα = −f2, (19)

it follows from (18) that in an affine parameterization

uµ =
3

Φ
∂µf. (20)
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There is a myriad of regular vectors from the line element field for each Riemannian metric, and
the associated Lorentzian metric is not unique. However, the variation of (15) with respect to uµ restricted
the line element fields to those given by (20) which in turn restricts the Lorentzian metric. This removes
the ambiguity of the line element field in modified general relativity. Other properties of Xµ are discussed
in the next section.

4. The conserved energy-momentum tensor Tαβ and additional prop-
erties of Φαβ

The invariance of the action functional describing gravity, it’s self-energy-momentum and to-
tal matter fields under the symmetry of diffeomorphisms demands a symmetric divergenceless energy-
momentum tensor

Tαβ = T̃αβ − c4

8πG
Φαβ. (21)

This follows from an analysis of each term in the action functional S defined in (6). The action SEH is
independently invariant under a diffeomorphism. Variation of the action SF with respect to the metric
contains only T̃αβ because the variations of SF with respect to each field and its derivatives vanish with the
corresponding Euler-Lagrange equations. Variation of SG with respect to the metric yields Φαβ. Therefore,
we can write ∫

(− 1

2c
T̃αβ + bΦαβ)δgαβ

√
−gd4x = 0 (22)

where b = c3

16πG . Under a diffeomorphism, the Lie derivative of the metric along a regular vector Y β

generates the infinitesimal change in the metric δgαβ = ∇αYβ +∇βYα. Integrating by parts then gives∫
∇α(− 1

2c
T̃αβ + bΦαβ)Yβ

√
−gd4x = 0 (23)

which requires
∇αTαβ = 0 (24)

for diffeomorphisms generated by Y β.
Equation (24) is the local description of the conservation of energy and momentum in a modified

theory of GR described by (14). The gravitational field has an intrinsic energy-momentum which is

attributed to Φαβ. Being independent of T̃αβ, c4

8πGΦαβ provides the additional energy and momentum
from the self-interactions of the gravitational field necessary to complete the source Tαβ of the geometry
of spacetime. Φαβ completes the Einstein equation and leaves it intact in form:

8πG

c4
Tαβ = Gαβ + Λgαβ. (25)

Φαβ is expressed in terms of the Lie derivatives by (4). Since Lie derivatives have the same form
when expressed with covariant or partial derivatives, Φαβ does not vanish when the connection coefficients
vanish. The metric can be locally Minkowskian, as in free fall, without affecting Φαβ. It has the structure to
describe local gravitational energy-momentum. Φαβ vanishes if the gravitational field is constant along Xβ.
In general this is not the case because the gravitational field interacts with itself; even weak gravitational
fields self-gravitate.

It is straightforward to calculate the coupling of the gravitational field with its energy-momentum
tensor: ∫

gαβΦ
αβ√−gd4x =

∫
Φ
√
−gd4x = 0 (26)

where Φ = ∇αXβ(gαβ + 2uαuβ). Equation (26) means the scalar Φ has local positive and negative values,
all of which add to zero when integrated over the entire spacetime. Φ is globally conserved. Section 6
demonstrates that the positive values of Φ are attributed to the gravitationally repulsive properties of dark
energy with the cosmological constant set to zero. The negative values represent the attractive energy of
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the gravitational field interacting with itself. Φ is measurable; it can be expressed in terms of the density
and pressure of total matter and the vacuum energy density as shown in section 6.

From (20), it follows that

�f = −1

9
Φ2 (27)

which is the wave equation for the magnitude of the regular vectorXµ driven by the square of the self-energy
of the gravitational field. The energy-momentum of the gravitational field is localizable and measureable.

5. Cosmological Constant

The metric cannot appear as a field variable alongside the cosmological constant. Λ is an inte-
gration constant and must vanish.

Theorem 5.1. The cosmological constant Λ must vanish and is dynamically replaced by the trace of Φαβ.

Proof. The action Sintg for the coupling of the energy-momentum tensor with the metric is:

Sintg = − 1

2c

∫
Tαβgαβ

√
−gd4x

=
c3

16πG

∫
(R− 4Λ)

√
−gd4x.

(28)

Since the energy-momentum tensor for all types of matter and the energy-momentum of the gravitational
field, is the source of the gravitational field and the geometry of spacetime, Sintg ≡ SEH . Comparing (28)
to (15) requires the integration constant Λ to vanish.

Using (26), SEH with Λ = 0 can then be written as

SEHG =
c3

16πG

∫
(R− Φ)

√
−gd4x (29)

which generates the modified Einstein equation with no cosmological constant from (15). If Φ = 2Λ
locally, the Einstein equation with the cosmological constant is obtained accordingly. The trace of the
tensor describing the energy-momentum of the gravitational field, dynamically replaces the cosmological
constant but must obey the global equation (26).

6. Energy-momentum of the gravitational field in the FLRW metric:
Dark energy

Some properties of Φαβ in the Friedmann-Lemâıtre-Robertson-Walker metric are now investi-
gated. The FLRW metric is typically used to describe a spatially maximal symmetric universe according
to the cosmological principle [25] whereby the universe is homogeneous and isotropic when measured on a
large scale. This metric is given by

ds2 = −c2dt2 + a(t)2[
1

1− κr2
dr2 + r2(dθ2 + sin2θdϕ2)] (30)

where a(t) is the cosmological scale factor which satisfies a > 0 after the Big Bang at t = 0. κ is a constant
used to describe a particular spatial geometry. The connection components of the FLRW metric are

Γij0 =
ȧ

ca
δij , Γ0

ij =
ȧ

ca
gij , Γµ00 = 0 (31)

where j = 1, 2, 3. The Ricci tensor components are

R00 = −3
ä

ac2
, Rij = (

ä

ac2
+ 2

ȧ2

a2c2
+ 2

κ

a2
)gij (32)
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and the Ricci scalar is

R =
6

a2c2
(aä+ ȧ2 + κc2). (33)

It was proved in [25] that a maximally spatial form invariant symmetric second rank tensor Bαβ
has components in the form

B00 = %(t), B0j = 0, Bij = p(t)gij (34)

where %(t) and p(t) are arbitrary functions of time. We therefore set,

T̃00 = c2%, T̃ij = pgij , T̃
µ
µ = −c2%+ 3p (35)

where %(t) and p(t) are designated as the mass density and pressure functions, respectively, of total matter
including dark matter; if dark matter particles exist. Similarly,

Φ00 = Λd, Φij =
Pd
c2
gij , Φ

µ
µ = −Λd + 3

Pd
c2

(36)

where Λd(t) and Pd(t) refer to the energy density and pressure, respectively, of the tensor describing the
energy-momentum of the gravitational field.

To obtain the Friedmann equations, we use the trace of the modified Einstein equation

−8πG

c4
T̃ −R+ Φ = 0 (37)

to rewrite the modified Einstein equation as

Rαβ =
8πG

c4
(T̃αβ −

1

2
gαβT̃ ) +

1

2
gαβΦ− Φαβ (38)

from which we obtain

3
ä

a
= −4πG(%+

3p

c2
) +

1

2
c2Λd +

3

2
Pd (39)

from the R00 component. The R11 component gives

ä

a
+ 2

ȧ2

a2
+

2κc2

a2
=
c2

2
(−Λd +

Pd
c2

) + 4πG(%− p

c2
) (40)

and the conservation law for Tαβ yields

%̇− c2

8πG
Λ̇d = −3

ȧ

a
(%+

p

c2
− c2

8πG
(Λd +

Pd
c2

)). (41)

Inserting (39) into (40) produces a simpler equation

ȧ2

a2
+
κc2

a2
=

8πG

3
%− 1

3
c2Λd. (42)

Equations (39) and (42) are the Friedmann equations modified with Φαβ.
From (39), we immediately see that Φ + 2Λd = Λd + 3

c2
Pd > 0 tends to accelerate the universe;

while all types of matter combined, with a positive mass density and pressure, tend to decelerate the
universe. Φ > −2Λd is a gravitationally repulsive condition which relates dark energy to Λd. Hence, Λd
is called the dark energy density and Pd the dark energy pressure. Φ tends to accelerate or decelerate the
universe but has a net zero effect on it. Φαβ and therefore Φ, provide the flexibility to describe various
eras in the evolution of the universe. The cosmological constant Λ, on the other hand, can be expressed
as a fixed negative energy density which would have tended to accelerate the universe during all epochs.

One of the recent challenges in cosmology has been to find a natural mechanism that describes
a small but positive vacuum energy density to explain the observed acceleration of the present universe.
Dark energy provides a natural explanation of this challenge without the need of a cosmological constant.

After the discovery in 1929 by Hubble [26] that the universe was expanding, Λ was not required
to obtain a static solution to the Einstein equations with a positive mass density. Since the cosmological
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constant was vastly smaller than any value predicted by particle theory, most particle theorists simply
assumed, that for some unknown reason, this quantity was zero [27]. This was widely believed to be true
until the discovery of the presently accelerating universe in 1998-99 [28, 29]. Λ was then considered to be
associated with the dark energy conundrum. However, it is just an integration constant in the modified
Einstein equation. Λ must vanish and is replaced by Φ as proved in theorem 5.1. This is readily verified
by restricting the dark energy variables to the constant values Λd = −Λ and Pd = c2Λ in (39) and (42).
The Friedmann equations with the cosmological constant Λ are then recovered in accordance with theorem
5.1.

The Friedmann equations are now considered with κ = 1 describing a closed universe:

ȧ2 =
8πG

3
%a2 − c2

3
Λda

2 − c2 (43)

and

ä = −4πG

3
a(%+

3p

c2
) +

ac2

6
(Λd +

3

c2
Pd). (44)

To avoid confusion with Λ, we will denote the constant vacuum energy density as Λv with the property
Λv > 0. In the present epoch, Λv is measured to be ≈ 1.1× 10−52m−2. By defining

%̃ = 8πG%− c2Λd (45)

and

p̃ = −4πG

c2
p+

1

2
Pd, (46)

these equations can be simplified to

ȧ2 =
%̃a2

3
− c2, (47)

and

ä = a(− %̃
6

+ p̃) (48)

with the conservation equation

˙̃% = −3
ȧ

a
(%̃− 2p̃). (49)

Unless otherwise stated, % > 0 and p > 0. Equation (47) requires %̃ > 0.
It is interesting to explore how the energy-momentum of the gravitational field can describe

critical features of a Big Bang universe. Immediately after the event of the Big Bang, the universe
violently accelerates and ȧ > 0. For a very short time, there is no matter; % = 0 and p = 0. In this
very early stage of the evolution of the universe, it is possible that the constant vacuum energy density
developed. If we set % = 0 in (43), the inequality

Λd < −
3

a2
(50)

must hold. From (41) and (44) with ȧ 6= 0,

d

da
Λd = −2Λd

a
− 6ä

a2c2
. (51)

If Λd −→ −Λv and Pd
c2
−→ Λv just after the Big Bang, (44) requires ä

a to be constant. With those
assumptions, equation (51) has the solution

Λd =
c1

a2
− 3ä

ac2
(52)

where c1 is an arbitrary constant. Setting c1 = −3 and Λv = 3ä
ac2

,

Λd = − 3

a2
− Λv (53)

9



which satisfies (50) and tends to −Λv as the universe expands. Dark energy can generate Λv during this
epoch of the universe. The expansion of the universe is then described by

ȧ2 =
1

3
a2c2Λv. (54)

The pressure density of dark energy is Pd = c2

a2
+ Λvc

2 and the acceleration of the universe is

ä =
ac2Λv

3
. (55)

The scalar Φ = 6
a2

+4Λv is positive. Φ > 0 is the condition to be satisfied for an expanding and accelerating
universe when no matter is present. Because this result depends entirely on dark energy, Φ > 0 defines
dark energy.

With all types of matter appearing after the initial inflation, Λd must obey the constraint

Λd < −
3

a2
+

8πG%

c2
. (56)

With constant total matter, the equation

d

da
Λd = −2Λd

a
+

16πG%

ac2
− 6ä

a2c2
(57)

is obtained from (41) and (44) with ȧ 6= 0. Since ä
a = d

dt(
ȧ
a) + ( ȧa)2, a slowly varying non-zero Hubble

parameter ȧ
a requires ä

a to be approximately constant. With that assumption, equation (57) has the
solution

Λd = − 3

a2
+

8πG%

c2
− Λv (58)

with

Λv =
3ä

ac2
. (59)

The dark energy pressure is

Pd =
c2

a2
+

8πGp

c2
+ c2Λv. (60)

A pure dark energy effect returns (54) and (55) as the expansion and acceleration, respectively. In a uni-
verse with essentially constant matter, which is assumed to be the case of the present era, this demonstrates
why Λv is important. As expected, Φ = 6

a2
+ 4Λv + 8πG

c2
(−%+ 3p

c2
) is positive or negative.

Riess et al. [30] used the Hubble telescope ”to provide the first conclusive evidence for cosmic
deceleration that preceded the current epoch of cosmic acceleration”. Given the violent acceleration
after the Big Bang, this observation evidences the cyclic nature of the universe to this point in time.
The cosmological scale factor must have had maximum and minimum values in the past because of the
observed changes in sign of its second derivative; there were extremums at ȧ = 0. In general, this requires
Λd = − 3

a2
+ 8πG%

c2
from equation (43). The Hubble parameter vanishes and (58) must change because (59)

is not constant at the extremum. Dark energy in the amount of Λv must be transferred to Λd from the
dark energy pressure; Pd

c2
in (60) decreases by −Λv with an offsetting change by that amount to Λd in (58).

This allows an extremum to occur while keeping Φ unchanged. Then, cosmic acceleration can change to
a decelerating epoch, and conversely with the opposite exchange of dark energy.

The maxima or minima of the cosmological scale factor follows directly from equations (47) and
(48). The second derivative of a must satisfy

ä = a(− c2

2a2
+ p̃) (61)

when ȧ = 0. The value of p̃ in equation (61) governs the condition for a maximum or minimum of a. With
−Λd having a small fixed value of Λv determined early in the evolution of the universe, the variation in Φ is
determined by Pd. The constraint (26) on Φ can force Pd to change, which can change the sign of p̃. Near
the end of an acceleration phase, if the dark energy pressure decreases so that Pd ≤ 8πGp

c2
, p̃ changes from

10



positive to zero or negative, and the scale factor has a maximum value at amax; p̃ ≤ 0 is satisfied in (61).
The acceleration phase ends and the universe undergoes a deceleration. The scale factor then decreases
toward a minimum value amin at which the dark energy pressure increases enough to satisfy p̃ > c2

2a2
.

The deceleration phase changes to that of an acceleration and the cyclic process continues indefinitely. Φ,
governed by (26), smoothly controls the maximum and minimum values that the cosmological scale factor
can have. The global constraint on Φ keeps the universe gravitationally in balance. This model of the
universe starts with the Big Bang and then cycles to eternity. It does not suffer the catastrophes of the
Big Crunch or the Big Rip.

Although recent data and analysis [31] suggests the observable universe is flat, the data likely
represents a small fraction of the presently unknown entire universe. If the entire universe has a positive
curvature, a measurement of it will appear to be nearly flat if data from large enough distances is not
available. Therefore, at this time, the conjecture of a flat universe which expands forever based on obser-
vational evidence is less likely than the cyclic universe described and observed after the Big Bang and into
this epoch.

Dark energy thus provides a natural explanation of why the vacuum energy density is so small,
and why it dominates the present epoch of the universe.

7. Energy-momentum of the gravitational field: Dark matter

The ΛCDM model describes the formation of galaxies after the Big Bang from cooled baryonic
matter gravitationally attracted into a dark matter skeleton. Dark matter in the ΛCDM model also
provides the additional mass required to describe the flat rotation curves observed in many galaxies.
However, no dark matter particles have been detected and there have been several attempts to explain the
flat rotational curves without dark matter.

The leading candidate is a phenomenological model of Modified Newtonian dynamics (MOND)
introduced by Milgrom [32]. The Newtonian force F is modified according to

F = mµ(
a

a0
)a (62)

where a0 is a fundamental acceleration ≈ 1.2× 10−10m/s2. µ is a function of the ratio of the acceleration
relative to a0 which tends to one for a � a0 and tends to a

a0
for a � a0. MOND successfully explains

many, but not all, mass discrepancies observed in galactic data. However, it has no covariant roots in
Einstein’s equation or cosmological theory. MOND and ΛCDM were thoroughly discussed by McGaugh
in [33].

Other alternatives to dark matter were reviewed by Mannheim in [34] with references therein. In
particular, Moffat [35] used a nonsymmetric gravitational theory without dark matter to obtain the flat
rotation curves of some galaxies. The bimetric theory of Milgrom [36] involved two metrics as independent
degrees of freedom to obtain a relativistic formulation of MOND.

Different approaches to the missing matter problem include dipolar dark matter, which was
introduced by Bernard, Blanchet and Heisenberg in [37] to solve the problems of cold dark matter at
galactic scales and reproduce the phenomenology of MOND. The theory involves two different species
of dark matter particles which are separately coupled to the two metrics of bigravity and are linked
together by an internal vector field. In [38], a theory of emergent gravity (EG) which claims a possible
breakdown in general relativity, was introduced by Verlinde that provided an explanation for Milgrom’s
phenomenological fitting formula in reproducing the flattening of rotation curves. Campigotto, Diaferio
and Fatibenec [39] showed conformal gravity cannot describe galactic rotation curves without the aid of
dark matter. On the other hand, a logical analysis based on observational data was presented by Kroupa
in [38] to support the conjecture that dark matter does not exist.

The existence of dark matter is based on the assumption that general relativity is correct. How-
ever, Einstein’s equation is incomplete without the tensor Φαβ describing the self-interactions of the grav-
itational field. The validity of modified general relativity is now tested with the attempt to describe the
additional gravitational attraction in various galaxies without dark matter.
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7.1. Modified GR in a spheroidal spacetime

It is assumed dark matter does not exist and that baryonic matter and other possible sources
of matter such as neutrinos, produce the gravitational field. In a region of spacetime where there is no
matter, T̃αβ = 0 and the field equations must satisfy

Gαβ + Φαβ = 0. (63)

Spheroidal solutions to these nonlinear equations are now investigated. The spheroidal behaviour of the
metric is to be determined from a particular solution to (63) in a spacetime described by a metric of the
form

ds2 = −eνc2dt2 + eλdr2 + r2(dθ2 + sin2θdϕ2) (64)

where ν and λ are functions of t, r and θ. The non-zero connection coefficients (Christoffel symbols) are:

Γ0
00 =

1

2
∂0ν, Γ0

01 =
1

2
∂1ν, Γ0

02 =
1

2
∂2ν, Γ0

11 =
1

2
∂0λe

λ−ν , Γ1
00 =

1

2
∂1νe

ν−λ, Γ1
01 =

1

2
∂0λ,

Γ1
11 =

1

2
∂1λ, Γ1

12 =
1

2
∂2λ, Γ1

22 = −re−λ, Γ1
33 = −r sin2 θe−λ, Γ2

00 =
1

2r2
∂2νe

ν ,

Γ2
11 =

1

2r2
∂2λe

λ, Γ2
12 =

1

r
, Γ2

33 = − sin θ cos θ, Γ3
13 =

1

r
, Γ3

23 = cot θ.

The unit vectors uβ satisfy
uαuα = −1. (65)

As a first step to understand this highly nonlinear set of equations given by (63) with the property (65)
in this metric, u3 is chosen to vanish. This requires

X3 = 0 (66)

because uα is collinear with Xα. All other components of Xα are non-zero.
Static solutions to (63) are sought which require the components of the line element field to

satisfy
∂0Xα = 0, (67)

and from the metric,
∂0λ = 0, ∂0ν = 0. (68)

The components of Φαβ to be considered are then:

Φ00 = (1 + 2u0u
0)(−1

2
eν−λν ′X1 −

1

2r2
eν∂2νX2), (69)

Φ11 = (1 + 2u1u
1)(X1

′ − 1

2
λ′X1 −

1

2r2
eλ∂2λX2), (70)

Φ22 = (1 + 2u2u
2)(∂2X2 + re−λX1), (71)

Φ33 = r sin2 θe−λX1 + sin θ cos θX2, (72)

the Ricci scalar, which from (63) equals Φ, is

R = e−λ(−ν ′′ − 1

2
ν ′

2
+

1

2
λ′ν ′ − 2

r
ν ′ +

2

r
λ′ − 2

r2
) +

1

r2
(−1

2
∂2ν

2 − ∂2∂2ν − ∂2ν cot θ + 2), (73)

and the corresponding components of the Einstein tensor are:

G00 =
1

r2
eν−λ(rλ′ − 1 + eλ) +

eν

4r2
∂2ν∂2λ, (74)

G11 =
1

r2
(1 + rν ′ − eλ) +

eλ

2r2
[∂2∂2λ+ ∂2∂2ν +

1

2
(∂2λ)2 +

1

2
(∂2ν)2 +

1

2
∂2λ∂2ν + cot θ(∂2λ+ ∂2ν)], (75)
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G22 =
r2e−λ

2
[ν ′′ + (

1

2
ν ′ +

1

r
)(ν ′ − λ′)]− 1

2
∂2∂2λ−

1

4
(∂2λ)2 +

1

2
cot θ∂2ν, (76)

G33 = sin θ2[
r2e−λ

2
(−λ

′

r
+
ν ′

r
+ ν ′′ +

1

2
ν ′

2 − 1

2
λ′ν ′) +

1

4
(∂2ν)2 +

1

2
∂2∂2ν −

1

2
cot θ∂2λ] (77)

where the prime denotes ∂1.
These equations are greatly simplified by setting

ν = −λ. (78)

Thus, a class of static spheroidal solutions to (63) are sought with the restrictions (66),(67),(68) and (78).
Since eλ−ν(Φ00 +G00) + Φ11 +G11 = 0 from (63),

(
λ′

2
X1 +

1

2r2
eλ∂2λX2)(1 + 2u0u

0) + (X ′1 −
λ′

2
X1 −

1

2r2
eλ∂2λX2)(1 + 2u1u

1) = 0. (79)

If we choose λ′

2 X1 = X ′1 − λ′

2 X1,

X1 = a1e
λ (80)

where a1 is an arbitrary but non-zero constant with the dimensions of L−1. Then (79) becomes

(
X ′1
2

+
1

2r2
eλ∂2λX2)(1 + 2u0u

0) + (
X ′1
2
− 1

2r2
eλ∂2λX2)(1 + 2u1u

1) = 0 (81)

from which

∂2λ = a1λ
′r2 u2u

2

(u0u0 − u1u1)X2
(82)

using 1 + u0u
0 + u1u

1 = −u2u
2.

From (63) and (80) in the interval 0 < θ < π, G22 + Φ22 = 0 gives

(−λ′′ + λ′2 − 2

r
λ′) +

eλ

r2
(−1

2
(∂2λ)2 − ∂2∂2λ− ∂2λ cot θ) +

2eλ

r2
(∂2X2 + a1r)(1 + 2u2u

2) = 0 (83)

and G33 + Φ33 = 0 yields

−λ′′ + λ′2 − 2

r
λ′ +

eλ

r2
(
1

2
(∂2λ)2 − ∂2∂2λ− ∂2λ cot θ) +

2eλ

r2
(a1r +X2 cot θ) = 0. (84)

Subtracting (83) from (84) requires

cot θX2 − ∂2X2 +
1

2
(∂2λ)2 − 2u2u

2(∂2X2 + a1r) = 0. (85)

Choosing cot θX2 = ∂2X2 gives
X2 = a2 sin θ (86)

where a2 6= 0 is an otherwise arbitrary dimensionless constant, and demands

(∂2λ)2 = 4u2u
2(a2 cos θ + a1r). (87)

Equation (84) can now be expressed as

−λ′′ + λ′2 − 2

r
λ′ +

eλ

r2
(
1

2
(∂2λ)2 − ∂2∂2λ− ∂2λ cot θ) +

2eλ

r2
(a1r + a2 cos θ) = 0. (88)

From (82) and (87), the derivative terms in ∂2λ can be neglected if u2u
2 is restricted to be very small but

non-zero. Assuming ∂2∂2λ can also be neglected, equation (88) is then approximated by

−λ′′ + λ′2 − 2

r
λ′ +

2eλ

r2
(a1r + a2 cos θ) = 0, 0 < θ < π (89)

which, for a fixed value of cos θ, has the exact solution

λ = − ln(
c1

r
+ c2 − a1r − 2a2 cos θ ln r), 0 < θ < π, 0 < r <∞ (90)

where c1 and c2 are arbitrary constants.
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7.2. The radial force and galactic rotation curves

The radial force on an object of mass m can now be calculated from (90). Using the conventional
relationship of the Newtonian potential φ to g00,

φ =
c2

2
(eν − 1), (91)

the radial force Fr is

Fr = −m∂1φ

=
mc2

2
(
c1

r2
+

2a2 cos θ

r
+ a1).

(92)

Choosing

c1 = −2GM

c2
, (93)

where M represents the total mass of the galaxy composed of mainly baryonic matter and no dark matter,
we arrive at the modified Newtonian force

Fr = −GMm

r2
+
mc2a2 cos θ

r
+
mc2a1

2
. (94)

The correction terms to the Newtonian force come from the non-zero components of the line element field
in the energy-momentum tensor Φαβ. The components of the line element field can change their sign, which
means aj can change to −aj with j=1,2 in this restricted metric. Thus the middle term is gravitationally
attractive and represents the ”dark matter” correction if a2 cos θ < 0 in the interval 0 < θ < π. It is the
term that gives rise to the flat rotation curves. The third constant term is positive and repulsive if a1 > 0.
This describes the repulsive dark energy force in the present epoch. However, during a part of the previous
decelerating epoch observed by Riess et al. [30], a1 < 0. They used the Hubble telescope to provide the
first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.

Assuming a circular orbit about a point mass, it follows that the orbital velocity of a star rotating
in the galaxy satisfies

v2 = v2
N − a2c

2 cos θ − a1c
2

2
r (95)

where v2
N is the Newtonian term

v2
N =

GM

r
. (96)

Equation (95) demands an upper limit to r describing a large but finite galaxy.
Because a1 6= 0, it is possible for the Newtonian force to balance the dark energy force, which

requires

v2
N −

a1c
2

2
r = 0. (97)

Then,
v2 = −a2c

2 cos θ, a2 cos θ < 0 (98)

describes a specific class of galaxies with a flat orbital rotation curve. From (96) and (97), we obtain the
Tully-Fisher relation

v4
N =

GMc2a1

2
, a1 > 0. (99)

This result holds for any finite r in contrast to EG which holds only for large r as determined by Lelli,
McGaugh and Schombert [41]. With c2a1

2 := a0, the Tully-Fisher relation in MOND is evident.
The importance of the radial acceleration relative to the rotation curves of galaxies was discussed

by Lelli, McGaugh, Schombert, and Pawlowski in [42] where it was determined that late time galaxies
(spirals and irregulars), early time galaxies (ellipticals and lenticulars), and the most luminous dwarf
spheroidals follow a tight radial acceleration relation which correlates well with that due to the distribution
of baryons.
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Equation (94), which does not include dark matter in this analysis, is general enough to describe
the rotation curves of many types of galaxies. For example, galaxy NGC4261 has a relatively flat rotation
curve but starts to rise at larger radii, reaching velocities of 700 km s−1 at 100 kpc [42]. That requires
a1 in (95) to be negative which was interpreted above. As another example, both c2a1r and c2a2 could
be small enough relative to GM

r so that the Newtonian term is dominant. Galaxies with no flat rotation
curves have recently been observed by van Dokkum et.al [43]. It should also be remembered that equation
(95) came from an approximation to equation (88) which could be used to model galaxies in greater detail.
Furthermore, equation (88) is a restricted version of the general equation (63) which provides additional
variables that may explain even more aspects of cosmology now attributed to dark matter.

However, it is still possible that dark matter particles may exist. As a part of (14) in the total
matter energy-momentum tensor T̃αβ, they would contribute to the gravitational field outside of its source
along with baryonic matter in equation (63) and therefore in (94). But any dark matter contribution to
the gravitational field would play a much lesser role because of the existence of Φαβ.

8. Conclusion

The results in this article stem from the association of a Lorentzian metric with a Riemannian
metric using the line element field (Xβ,−Xβ). This allowed a classical result of Riemannian geometry to
be adapted to the geometry of spacetime. An orthogonal decomposition of symmetric tensors on a time
oriented Lorentzian manifold could then be developed. This introduced a new tensor, Φαβ. Variation
of the action functional for all matter fields with respect to the metric generated the symmetric energy-
momentum tensor T̃αβ that contains all interactions of the gravitational field with the matter fields, but
not with itself. Φαβ then represented the energy-momentum of the gravitational field. By requiring the
field equations to be determined from an action functional, and adhering to Einstein’s postulate requiring
Tαβ, the totality of the matter energy-momentum and the energy-momentum of the gravitational field,
to be the source of the gravitational field, a modified equation of general relativity was obtained. It was
proved that Tαβ = T̃αβ − c4

8πGΦαβ is divergenceless and Einstein’s equation is recovered in form. Thus,
general relativity is complete with the addition of the geometrical tensor Φαβ.

The line element field introduced Xµ and its collinear vector uµ as dynamical variables inde-
pendent of the Riemannian metric. Variation of the action functional with respect to uµ generated the
equation uµ = 3

Φ∂µf from which the wave equation �f = −1
9Φ2 was obtained. The energy-momentum

of the gravitational field is localizable and measureable. Thus, Φαβ, a symmetric tensor constructed from
the Lie derivatives of both the metric and the unit vectors collinear with one of the pair of regular vectors
in the line element field, provides a solution to the energy localization problem.

Φ > 0 defines dark energy and Φ < 0 the attractive energy of the gravitational field interacting
with itself. Φ has the global property

∫
gαβΦαβ

√
−gd4x = 0. Φ tends to accelerate or decelerate the

universe but has a net zero affect on it. The cosmological constant Λ is an integration constant and must
vanish. It is dynamically replaced by Φ.

Important features attributed to dark energy resulted from the investigation of the modified
Einstein equation in the FLRW metric. The dark energy pressure explained the observed cyclic nature of
the universe after the Big Bang. The dark energy density explained the initial inflation of the universe and
provided a natural explanation of why the vacuum energy density is so small and why it now dominates
the expansion and acceleration of the present universe.

The self-interactions of the energy-momentum of the gravitational field are important in the
description of dark matter. An exact static solution was obtained from the modified Einstein equation
in a restricted spheroidal metric describing the gravitational field outside of its source, which does not
contain dark matter. The modified Newtonian force contained two additional terms: one represented
the constant dark energy force which depends on the parameter a1 of the radial component X1 of the
line element field in Φαβ but not the radial variable; the other represented the 1

r ”dark matter” force
which depends on the parameter a2 of X2 in Φαβ, and cos θ. The baryonic Tully-Fisher relation was
obtained by balancing the dark energy force with the Newtonian force. This condition described the class
of galaxies associated with MOND. The Newtonian rotation curves for galaxies with no flat orbital curves,
and those with rising rotation curves for large radii were described as examples of the flexibility of the
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orbital rotation curve equation. The results obtained from the complete Einstein equation thus far are
able to substantially describe the missing mass problem attributed to dark matter. Further mathematical
and detailed numerical analyses to explore the ability of the energy-momentum tensor of the gravitational
field to replace dark matter in cosmology, are fully warranted. This rigorous analysis with comparison to
astronomical data may still point to the existence of dark matter to some extent. But even if that is the
case, the gravitational role of dark matter is substantially reduced by the impact of the energy-momentum
tensor of the gravitational field.

Thus, Φαβ is the symmetric tensor that Einstein sought many years ago. It represents the energy-
momentum of the gravitational field itself and explains particular features of dark energy and dark matter.
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