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Abstract 

  

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the 

negative even integers and complex numbers with real part 
1
2
 

The Riemann hypothesis implies results about the distribution of prime numbers. Along with 
suitable generalizations, some mathematicians consider it the most important unresolved 
problem in pure mathematics (Bombieri 2000). 

It was proposed by Bernhard Riemann (1859), after whom it is named. The name is also used for 
some closely related analogues, such as the Riemann hypothesis for curves over finite fields.  

The Riemann hypothesis implies results about the distribution of prime numbers. Along with 
suitable generalizations, some mathematicians consider it the most important unresolved 
problem in pure mathematics (Bombieri 2000). The Riemann zeta function is defined for 
complex s with real part greater than 1 by the absolutely convergent infinite series: 

 

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + ... 
 

The Riemann hypothesis asserts that all interesting solutions of the equation: 
     

ζ(s) = 0 

lie on a certain vertical straight line. 

 

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural 
numbers:  
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Harmonic numbers have been studied since early times and are important in various branches of 
number theory. They are sometimes loosely termed harmonic series, are closely related to the 
Riemann zeta function.  

The harmonic numbers roughly approximate the natural logarithm function and thus the 
associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the 
divergence of the harmonic series to provide a new proof of the infinity of prime numbers. His 
work was extended into the complex plane by Bernhard Riemann in 1859, leading directly to the 
celebrated Riemann hypothesis about the distribution of prime numbers.  

 

Proof 

 

In 2002, Jeffrey Lagarias proved that this problem is equivalent to the Riemann Hypothesis, a 
famous question about the complex roots of the Riemann zeta function. The Lagarias’s 
Elementary Version of the Riemann Hypothesis states that for a positive integer n, let σ(n) 
denote the sum of the positive integers that divide n. For example, σ(4)=1+2+4=7, and  
σ(6)=1+2+3+6=12. Let Hn denote the n-th harmonic number, for example: 

   

Hn = 1 + 1
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The unsolved question is does the following inequality hold for all n ≥ 1? 

 

σ(n)  ≤  Hn + ln(Hn)eHn  

 

First we will solve for the smallest numbers: 

 

σ(1)  ≤  H1 + ln(H1)eH1  

σ(1)  = 1 and H1 = 1 , therefore, 

σ(1) = H1 = 1 , which satisfies our inequality. 
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σ(2)  ≤  H2 + ln(H2)eH2  

σ(2)  = 3 and H2 = 1.5 , therefore, 

σ(2) = 3  ≤  1.5 + ln(1.5)e1.5 

3 ≤  5.346945837 

 

σ(3)  ≤  H3 + ln(H3)eH3  

σ(3)  = 4 and H3 = 2.833333333, therefore, 

σ(3) = 3  ≤  2.833333333 + ln(2.833333333)e2.833333333 

3 ≤ 3194.809434 

 

σ(4)  ≤  H4 + ln(H4)eH3  

σ(4)  = 7 and H4 = 5.583333333, therefore, 

σ(4) = 3  ≤ 5.583333333 + ln(5.583333333)e5.583333333 

7 ≤ 5.94294E+13 

 

σ(5)  ≤  H5 + ln(H5)eH5  

σ(5)  = 6 and H3 = 10.91666667, therefore, 

σ(5) = 6  ≤ 10.91666667 + ln(10.91666667)e10.91666667 

6 ≤ 1.36425E+52 

 

In 1984, G Robin also proved, unconditionally, that the inequality below is true (see Proposition 
1 of Section 4 of Robin’s work in reference 2):  

σ(𝑛𝑛)   ≤   (𝑒𝑒 𝛾𝛾)𝑛𝑛�log log(n)� + 0.6483𝑛𝑛
log log(n)

 

 

holds for all n ≥ 3.  Above, we have already shown the first five σ(𝑛𝑛)  ≤ Hn + ln(Hn)eHn , 
therefore, we do not need to address when n < 3 in the following proof. 
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The numerical value of the Euler–Mascheroni constant, γ, is: 

 γ = 0.57721566490153286060651209008240243104215933593992 

 

We will prove that: 

 

 

(𝑒𝑒 𝛾𝛾)𝑛𝑛�log log(n)� +  0.6483𝑛𝑛
log log(n)   ≤  Hn + ln(Hn)eHn 

 

(𝑒𝑒 0.57721)𝑛𝑛�log log(n)� +  0.6483𝑛𝑛
log log(n)   ≤  Hn + ln(Hn)eHn 

 

1.781𝑛𝑛�log log(n)� +  0.6483𝑛𝑛
log log(n)   ≤  Hn + ln(Hn)eHn 

 

For n ≥ 3, then ln(Hn) ≥ 1.041453875 which means Hn + ln(Hn)eHn ≥ eHn  

Therefore, we will prove that: 

 

1.781𝑛𝑛�log log(n)� +  0.6483𝑛𝑛
log log(n)   ≤  eHn 

 

 

Notice that log log(n) grows very slowly, log log(1,000,000,000) = 0.954   

 

Notice, Hn grows rapidly in the exponent value for eHn, for example, H5 = 10.91666667 

 

Therefore, eHn = eH5 = e10.91666667 = 1.1539E+123, which is a very large number compared to 
0.954 
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1.781𝑛𝑛�log log(n)� +  0.6483𝑛𝑛
log log(n)   ≤  eHn 

 

All power functions, exponential functions, and logarithmic functions tend to ∞ as x => ∞. But 
these three classes of functions tend to ∞ at different rates. The main result we want to focus on 
is the following one; ex grows faster than any power function while log x grows slower than any 
power function (see reference 4). Notice the right hand side of our above inequality is an 
exponential function, eHn, which grows faster than any power function. The left side of our 
inequality is a combination of logarithmic functions and linear functions, and logarithmic 
functions grows slower than any power function. The linear functions on the left side are very 
small multiples of n, but they still grow much faster than log log(n), however it grows extremely 
slow compared to eHn. Reference 4, provides proof of ex growing the fastest and log x growing 
the slowest, this provides proof of the above inequality for all n ≥ 1.  

Additionally, we know that Hn grows to infinity (which causes eHn to grow to e∞), while we do 
not know whether n, on the left hand side of the inequality grows to infinity. 

Now we will return to our earlier inequalities. 

 

σ(n) < eγ �log log(n)� +  0.6483𝑛𝑛
log log(n) , for n ≥ 3  

 

Since we have proven, 1.781𝑛𝑛�log log(n)� +  0.6483𝑛𝑛
log log(n)   ≤  eHn 

 

Then it follows that, σ(n) ≤  eHn 

 

And, σ(n) ≤  eHn ≤ Hn + ln(Hn)eHn , for n ≥ 3 

 

Therefore, we have proven that:  σ(n)  ≤  Hn + ln(Hn)eHn , for all n ≥ 1, since we solved for n ≥ 5 

 

Thus, we have proven Lagarias’s Elementary Version of the Riemann Hypothesis. And since it’s 
proof is equivalent to Riemann Hypothesis, we have also proven Riemann Hypothesis. 

The only question left is does our proof hold when n goes to infinity? In set theory, there are 
multiple infinities. So we will use the Continuum Hypothesis, to prove that when n goes toward 
infinity the left side of the inequality below will always be less than the right side of the 
inequality. The smallest infinity is the “countable” infinity,       , that matches the number of 
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integers. The continuum hypothesis says that mathematical formula below holds for       
(reference 5). 

 

 

 

Since n is a countable integer then the left side of the below inequality can no greater than  

However, the right side of the inequality is, eHn, and we already know Hn is countable infinity, so 
Hn =    

 

σ(n) < 1.781�log log(n)� +  0.6483𝑛𝑛
log log(n) ≤ eHn 

 

Therefore, since e = 2.718281828, we can state the following: 

 

2.7182818      ≥   

 

Note that when we state above that e raised to      is ≥ to 2 raised to      we actually mean that that 
they are at least equal to each other, we are not so bold to claim one of these infinites is greater 
than the other. 

This proves that infinity for σ(     ) < e 

Therefore the proof for σ(n)  ≤  Hn + ln(Hn)eHn has been proven for all n ≥ 1. In other words the 
growth rate of σ(n) can’t reach that of Hn + ln(Hn)eHn even at infinity. In other words, Hn + 
ln(Hn)eHn will always be ahead of σ(n), even at infinity. This thoroughly proves the Riemann 
hypothesis for all n ≥ 1. 

The author must express many thanks to Bernhard Riemann who proposed the Riemann 
hypothesis in 1859. Again, the author thanks Bernhard Riemann for all of his work. Also the 
author wishes to express his eternal gratitude to Jeffrey Lagarias who proved that his Lagarias’s 
Elementary Version is equivalent to the Riemann Hypothesis, a famous question about the 
complex roots of the Riemann zeta function. Without Lagarias work, the author could not have 
proved the Riemann Hypothesis. 
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