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Abstract

Gunnar Nordstrom published his second gravitation theory in 1913. This the-
ory is today considered to be inconsistent with observations. At this time Einstein
was working on his field theory, the General Relativity Theory. FEinstein’s theory
has been accepted as the only theory of gravitation consistent with measurements.
The article reconsiders Nordstrém’s theory and proves the following claims. 1) If
gravitation is caused by a scalar field, then the theory is Nordstrom’s second grav-
itation, which in a vacuum outside a point mass reduces to his first gravitation
theory. Nordstrom’s scalar field theory gives proper time values that fully agree
with gravitational redshift in the Pound-Rebka experiment and with the Shapiro
time delay in Shapiro’s radar bouncing experiment. Gravitation in Schwarzschild’s
solution is not a field but a deformed geometry. If proper time is calculated via the
General Relativity formula, Schwarzschild’s solution fails both the Pound-Rebka
redshift and Shapiro time delay tests because the ball in Schwarzschild’s solution
is deformed and light as measured by an external clock can exceed c. 2) The third
classical tests of Einstein’s theory is the movement of the perihelion of Mercury.
Calculations from Schwarzschild’s exact solution to Finstein’s equations gave a
correction that very well fitted the unexplained part of Mercury’s movement. How-
ever, Schwarzschild’s solution as a stationary solution it fails to explain why the
orbit of Mercury, or any planet, is an ellipse. It is shown that the customary proof
of Kepler’s law stating that the orbit is an ellipse is incorrect: under a central
stationary Newtonian force the orbit of a two mass system can only be a circle or
(almost) a hyperbole because of conservation of energy. This observation invali-
dates the movement of Mercury as a test of General Relativity: Schwarzschild’s
solution cannot produce an elliptic orbit, therefore it is not the solution and that
it gives a correct size modification to the movement of the perihelion is just a co-
incidence. Nordstrom’s theory remains inconclusive in the Mercury test because
calculating the orbit is difficult and cannot be done in this article. Nordstrom’s
theory, however, offers a possibility for explaining elliptic orbits: some energy is

needed for waves in time-dependent solutions to Nordstrom’s field equation and this



loss of potential energy from the radial potential can lead to elliptic orbits. 3) The
fourth classical test is the light bending test. Light bends in Nordstrom’s theory as
light behaves as a test mass in a gravitational field. Calculation of the amount of
light bending in Norstrsom’s theory is similar to calculation of the orbit of planets
and beyond the scope of this article. Theoretical consideration of bending of light
leads to the conclusion that the stress-energy tensor in the General Relativity is
incorrect: the diagonal entries should contain the energy of a stationary gravita-
tional field in the vacuum outside a point mass and therefore diagonal Ricci tensor
entries cannot be zeroes. Nordstrom’s theory passes this theoretical consideration

while Finstein’s theory fails it.

1. Introduction

Gunnar Nordstom’s two scalar theories of gravitation were published in the
the set of articles [1]. A historical overview of the development and rejection of
his theories explaining the arguments of that time is given in [2]. A fairly recent
and very interesting scientific paper exploring the final for of Nordstrom’s theory
is in [3]. It explores the unique property that Nordstrom’s theory shares with the
General Relativity: in both theories the gravitational mass of the universe equals
the inertial mass.

The field equation in Nordstrom’s second gravitation theory is
Pod = —47wp (1)

® is a continuous scalar field defined in the flat Minkowski four-space. p is scalar
and defined in the four-space, but not necessarily continuous: in many cases mass
can be replaced by a set of point masses, thus p is often best treated as a set of
singularities. The gravitation constant G and the speed of light ¢ are both set to
one in this equation and o is the D’Alembertian operator.

The field ® in a flat Minkowski space gives the line element in Cartesian

coordinates as (c is set to one.)
ds? = ®?dt? — ®?dz?® — D% dy® — P?d2> (2)
Einstein noticed (see [2][3][4]) that (2) can be written as

ds? = g*dz®dax® (3)



J. Jormakka 3

for goo = ®2, gii = —®2 for 4 > 0 and gup = 0 if @ # b. Thus, (2) can be
interpreted as a line element of a curved Lorentz four-space. The Ricci scalar of

the curved Lorentz space satisfies
R=—63"°0® (4)
and (1) can be expressed as a geometric equation
O 300 = 24nGT (5)

where T' describes the mass-energy distribution. A bit later, in 1915-1916, Einstein
formulated the General Relativity field equations

1
Rab - iR = kOTab - /\gab (6)

where ko = 871G/ ct, T,y is the stress tensor and ) is the cosmological constant.
Nordstrom’s field equation (1) can be obtained from Einstein’s field equations by
taking a trace provided that the metric tensor g, has the special form as in (3).

In the last form of Nordstrom’s theory p in the field equation (1) was un-
derstood as T in (5) and as equal to the trace of the energy-stress tensor Ty, of
the General Relativity, but in earlier forms of the theory p and T are not exactly
related in this way. I will use the form (5) for Nordstrém’s theory and will also
adopt the interpretation of p in (1) as related to the stress-energy tensor Tg, as
in (5), but will not consider the T,; of Nordstrém’s theory to be exactly the same
as the Ty, in the General Relativity. The difference between the T, in the two
theories is that at least in early forms of Nordstrom’s theory the diagonal elements
T,, included the energy of the gravitational field and were not zero in a vacuum
outside a point mass.

The line element in Nordstrom’s theory has to be of the form (2) because if
the field has the value ®(x) at a point z = (2%, 2!, 2%, 23) and it is continuous,
then in a close distance from the point x in every direction the field has almost the

same value ®(z). It follows that the line element must be in Cartesian coordinates
ds? = ®2dt? — d2dx? — d2dy? — P2dz?
and in spherical coordinates

ds? = ®%dt? — ®2dz?® — r2®2dh? — r? sin® () D2dep?
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In Nordstrom’s theory the field ® is a continuous scalar in the Minkowski space
and though the field equation can be calculated from geometry as in (5) the metric
in (2) does not admit in a natural geometric interpretation: close to a mass the
field @ is stronger. It means that if ds? is a line element, the volume of the line
element grows as ®3 when we go closer to a point mass. The space expands and
the punctuated vacuum extends to the infinity when we approach the mass.

Schwarzschild’s exact solution to Einstein’s equations has the line element

ds® = B(r)dt? — A(r)dr? — r2d6? — r?sin?(0)d¢> (7)
where )
2GM\ ~ 2GM
A(r) = <1 Sl ) , B(r)=1- 2

It is not of the type (2) and thus Schwarzschild’s solution is not a field. In
Schwarzschild’s solution the space elements enlongate in the radial direction when
we approach a mass and the solution can be imagined as (a four-dimensional ver-
sion of) a membrane where a mass bends the geometry. In Schwarzschild’s solution
gravitation is curved geometry.

In orthogonal coordinates the nonzero Christoffel symbols are (b # a, no
summation)

1 1 1

an = igaagaa,,a ng = Egaagaa,,b ng = _igaagbb,a

The Ricci curvature tensor is defined as Rpq = R{,; where
a _ a [ e a e a
Ry =Thac — Tpea+ Toal'ce — Tpeleq

is the Riemann curvature tensor. The Ricci scalar is R = g**R,;. The Ricci tensor
has the symmetry R,;, = Ry, and consequently there are ten distinct entries.
Directly calculating from these definitions we get for orthogonal coordinates

(no summing convention, j € {0,1,2,})

4 4
1 -~ 1 .
Rijj=1fi—-) 19" 9isi > 9" gkki — 979550 | + 581(9“9“;1-) (8)
1=0 k=0
i#) k#j
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where

4
. . } 1, 4
fj _ Z {Zg”gii,j(gjjgjj,j — g”gii’j) — iaj(gugii,j)} (9)
i=0
i#j

and the cross terms are

1 . 1 3
R;; = Zg”gjj,i(gkkgkk,j + 9™ Gmm,j) + ngkgkk,i(g”!}u,j — 9" grk )
1 3
+ngm9mm,i(gugii,j — 9" gmm. ;)
—581'(9 Giij) — 533‘(9 Giii + 9 Gkki + 9" 9mm,i) (10)

where j >4, and k,m ¢ {i,j}.

The equation (5) is a wave function, so all its solutions in polar coordinates
can be constructed from product form solutions. The wave function in spherical
coordinates is solved by separating all variables (r,6,,t). These product form
solution are products of spherical Hankel functions and spherical harmonics. The
metric tensor in Schwarzschild’s solution also has the product form. Finally, it is
very difficult to see what else but a product form could zero all six R;;, j > 7, in
(10). For these reasons I assume that the solution of vacuum space outside a point
mass, i.e., when R;; =0, 7 > i, and R = 0, has a product form. For a product

form

i = Ajo(z°) Aj1 (") Aja(2?) Ajs () (11)

the function
Yis = giigu’,j

is a function of 27 only and f; in (9) depends only on 27. Inserting (11) to R;;
gives

AL

Rjj = fi(a") = ) 52 Gi

i=0 "

i#]
where Gj; is a function of other coordinates than z?. In order for the solution
to be separating variables, we must be able to separate z7 from this equation. It
can be done in two ways, either A;; is a constant times Aj;;, or the terms Gj;

disappear.



A stationary spherically symmetric solution has A%, = A%, = Ai; = 0 for
every j. This guarantees that R;; = 0 for every case of j > ¢ and it also causes
Gj; = 0 for all 4 and j for a product form solution. For this kind of solution
holds:

1
g% Ryp = ——911900900,1(—900900,1 + 911911,1 + 922922,1 + 933933,1) (12)

4
1 o0 00
—59 01(9""900,1)
1
9% Ryy = —1911922922,1(900900,1 + 99111 — 9%%922.1 + 9%°g33,1)
L 99 22
—59 31(9 922,1)
1
9**R33 = —1911933933,1(900900,1 + 99111 + 9%%9221 — 9%°g33,1)
L 33 22
—59 81(9 922,1)
1
g Ry = Zg”googoo,l(g”gn,l — 9°°g00,1)
1 1
+1911922922,1(911911,1 - 922922,1) + 1911933933,1(911911,1 - 933933,1)
_19118(00 )_1116(22 )_1118(33 )
9 119 "goo,1 29 19 9221 29 119 9331
Summing these terms gives
1 0o 22
R = —59 goo,19 g22,1 (13)
L 0o 33 1 99 33
—59 goo,19 933,1 — 59 922,19 g933,1
1 1 1
5 (QOO + 911)81(900900,1) - 5(922 + 911)31(922922,1) - 5(933 + 911)31 (933933,1)

Taking the form for a gravitational field as in (2) and writing A = ®2 the nonzero
elements of the metric tensor are goo = A, g11 = —A, gao = —12A and g33 =
—r2sin?()A. Assuming that A = A(r) = A;1(z?) for every j the diagonal Ricci

tensor entries from (12) are

1 1
ROO = §A”A_1 + ;AIA_l (14)
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3 3 1
— __AIIA—I e AI —2 _AIA—I
Rq1 2 + 2( )"+ ;
Roy = —%7‘214”14_1 —2rA’AY

Ras = sin®(0) Ry»

and the Ricci scalar from (13) as
ma—2_San24-3, 6 442
R=3A"A —E(A)A —i—;AA (15)
The equation R =0 gives
" a—1 1 N2 4—3 2 ) a1
A"A 2—§(A)A 24+ —A'A72 =0
T

Denoting y = A’A~! the equation for Nordstrém’s theory in the vacuum outside

a point mass is

, 1
y+-y=0
r
Thus y = kr—2 for some k and
B = A= (- 5 )
27
for some b. We get the field potential
() =b- o (16)
"= 27

from which b and k can be identitied as b =0 and k/2 = GM . Thus, ® = ®(r)
gives the Newtonian potential. This is what it should give since by (5) the equation

R =0 in this vacuum reduces to
o =0
In spherical coordinates D’Alembertian is
10 0P 1 0 0d
d=—— (r2— ————— | sinf—
=2 (T 6r> T 2 sin?0 00 (Sm ae)

P S A o
r2sin?6 0v?  ¢? Ot?



The solution for ® = ®(r) is

ig (7,28_@) — g¢1+¢ll =0
or r

r2 Or

Thus ® = kr=2 and ® = —kr—! giving the same result as (16).

The constant ¥ = GM but we for simplicity we set it to one and insert
Aj1 =772 to (12). The result is Rgo = —1, R11 =1, Ry = R33 =0 and R;; =0
if 4 # 5. This shows that Einstein’s equations are not satisfied by a metric tensor
Jgap as in (3). The diagonal Ricci tensor entries are not all zeros for g, derived
from a field ®. However, they do satisfy R = 0 in a vacuum outside a point mass.
This means that if gravitation is a field, Einstein’s equations are not satisfied and

Nordstrom’s equations are.

2. Ricci tensor entries in Nordstrom’s field equation

In the vacuum the field equation of Nordstrom’s second gravitation theory is
the wave equation. The wave equation is linear and therefore linear combinations
of product form solutions also fill it, but these linear combinations are usually
not solutions to time dependent Nordstrom’s field equations in spherical coordi-
nates because Nordstrom’s field equation is not linear outside the vacuum and this
restricts the set of acceptable solutions.

The product form solutions to (2) are found by separating variables. We can

look for product form solutions of the form
goo=A, gi1=-A, gop=-1"A, gs3=—r’sin’9)A

A = Ag(t)A1(r)A2(0) A3 ()

From (10) we obtain

1
Roj = 5A;.,clj—lA’OAgl, j=1,2,3

1 2 1
Ry = §A’2A2_1 (A’lAl‘l + ) Ry = 5,4{9,,4:;1,4'1,4;1

r

1
Ras = §A§,A§1(A’2A2_1 + 2cot §)
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From these expressions we see that for the time-dependent case the cross entries
Ry j, j > 0, are not zero for g, derived from a field ®. These entries indicate
that there is a flow of mass-energy and momentum. A physical interpretation for
such a flow can for instance be a planet moving in an orbit around the sun: the
planet slightly disturbs the gravitational field of the sun.

For a stationary field we derived the Newtonian potential ®(r) = k/r. If a
field @ is time dependent, the radial dependency is different. This is because when

r is separated from 6,1,t a constant must be added, i.e.,
f(r)+g0,9,t)=0 gives f(r)=C and g=-C

Looking at the forms of R;; and R for the time dependent case of Nordstrom’s
theory given below make it obvious that the solution to the equation R = 0
does not usually satisfy the equations R,, = 0 for all a. (They may satisfy all
equations, for instance if ® = 0.) The most general & = &(r,0,¢,t) has the

following nonzero diagonal Ricci tensor entries:

1 024 1 0%4 1 0%4 0%A
= AT - 1
Foo = 3 { orF T 2907 T j2gin?g 042 o } (17)
1,.,f 204 1 0AY 3 _, [0A\’
1., 0?24 1 0%4 1 024 0%4
Ry =5 -3 - = -
87.2 ,,-2 802 ,,.2 Sill2 0 a¢2
1 204 1 0A 3 0A
—ATE S — —A
+2 { ror 12 Cte@&} <8r>
I 5 02A 0%A 1 0%4 , 024
i =3 { o T e " emt oz T o
1 dA A 3 94\’
—AT S —dr— — — AT = 1
+2 { "o cot980}+2 (80) +
1 0%A 0%A 0%A ) 0%A
R33 = EA_I {—7“2 sin? HW — sin? GW — 3% + 72 sin? GW}

1, DA DA 0A\> .,
+§A {47‘W+3sm90059%} —A < )—sm&



10

and the Ricci scalar is

R—3a-? 82A+l82A+ 1 82A_32A+28A+g 1994
N or2 12002  r2sin20 042  Ot2  r Or 0
1 0A 0A , 1 0A, 1 0A
A—3 _A—l N2 T (PN 2
+3 {2 <(8t) ((97") 7‘2(39) TQSinZH(afﬁ))

In spherical coordinates D’Ambertian o® for A = ®2 gives

20A  9?A 1,04, &4 1 04

o= AT I G AT G G A )

L1 94 104 11,04
——AT = kel i __A—l “\2
2 {+ 055tz gz 22t (ag }

1 -1 1 0%A 1 1 0A
AT - _A—l ks 2}
{+r2 sin?@ 042  r2sin?0 2 (3¢)

Thus
R=—6A"200 = —6d30d

In Cartesian coordinates
doo = @2 3 gii = _¢2 3 dab = 0 if a ?é b

the diagonal elements of the Ricci curvature tensor are

3
o oo, 0%®
Roo = —97'0® + 72 392 — 2071
00 ne ;(833 T30, o1
and for 7 =1,2,3
0P
Riji=-9'o® — & —)?
° Z 63:3 > )
0%® o0
207 ——— 4+ 4972 )2
0(x*)? (8351)
As g% = &2y in Cartesian coordinates, we get
8(1)
ab —4
= ab = —407°0P + 40
R=g®Rgy = S0® + Z 57) +0

j=1

|
}
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0P
207%0® — 4074 Y (2—)?
- Z(axﬂ )
J=1
that is, we get Equation (4)
R=—-62"°o®

but every R,, is not zero in a vacuum outside a point mass.

3. Does Nordstrom’s field theory fail the classical tests?

Evaluation which of the field theories is correct is today left to the empirical
tests of the General Relativity. Does Nordstrom’s theory fail three of the four
tests, or is it Einstein’s theory that fails three out of four? See the Wikipedia
entry [4] for a calculation that concludes that Nordstrom’s theory fails three of the
four tests.

I see certain problems in the calculations of [4]. It is stated that Nordstrom’s
second field theory comes from the Langangian

1
L=—n"%® ., — pd
87_‘_ ) )

but calculating

oL 1

— o,
0o, 47rn ’

gives the Euler-Langange equations

and the Lagrangian produces the field equation of Nordstrom’s first theory
o® = —4mp

This is a minor issue since the second theory can be obtained from a very similar
Lagrangian

1 1
L=—n%® &, — - pd*
gr/l emb T P



12
but the calculations in [4] seem to use the geodesic Lagrangian, which is given as
L = ®%yutab
and said to produce the equation of motion for Nordstrom’s second theory
ity = D , — Du, (18)

However, the expression is not in a form of a Lagrangian. It can be obtained by
inserting ®i, = ® , into the Langangian

L=%3"% @, = n**0u,diy
which after raising and lowering indices comes to
— (Dznabaa,ub

but if this is the way it is derived, it is for a stationary field, that is, Pu, =0
in the equations of motion (18). Though is it correct to look at the stationary
field in most of the tests of General Relativity (when Nordstrom’s theory gives
the Newtonian potential ® = ®(r)), the calculations in [4] take a time dependent
solution for the wave function and derive properties from it, though the equations
of motion seem to be for the stationary case.

I make different calculations and the conclusions in the subsections are differ-
ent form those in [4]. T hope my calculations are more transparent than the ones
in [4].

3.1 Frequency shift in gravitational fields

Gravitational redshift has been demonstrated in the Pound-Rebka experi-
ment. This redshift is caused by the equivalence principle, which Nordstrom’s
theory satisfies, see [2]. The equations of motion of Nordstrom’s second theory in
a vacuum outside a point mass are Lorentz invariant forms of equations of motion
in classical Newtonian theory as the potential is the Newtonian potential and the

field equation is the wave equation. Thus (18) reduces in this case to

where
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The stationary case ® = ®(r) describes the gravitational field in the Pound-
Rebka experiment and the radial direction is the only relevant one. The radial

acceleration is thus
GM

72

U =

where u = u, is the radial velocity of a photon. The derivation is with respect to

the proper time 7. In the special relativity

u2
r=y/1- (19)

We can use this definition of proper time in this test as the proper time is actually
not needed: the final result is wave lengths in the external time. From the metric

tensor in Nordstrom’s field theory follows that

dr  cAdr
_ — ¢

dt ~  Adt

where the speed of light ¢ is shown explicitly for clarity. Then
du dudrdt 1 du

— = =c
dr dr dt dr / w2 dr
T2

and ro u us/c
/ (—g) dr:/ 2c#du:/ ) c#dy
1 r u1 1-— ’C‘—j u1/c 1—y?
giving
GM ry — 1y i U Uy — U7

. 1 . 2
= arcsln — — arcsin — = =
c [ u?
C — = C
C

The change of the speed u is here expressed as Au/7, that is, the time is the

2 rorg

proper time. In the external time the equation is

GMTQ—Tl_M

2 =

C ToT1 C
Setting ro = R+ h, r1 = R and approximating

GM h GM h
2 (R+hR"~ & R?
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and changing to wave lengths
Au_ AN _ AN
c Af A
gives the redshift in the Pound-Rebka experiment
GM h AN

2 R A

Einstein’s field theory also fills the equivalence principle and passes this test
if the special relativity definition is used for the proper time. In this definition
proper time does not run at all for photons which travel with the speed of light.
In the frame moving with photons the photons do not move at all. Thus, in that
frame no space is moved and no time is used: the speed of light in the proper
time is still ¢. In General Relativity there is another formula given in (20) for the
proper time difference caused by a gravitational field. I leave it to a comment in
the next section to consider what implications it has to the Pound-Rebka redshift

for Schwarzschild’s solution.

3.2 Shapiro time delay in gravitational fields

In the Shapiro time delay test a radar signal is sent from the Earth to another
planet, like Venus, and echoed back to the Earth. A longer delay is measured if the
sun is close to the path than if the sun is far. The expression of the additional delay
contains three distances: the straight line connecting the Earth and the planet is
divided into two parts, one of length z. between the Earth and the connection
point and one of length z, between the planet and the connection point. The sun
is on the distance d on the straight line from connection point orthogonal to the
line from the Earth to the planet. The delay is

2GM | 4dxz,z,
At =~ 3 In 7

This delay is mainly a result of the variable speed of light in a gravitational field.

The delay formula was derived from Schwarzshild’s solution.

Light bends in gravitational fields but the formula for the Shapiro time delay
does not have any parameters for the orbit: the orbit is hyperbolic (or at least
very close to hyperbolic) and we would expect to see the parameters a and b of a

hyperbole
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but they do not appear. This is because the delay caused by bending of the
path is much smaller than the delay caused by the gravitational redshift as in
the Pound-Rebka experiment. We can ignore the bending of the path in the first
order approximation and think about the path as a straight horizontal line. The
sun is at the point (0,d), the Earth is at (—z.,0) and Venus at (z,,0). The
distance d is approximately sun’s radius d ~ 0.6957 * 10%mn. The distance z,
is almost the same as the distance of the Earth from the sun and can be taken
as Te &~ 148 x 109m. The distance =z, is almost the distance of the planet from
the sun. For Venus it is about z, ~ 108 * 109m. The distances z, and T, are
approximations as the distances vary in the orbits, but they are quite sufficient
for this test.

In the General Relativity theory there is the following formula for the proper

time difference caused by a gravitational field

to 1
AT = E\/g()()dt (20)
t1

This formula is scaled in a specific way and the metric tensor must be rescaled in

order to use the formula. Thus, for Nordstrom’s theory in the vacuum

GM
Vi = 0(r) = =
and as it has the quality T—;, the expression for A7 is

to 1
AT:/ C—2w/goodt

t1

that is, otherwise we do not get seconds. In Schwarzschild’s solution

V900 = v B(r)

is a plain number and we have to use the formula as

to
AT = \/ggodt
t1

in order to get seconds.
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We can calculate the proper time for Nordstrom’s theory

to 1
t1 c

and as from the metric tensor Adt = cAds for a line element ds of any path, we
get dt = cds and

z/d 1 2 =z
= dy = In 1+ — +
o V1+y? Y > d

T

~ In(2—

n(2?)

as 7 >> 1. For any smooth f changing x = —y shows that

0 0 Yy

2 _ 2 _ 2
TS / F?)dy / )y
Thus

Tr 1 T T
—dx ~ 1In(222) + In(2=2
/_merda: n( d)—l—n( d)

TeTp

d2)

= In(4

The result for Nordstrom’s theory for the proper time difference is

Ar — _GM In <4mea:p)

c3 d?

This A7 is negative: the proper time goes forward slower than the external time.
It means that light moves slower than c¢. That is, if light travels with the speed
pc, 0 < p < 1, light travels the distance —z, + x, in the time ¢ = %jx”. The
Shapiro time delay measured by an external clock is

Atzw<1_1)
c p
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In the proper time in Nordstrom’s theory light travels with the speed c¢. Thus,

the proper time is 7 = _mefm and the difference between the external time and
proper time is
—Te +X 1
AT:T—t:—ie—i_ p(l——):—At
¢ p

For a roundtrip path we get the delay

At — 2GM In (4xexp>

c3 d?
which is exactly the expression in the Shapiro time delay. Inserting numbers we
get the roundtrip delay as 240us, which agrees with observations.
Let us calculate the Shapiro time delay for Schwarzschild’s solution in a similar

way. We start from

to
AT = Vv Bdt

t1
Next we have to change the integration from time to a space variable. From the

metric tensor of Schwarzschild’s solution
VBdt = cvV/Ady , VBdt=dz

where the (y, z)-coordinates are Cartesian coordinates selected so that y is parallel
to r and z is orthogonal to r. That is, the first expression we get by considering
a move to a direction when dr # 0 and df = dyp = 0. The second expression
corresponds to df # 0 and dr = dyp = 0. The reason for not using the polar
coordinates is that 72df causes unnecessary complications in a simple calculation.

As we assume that the path is closely approximated by a horizontal line we

can write dy and dz with the line element ds as
dy = cos(a)ds

b

x2 + b2
where « is the angle between the horizontal line and the line from (z,y) on the
path to the sun. Thus

A 1/32 x 1 n b d
T=- s
cJs, \ Va2+0? \/1_2G’2_M Va2 + b2

cer

T

——ds

V2 + b2
ds

dz = sin(a)ds
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Assuming that the path is a horizontal line and inserting

1 GM

) ki

1 _ 2GM c?r
c2r

the integral gives

1 [* x
AT = — ——dx
& /—:I:e \V/ -Tz + b2
1GM [*»

L T n b / *r 1 d
c c? J_, v2+0? e —z. Va2 + b2
which is approximated by

T

b [ 7 dz
cJ_, 1+z§ b
GM (™ % d b Tk
4+ “In(4==2
CS e, 1 + i—; b + c Il( d2 )

1 b 4.y, GM Telp
o (retap) + 2o (7) + g ()

This AT does not agree with the Shapiro time delay and we notice that it is
positive: the proper time goes forward faster than the external time. It means that
light moves faster than c. The proper time takes into account the gravitational
redshift also in the case of Schwarzschild’s solution: it is the |/goo term. Without
this delay the speed of light in Scwarzschild’s geometry would be even faster.
The reason for exceeding the speed of light is the geometry of the ball in
Schwarzschild’s geometry. The ratio of the space element to the time element
gives the speed of light. In a flat Minkowski space in Cartesian coordinates the

line element is

1
ds® = —dt* — dz® — dy® — d2”
C

The speed c corresponds to moving the space distance dz in the time %dt. Like-
wise, in spherical coordinates moving dr in the time %dt is moving with the speed
c. In polar coordinates with 6 we get the space element r2df but this still means
moving with the speed of light, only the tangential space element is longer in polar
coordinates.

When the geometry is changed as in Schwarzschild’s solution, moving the

distance of a radial space element v/ Adr in the time element @dt means the
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speed c\/m . As in Schwarzschild’s solution AB is a constant, it means that in
a gravitational field light moves faster than c¢. In proper time it is less, because of
the redshift the speed in the proper time is ¢v/A. This is still above ¢. For most of
the time the path is mostly to the direction of the polar angle. The speed of light
is also faster in this direction since the polar angle element is 72dr and the time
element is Bdt. Instead of r2dr/dt = cr?, which means moving with the speed c,
we get r2dr/+/Bdt. In the proper time it is r2dr/dt but this already includes the
redshift. Therefore there is no gravitational redshift in the polar angle direction
in Schwarzschild’s solution.

A comment on the Pound-Rebka experiment was promised. It is that if
we use the General Relativity definition of proper time (20) instead of (19),
Schwarzschild’s solution gives a blueshift in the Pound-Rebka experiment: the
movement is radial and the integration is over ¢v/A. So, in fact, Einstein’s theory
fails the gravitational redshift test.

Notice also that for Schwarzschild’s solution the calculation does not give the
proper time difference but A7 includes the one-way delay from the Earth to Venus.
It is because the proper time formula is understood differently in Schwarzschild’s
solution. The logic in Schwarzschild’s solution follows the geometric paradigm: in
a flat Minkowski space we can think of the functions A and B in Schwarzschild’s

solution as having the value one. When there is a gravitational field, the field is

2GM M
Q= /goo=1/1- G 1——G
r r

the Newtonian potential added to the potential of a Minkowski space. In the field

paradigm we do not think in this way: there is no gravitational potential in an
empty Minkowski space and the proper time formula gives only the proper time
difference, not the one-way delay.

As a conclusion, Nordstrom’s theory passes the Shapiro time delay test, but

Einstein’s theory fails it.

3.8 The motion of Mercury

Influence of other planets had been carefully studied with Newtonian physics
long before Einstein’s time, even if everything was not yet known such as that
the sun creates a cloud or a field around itself. The known effects did not explain
the precession of the perihelion of Mercury and Einstein proposed a relativistic

explanation for it.



20

I did not name this test the precession of the perihelion of Mercury because
there is a bigger problem in the movement of planets: if the central force is a
stationary Newtonian gravitation force, an elliptic orbit is not possible because
it violates conservation of energy. A direct calculation from equations of motion
confirms this conclusion as will be shown in what follows. In reality, planets
circulate around the sun on ellitic orbits or at least very close to elliptic orbits.
This means that there must be some mechanism by which energy is lost so that
the planes do not escape to the space. Failing to explain this isses should mean

failing the test.

Let us consider the movement of planets around the sun in a fully classical way.
By conservation of the angular momentum and momentum the orbits of two masses
my and meo attracted by a central force can only be circles, ellipses or hyberbolas
around the center of mass in a system where the only force is a central force. The
result does not require that the central force has the r% dependency from the
distance. However, this result does not yet imply that all of these solutions satisfy
other concervation laws when the central force has a particular form. Indeed, the
elliptic orbit does not satisfy conservation of energy for a stationary Newtonian

gravitational force.

To see the energy problem let us take two masses m; being Mercury and ms
the sun. The center of mass is in the line connecting the masses. The distance
from m; to the center of mass being r;. The center of mass is at the point where
To = T1Mmy/Mmy.

The two-body system can be modelled in such a way that there is a stationary
central Newtonian force in the center of mass. The coordinates can be so selected
that the center of mass does not move. The movement is in two dimensions only
and we need two coordinates: r and # with the origin at the center of mass. The
velocities v; of the masses can be divided into radial and angular components v; ,.
and v; 9. The masses move symmetrically around the center of mass as it stays

fixed. The velocities in the 6 direction must satisfy

2

_my
V2,0 = —5 V1,0
my

because the center of mass stays fixed. This is conservation of the angular mo-
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mentum. The velocities in the r direction must also satisfy
m}
Va,r = —35V1r
my
because the total momentum must be zero if the center of mass does not move.

The total kinetic energy is

1
2 2 2 2
Ek = 5 (mlvl,r + mQUZ’T + mlvl’g + mgvlg)

as r and 6 are orthogonal. We get

1 mi
E, = §m—2(m1 + mg)(vir + vig)

By Kepler’s law of areas, which follows from the conservation of the angular mo-

mentum,
T1,min

V1,6 = V1,6,max

™1
where 71 4 is the minimum distance of m; from the center of mass and v1 6 maz
is the tangential velocity m, has at this distance. The velocity is on the #-direction

as the radial velocity v1, mas is zero at the minimum distance. We get

1m 1m ra
Ex(r) = §m—;(m1 + m2)?}%,r + §m—;(m1 +mg) ( 1;“7;”” - 1) /U%,G,ma.x
1

The difference between Ej(r1) and Eg(rimin) is
AEy = Ex(r1,min) — Ex(r1)

1m 1m T2 i
= —l(ml + mz)’l)i,,. + _—1(m1 + m2) ( L 1) ’U%,G,maz

2 ms 2 moy r%

The masses are at the opposite sides of the center of mass. Their distance is

r1 4+ r9 = r1(m1 + ma)/mo. The Newtonian gravitational force between them is

1 mo 1

mime (7‘1 T 7‘2)2 mimao

mi + Mo E
where G is the gravitational constant. The difference in gravitational potential en-

ergy between the situations when the masses are at (ri,r2) and at (71,min, 7'2.min)

2
A, Mg<i_ 1 )

mi + mo T1  T1,min

1s
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By conservation of energy AE, + AE, =0, thus

im—2(m1 + m2)U1,7‘ + §m—2(m1 + my) ( Trgm —1 V1.6,maz

2 1 1
+J@@Lg(__ )
my + me TL  T1,min

Thus

o (im0 +2_ﬂﬂ§_g(i_ ! ) (21)
Lr e BOmar T (mE +ma)?2 T \r T min

Derivating with respect to r; and setting adUTll”" =0 at 71 = 71 min gives

2 3
0= 2T1,min 02 _9 mimsg 1
- 3 1,0,max 2 2 2
1 ” (m{ + my) T1,min

as U1, is zero at 71 min. Thus

3
2 mo 1

v =
1,6, mazx 2 2
v (ml + m2) T1,min

Let us notice as a check-up that this equation gives the centrifugal force as the

left side of . .
2
M1V 0.maz . — mimeG
. . . )2
7 T1,min (Tl,m'm + TZ,mzn)

which is a correct formula as the rotation is around the central point at the distance
T1,min from my and the gravitation force is between the masses having a distance
T1,min + T2,min between them.

Inserting this expression to the equation (21) of v7 . yields

myms G 1

’U% r= 2 3 (7'1 - 7'1,m,in)7'2 (22)

’ (m? +m2)? " —r1 minT
There is a double zero at 7y = 71 min. That means that m, approaches mg, gets
to the minimum and then distances from ms. It does not have another zero at
T1 = T1,maz and thus an elliptic orbit is not possible. The orbit is either a circle,
and then ry = 71 min all the time and vy, = 0 for every r, or the orbit is a

hyperbole. In order to get an elliptic orbit we need a different central force or
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other forces. Some mechanism is necessary for reducing energy so that the radial
velocity can have two zeroes.

Let us check this result in another way. We can by a direct calculation see
if the equation of motion for m; can be an ellipse if there is a central Newtonian
force at the focal point of the ellipse.

Let us take an ellipse

At (xo,y0) the ellipse has the tangent

330
+b—2 :1

The rotation

1 [ 42 12
2=t 2] v

22 b’y  a’yo | |y

z| _1[ a?yo b2zo| [z
y| e | —b%x0 a’yo| | 2o

takes zo to a line parallel to the tangent of the ellipse and z; is orthogonal to
this line. The rotation has the determinant one and therefore does not change the

distances. In coordinates (z1,z2) the equation of ellipse is
2 2 —
zyg —2hz1z9 + €2 —m =0

where
a? b2x12,

h = Toyo—e P
0¥ b6z2 + aby?

a*bt

b8x2 + aby?2
(@ + VoR)a?b?
b8x2 + aby?

e =

zp, =Va%— b2
The rotation takes (xo,¥o), o > 0, yo > 0, to (210, 220) where

1 2
210 = Eﬂfoyoxp
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1
Z90 = —a2b2
c

Solving the elliptic equation gives

d22

2h(21) = 0o =h+ (h? —e)z1(zg — hzy) ™!
Z”(Zl) h2 —€ 1— (h2 —6)2%
2 29 — hz1 (z2 — hz1)?
A calculation shows that
h?2 —e B ca®b?
z20 — hzio  bOxd + aby?
22, _ lx(%ygx; bz2 + aby?

Zo0 —hzio ¢ a?b? bSz3 + aSyi — x%y%xé

Thus 2 2 6,.2 6,2
- (h* — €)z1y _ b°xg + a’yg
(220 — hz10)? b8 + aSy? — x%ﬂ%ﬂfé
and 22
ca
Zé’(zlo) =

- 2 2 2,2 .4
bexg + alys — zgysTy

The left focal point is in the point (—z,,0) in (z,y)-coordinates. Let r be

the distance from the focal point to (xg, yo)
r? = (2o + z) + ¥

Thus, it is also the distance between the focal point in coordinates (z1,z2) and

(210, 220) - We mark the focal point in coordinates (21, 2z2) by (z1p, 22p). The focal

point is at
L,
Z1p = — =@ YoTyp
c
1
Zop = ——b2x0xp
c

We can express xg as a function of r by using y2 = b2(1—z3/a?). The result is

a
=—(r—a
To xp( )
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As xg > 0,y9 > 0 we have r > a. Likewise we solve
yo="b*(1— (r —a)’s;,”)
c= ab\/m
Inserting these to the expression of 24 (z109) we get

B aby/a? — (r — a)?
a*+202(r —a)?2+ (r —a)*

2y (220) =

Let there be a point mass in the focal point and let it exercise gravitation force to
the mass m; moving on the elliptic orbit. The sun is not exactly in the focal point,
but we can take the mass as the mass of the center of mass and that is in the focal
point. The angle 6 between the horizontal line (z; = 0) in the (21, 23)-coordinates

and the line connecting (z1p, 22p) t0 (210, 220) has the tangent

—Z9p + 220
—Z1p + 210

tanf =

Notice that 21, < 0 and 29, < 0 because g > 0,yo > 0. Inserting expressions of
these points as functions of xy and yy we get
b? b

tanf = =
YoTp a2 — (r —a)?

The gravitation force F' between the planet with mass m; and the center of mass
can be divided into two components: Fi,, tangential to the orbit (that is, parallel
to the z;-axis) and F,.; orthogonal to the tangent (that is, parallel to the z5-
axis). The z-axis does not point from (219, 2z20) to the focal point. We have to
take a projection

Fyp = Fsinf |, Fi, = Fsinf

The equation of motion in the orthogonal direction is that the acceleration

along the z5-axis causes the displacement

1 1
57 (210)(d21)” = Saon(dt)’

that is "
2 (210)(d21)? = =24 (dt)?

mi
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dz1 2 F mG

" s a—1

Z5(210)—— sin” "= — = — 23
2 (#10) my 12 (23)
where m is the equivalent mass that we should use for the center of mass. As

. mimeoG
C(rtr)?

and 79 = rmy/mgy is the distance of the sun from the center of mass we get

2
m1 ma

F = —5 My | ————
T my + Mg

2
Thus, m = mq < 2 ) . It is practically mso for the sun and Mercury. In case

mi-+ms
we believe that we know the velocity

dz
v(r) = —
from conservation laws, we can insert the expression here. But this should not be
done without considerations since the previous argument shows that the conser-
vation of energy does not allow an elliptic orbit.

It is better to solve the velocity from tangential acceleration. The tangential
velocity wv(z1) is the velocity of the mass m; at 219 as the mass cannot have
velocity orthogonal to the tangent of its orbit. In the tangential direction the
equation of motion is

v(21) = v(210) + v (210)d21

Fion F
v (210)dz1 = =22 dt = cos(#) —dt
m m

Since J
z
’Ul (210) d—tl = ’Ul(zlo)’l)(zl())

and L d
v (z1)v(21) = §%U(Z1)

we get an equation

210 F
v(z10)? = 2/ 5;1) cos(6)dz

1s

where the lower bound 21, can be selected in a suitable way. The lower bound
only changes the initial value of the tangential velocity and does not affect the

coefficients of the Fourier series of the velocity.
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The equation (23) for the orthogonal direction gave

F(Zl)

v(2z10)% = 2" (210) "' sin(0) -

(24)

Let us write

B(r) = 2" (z10) sin(8) " = at + Zb(;(r__(;);f)(r)— a)?

and notice that as dz; is in the horizontal direction in the (z1, z3) coordinates and

the focal point is down and left of (210, z20) in angle 6 with the horizontal level
dz; = cos(0)dr

This gives the equation

B(r)~1F(r) = 2 / ™ F(r) cos?(0(r))dr (25)

Assuming that z;, is sufficiently small, 215 > 219 > 0, the value

r—a

€E =
a

is small and we can sufficiently well evaluate the sides of this equation as power

series of € to some chosen degree. Changing r — a = ae gives

1 1—é€2
B(T):_ b2 o 4
a1+2a—2€ + €
1 1
F =mG—= =mG———
(r)=m r2 m a?(1+¢)?

Thus ,
1+ 22—262 +et
1 — ¢t

B(r)"'F(r) = amG

b2
=amG(1l + 2962 + M1+ +0(d)

b2 b2
=amG(1 + 2;62 +2¢* + QEGG) + O(e®) (26)
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In the right side of the equation (25) we have

r2 — (r—a)?

cos(f) = \/b2 o —(r—ap

Therefore
9 1—¢€2— %
) = —+
cos“(0) [

and

_ a? 8
a? 1+ ¢t +0O(€)
mG b’ 2 b’ 4 6 8

There remains the integration

2 / ™ F(r) cos?(0(r))dr

15
oG P la Ly Py lay o (27)
a a a
where C' is some constant and it includes the initial value at zi5.

Equation (25) is not filled: (26) and (27) do not match in powers of €. The
elliptic orbit is not a solution to a two body problem with a Newtonian gravitation
force in this fully classical calculation. However, if we set a = b = R, which
implies that z, =0, 7 = a, sin(f) =1, cos(#) = 0, a solution is obtained: v; , is

constant, € = 0, (25) reduces to a MG = constant and (24) reduces to

mG  mG
v(210)% = a5 ==
which is the velocity of a mass on a circular orbit. Thus, a circle is a solution in
this calculation. Also the energy calculation allows a circular orbit as for a circle
71 = T1,min and the radial velocity is zero for all times. In both calculations the
center of the circle is the center of mass.
An ellipse is changed into a hyperbole by replacing b by ib. The formulae for

an ellipse give formulae for a hyperbole if b2 is replaced by —b2. The calculation
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for an ellipse shows that a stationary Newtonian central force does not produce
a mathematical hyperbole, in the same way as it cannot produce a mathematical
elliptic orbit. But there is a difference: an orbit very similar to a hyperbole is
possible because it does not contradict energy conservation: only one double root
for v7, agrees well with the hyperbolic orbit.

Kepler said that planets follow an elliptical orbit with the sun (almost) at
one focal point and that the area law holds. These statements are correct, but
the mathematical explanation of Kepler’s laws for the orbits of planets by the
conservation of the angular momentum and the momentum ignores the problem
there is with conservation of energy. The elliptic orbit cannot be produced by a
single stationary Newtonian central force.

A friction force would make an elliptic orbit possible, but there is little friction
in space. The double root (22) can be broken into two roots also by modifying the
gravitational potential. Let us see if Schwarzschild’s solution can solve the energy
problem. The force in Schwarzschild’s solution is slightly larger than Newtonian

gravitation force. We can change the gravitational potential to
@
Ey=—110

For one value of « this gives the gravitational potential in Schwarzschild’s solution.

The term (71 — 71,min)? in Equation (22) changes to the form

2 2T1,min rl,min(rl,min - 2&)
Tl - 1 7']_ + 1 == O
1+ 2ar17mm 1+ 2ar1,mm

In order to get two roots, 71 min and 71 mas, the equation must equal

T% - (rl,min + Tl,maw)rl + T1,minT1,maz = 0
Matching the parameters yields

. Tl,min(Tl,maz - Tl,min)

2(T1,min + rl,ma,a:)

For the orbit of Mercury 1 min & 45.9%x109m and 71 mee = 69.9%10%m. Inserting
these values we get
o~ —4.7
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This is not the value proposed by Schwarzschild’s solution, thus it cannot explain
the elliptic orbit of Mercury.

I will not try to calculate an predictions for Mercury’s orbit from Nordstrom’s
second theory in this article as I consider it too difficult. T will only briefly discuss
the problematics quantitatively. The suggestion is that when Mercury is close to
the sun it slightly disturbs the stationary field ®(r) and forces a time dependent
solution ®(r,60,t) (or even ®(r,0,1,t)). The wave equation is still almost R =0
but the entries Ro ;, j > 0, are not zeros. The potential ® has a slightly different
r dependency than kr~! coming from the constant needed to separate 7 from the
other coordinates in the solution of the wave equation. As some energy is used for
waves, less energy is left to the gravitational potential and the orbits of planets
can be ellipses. The problem in calculating this is that if one planet disturbs the
sun’s potential, they all do, and the multibody problem becomes difficult.

Nordstrom’s theory does not fail this test: the result is inconclusive. Einstein’s

theory fails this test as Schwarzschild’s solution does not give an elliptic orbit.

3.4 Bending of light from stars by the Sun

Light bends in Nordstrom’s theory: Nordstrom accepted Einstein’s special
relativity and considered light to have mass and the speed of light ¢ to be the
maximal velocity. Consequently, light in Nordstrom’s theory behaves as a test mass
and is attracted by gravity. Nordstrom’s theory gives the Newtonian potential for
the vacuum, ® = ®(r). This stationary gravitational field of the sun may be
disturbed by planets as suggested in 3.3, but the path is at least very close to
a hyperbole. I consider calculating the amount of the bending of the light too
difficult to be done in this article. The result of this test remains inconclusive
for Nordstrom’s theory. What I can do is to discuss the problematics from a
theoretical point of view.

The argument in [4] that that light does not bend in gravitational fields in
Nordstrom’s field theory is based on the following reasoning: Electro-magnetic
fields in Einstein’s theory are described by a stress-energy tensor which is traceless.
Nordstrom’s field equation can be expressed in the geometric form (5). In that
form T on the right side is the trace of T,;. Consequently, light does not bend in
Nordstrom’s theory.

The caveat in this argument is that Ty, in Nordstrom’s theory was originally
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not the T, in Einstein’s theory, though in the last version Nordstrom accepted
FEinstein’s proposals. The right side in Nordstrom’s theory was 4mp or 4nTatter
and this entity contains all mass-energy of the system, including mass-energy of
electro-magnetic fields. We cannot assume that the T,; in Nordstrom’s theory are
exactly the same as in Einstein’s theory.

The argument in [4] can be turned against Einstein’s theory: assuming that
Nordstrom’s theory correctly describes gravitation, the entity 7' must include the
mass-energy of electro-magnetic fields. If T is the trace of Ty, from Einstein’s
theory, then T from does not include the mass-energy electro-magnetic fields as
it should. Therefore T,; in Einstein’s theory must be wrong.

Nordstrom’s theory does not consider the problem how electro-magnetic fields
are included to the field equation. According to [2] Laue discarded Nordstrom’s
theory because he could not couple electro-magnetic fields into it, but maybe this
should be reconsidered. A time dependent ® in Nordstrom’s theory causes R;;,
Jj # i, to differ from zero. These elements may couple electro-magnetic fields to
® in Nordstrom’s theory even though the field equation is only the trace. Nord-
strom’s theory did not say anything of R;;, 7 # ¢, but the theory can be aug-
mented by adding the requirements for these cross entries from Einstein’s theory.
FEinstein’s theory may be incorrect in requiring R;; = 0, but it can pose correct

requirements for the cross entries.

4. Conclusions

My arguments why to question the superiority of Einstein’s field theory over
Nordstrom’s second gravitation theory are three:

1) Nordstrém’s theory is an ordinary field theory, not a geometry. Gravitation
is a field in this theory and in this respect similar to other interactions, potentially
making unification of the interactions easier. Einstein’s theory is a geometry and
the geometry in Schwarzschild’s solution is not even quasiregular to the Euclidian
geometry. The result is that in a gravitational field the speed of light is exceeded
even if only very slightly. Light can go slower than ¢ in Nordstrom’s theory as the
gravitational redshift shows, but if light moves faster than ¢ the theory contradits
special relativity.

2) I do not see any strong reasons for Einstein’s requirement that each R, be

zero. In the Newtonian potential ® = &(r) in Nordstrom’s theory for a stationary
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spherically symmetric field the elements R,, are not all zero. This issue can be
solved by changing the definition of Tj,;: in the vacuum around a point mass the
gravitational field has energy and it should be reflected somewhere, such as in
nonzero elements R, .

Consider a point mass and the vacuum outside it. Placing the point mass
in the origin of spherical coordinates there is a (static) gravitational field in this
vacuum and the field has energy. A spherically symmetric static field does not
depend on the polar angle #, the azimuthal angle 1 or on the time t. As a result
the Ricci curvature tensor entries Ry, a # b, are zero and we may conclude that
Top, a # b, must be zero in such a vacuum. However, the diagonal elements R,
do not disappear for a metric tensor g, as in (3). Therefore T,, are not all zero
in Nordstrom’s theory. 1 suggest that in Nordstrom’s theory in this vacuum case
Top =0 for a # 0 and Ty, fill the condition

g%Too = —g"' Tyy — g% Tog — g% T3

If there is mass-energy in the system, there is a similar difference between the
stress-energy tensors of Nordstrom’s and Einstein’s theory: the diagonal elements
T, are different as the energy of the gravitational field is included in Nordstrom’s
T.» and is missing in Einstein’s but the trace 7' is the same for both theories.
This way of understanding 7' describes the ideas of Nordstrom’s field theory as
an extension of Newtonian gravitation.

3) Nordstrom’s second field theory does not fail any of the four tests of Gen-
eral Relativity. It passes the redshift and Shapiro time delay tests and remains
inconclusive in the Mercury and light bending tests. Einstein’s theory fails the
Shapiro time delay test and if the proper time is defined as in General Relativity
it also fails the redshift test. Additionally, Einstein’s theory fails to explain the
motion of Mercury because Schwarzschild’s solution does not give an elliptic orbit.

In the 1980ies I asked my supervisor for a mathematical topic with physical
connections and I was given a geometric topic on quasiregular mappings between
low-dimensional manifolds. The supervisor mentioned that Schwarzschild’s solu-
tion is very odd: physical fields are images of conformal mappings but the ball
in Schwarzschild’s solution is not even quasiregular to our ball. I read at that
time a book of black holes [5] and concluded that physics apparently can be con-

sistently built on Schwarzschild’s solution and did not look at the issue deeper,
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fortunately, as trying to pass a paper showing Einstein’s field theory wrong would
hardly have been accepted as a Ph.D. thesis. I made the thesis on quasiregu-
lar mappings between closed orientable 3-manifolds. But now, as retired, I can
investigate the geometry of General Relativity and there does seem to be some
problems associated with it.

If Nordstrom’s second field theory turns out to be the correct theory for
gravitation it has some implications. For instance, the discovery of gravitational
waves has been recently questioned, see [6]. In Einstein’s theory gravitational
waves are caused by the Weyl tensor and the way of finding the waves used patterns
for waves derived from Einstein’s theory. It the correct theory is Nordstrom’s
second theory, then the patters are different: one should look for gravitational

waves from the Ricci tensor elements R,p,, a # b.

References:

[1] G. Nordstrom, Phys. Zeit. 13,1126 (1912); G. Nordstrom, Ann. d. Phys.
40, 856 (1913); G. Nordstrom, Ann. d. Phys. 42, 533 (1913); A. Einstein and
A. D. Fokker, Ann. d. Phys. 44, 321 (1914); A. Einstein, Phys. Zeit. 14, 1249
(1914).

[2] J.D. Norton, in The Genesis of General Relativity Vol.3: Theories of Grav-
itation in the Twilight of Classical Physics. Part I. ; Jorgen Renn (ed.) Kluwer
Academic Publishers (2005), www.pitt.edu/jnorton/papers/Nordstroem.pdf

[3] N. Deruelle, Nordstrém’s scalar theory of gravitation and the equivalence
principle. arXiv:1104.4608, 2011.

[4] The current (Dec 2 2018) Wikipedia page on Nordstrom’s gravitational
theory: https://en.wikipedia.org/wiki/Nordstrém’s_theory of _gravitation.

[5] K. S. Thorne, R. H. Price and D.A. MacDonald (eds), Black Holes: The
Membrane Paradigm. Yale University Press, 1986.

[6] M. Brooks, Did we really find gravitational waves: breakthrough physics
result questioned. New Scientist, 3 Nov 2018.



