A Complete Proof Of The ABC Conjecture

Abdelmajid Ben Hadj Salem
6, Rue du Nil, Cité Soliman Er-Riad El-Melnah, 8020 Soliman, Tunisia
E-mail: abenhadjsalema@gmail.com

Abstract: In this paper, supposing that Beal conjecture is true, we give a complete proof of the ABC conjecture. We consider that Beal conjecture is false \Rightarrow we arrive that the ABC conjecture is false. Then taking the negation of the last statement, we obtain: ABC conjecture is true \Rightarrow Beal conjecture is true. But, if the Beal conjecture is true, then we deduce that the ABC conjecture is true.
1. Introduction and notations

Let a a positive integer, $a = \prod a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \geq 1$ positive integers. We call radical of a the integer $\prod a_i$ noted by $\text{rad}(a)$. Then a is written as:

$$a = \prod a_i^{\alpha_i} = \text{rad}(a) \cdot \prod a_i^{\alpha_i-1}$$ \hspace{1cm} (1.1)

We note:

$$\mu_a = \prod a_i^{\alpha_i-1} \implies a = \mu_a \cdot \text{rad}(a)$$ \hspace{1cm} (1.2)

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Oesterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given above:

Conjecture 1.3. (ABC Conjecture): For each $\varepsilon > 0$, there exists $K(\varepsilon) > 0$ such that if a, b, c positive integers relatively prime with $c = a + b$, then:

$$c < K(\varepsilon) \cdot \text{rad}(abc)^{1+\varepsilon}$$ \hspace{1cm} (1.4)

where K is a constant depending only of ε.

This paper about this conjecture is written after the publication of an article in Quanta magazine about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [3]. I try here to give a simple proof that can be understood by undergraduate students. Our proof will suppose that Beal conjecture is true. A paper giving the proof is under reviewing by the referees of Journal of European Mathematical Society ([2])

We recall the Beal conjecture:

Conjecture 1.5. Let $A, B, C, m, n,$ and l be positive integers with $m, n, l > 2$. If:

$$A^m + B^n = C^l$$ \hspace{1cm} (1.6)

then $A, B,$ and C have a common factor.

2. Methodology of the proof

We note:

A: Beal Conjecture \hspace{1cm} (2.1)
B: ABC Conjecture \hspace{1cm} (2.2)
and we use the following property:

\[A(False) \implies B(False) \iff B(True) \implies A(True) \]

From the right equivalent expression in the box above, as A (the Beal Conjecture) is supposing true, then B (ABC Conjecture) is true.

3. **Proof of the conjecture (1.5)**

We suppose that Beal conjecture is false, then it exists \(A, B, C \) positive coprime integers and \(m, n, l \) positive integers all \(> 2 \) such:

\[A^m + B^n = C^l \]

(3.1)

the integers \(A, B, C, m, n, l \) are supposed large integers. We consider in the following that \(A^m > B^n \).

Now, we use the ABC conjecture for equation (3.1). We choose the value of \(\varepsilon \approx 0.001 \), then it exists the constant \(K(\varepsilon) > 0 \), such:

\[C^l < K(\varepsilon) \text{rad}(A^m B^n C^l)^{1+\varepsilon} \]

\[C^l < K(\varepsilon) (\text{rad}(A) \cdot \text{rad}(B) \cdot \text{rad}(C))^{1+\varepsilon} \]

(3.2)

But \(\text{rad}(A) \leq A < C^{\frac{1}{m}} \), \(\text{rad}(B) \leq B < C^{\frac{1}{n}} \) and \(\text{rad}(C) \leq C \), then we write (3.2) as :

\[C^l < K(\varepsilon) (\text{rad}(A) \cdot \text{rad}(B) \cdot \text{rad}(C))^{1+\varepsilon} \implies C^l < K(\varepsilon) C^{(1+\frac{1}{m}+\frac{1}{n}) (1+\varepsilon)} \]

(3.3)

3.1 **Case \(K(\varepsilon) \leq 1 \)**

In this case, we obtain:

\[C^l < C^{(1+\frac{1}{m}+\frac{1}{n}) (1+\varepsilon)} \]

(3.4)

As \(\varepsilon \ll 1 \), \((1+\varepsilon) \left(1 + \frac{1}{m} + \frac{1}{n} \right) < l \), then \(C^l > K(\varepsilon) \text{rad}(A^m B^n C^l)^{1+\varepsilon} \) and the ABC conjecture is false. Using the right member of the property (2.3), we obtain:

\[ABC \text{Conjecture True} \implies \text{Beal Conjecture True} \]

(3.5)

But as Beal Conjecture is supposed true, hence \(ABC \) Conjecture is true.

3.2 **Case \(K(\varepsilon) > 1 \) and \(C^l > K(\varepsilon) \)**

In this case, Let \(\varepsilon \approx 0.001 \) and we suppose that \(K(\varepsilon) > 1 \). As Beal conjecture is false, we consider that it exits a solution of (3.1) such that \(C^l > K(\varepsilon) \) with \(C^l \gg_C K(\varepsilon) \) that means that \(\exists \lambda \) a positive constant depending of \(C \) such \(C^l = \lambda \cdot K(\varepsilon) \) and \(\lambda \approx C^h \) with \((l-h) < \frac{l}{2} \). Then :

\[C^l < K(\varepsilon) \left(C^{l+\frac{1}{m}+\frac{1}{n}} \right)^{1+\varepsilon} \]

(3.6)

The last equation can be written as :

\[\lambda < \left(C^{l+\frac{1}{m}+\frac{1}{n}} \right)^{1+\varepsilon} \]

(3.7)
or:

\[\lambda < C^{\left(1+\frac{\epsilon}{\epsilon}+\frac{\epsilon}{n}\right)\left(1+\epsilon\right)} \]

(3.8)

Let:

\[q = \left(1 + \frac{l}{m} + \frac{l}{n}\right)\cdot(1 + \epsilon) \]

(3.9)

\[\epsilon' = \frac{l}{m} + \frac{l}{n} \]

(3.10)

3.2.1 Case \(m > l \) and \(n > l \)

In this case, \(\epsilon' < 2 \implies q = (1 + \epsilon)(1 + \epsilon') \approx 2 \), using (3.8), we arrive to \(\lambda < C^2 \) which is a contradiction with \((l - h) < 1/2\, l \) is supposed a large integer, then \(ABC\) conjecture is false. Using (3.5), we deduce that the \(ABC\) conjecture is true.

3.2.2 Case \(m < l \) and \(n < l \)

In this case, \(C > A \implies C^n > A^n \implies B^n \implies C^n \implies C^l - A^m \implies A^m > C^l - C^m \implies A^m > C^m\left(C^{l-m} - 1\right) \). As \(l > m \implies C^{l-m} - 1 > 1 \), then \(A^m > C^m \implies A > C \) that is a contradiction with \(C > A \). Hence \(C < A \). We rewrite equations (3.2):

\[C^l < K(\epsilon)\text{rad}(A^nB^nC^l)^{1+\epsilon} \]
\[C^l < K(\epsilon)\left(\text{rad}(A)\cdot\text{rad}(B)\cdot\text{rad}(C)\right)^{1+\epsilon} \leq K(\epsilon)(A.B.C)^{1+\epsilon} \]
\[\implies C^l < K(\epsilon)(A.B.C)^{1+\epsilon} \]

(3.11)

Then:

\[C^l < K(\epsilon)(A.B.C)^{1+\epsilon} \]

(3.12)

As \(B^m < A^n \implies B < A^{\frac{n}{m}} \) and \(C < A \), then we obtain:

\[C^l < K(\epsilon)A^{\left(2+\frac{n}{m}\right)(1+\epsilon)} \]

(3.13)

If \(m > n \), we have:

\[C^l < K(\epsilon)A^2 \]

(3.14)

we arrive to \(\lambda < A^2 \leq A^{m/2} \leq C^{l/2} \) which is a contradiction with \((l - h) < 1/2\, l \) is supposed a large integer, then \(ABC\) conjecture is false. Using (3.5), we deduce that the \(ABC\) conjecture is true.

We suppose that \(m < n \). If \(B > A \implies B^n > A^n \implies B^n > A^n \implies B^n > A^m \), it is a contradiction with \(A^m > B^n \). Then \(B < A \) and equation (3.12) becomes:

\[C^l < K(\epsilon)(A.A.A)^{1+\epsilon} \implies C^l < K(\epsilon)A^{3(1+\epsilon)} \approx K(\epsilon)A^3 \]

(3.15)

we arrive to \(\lambda < A^3 \leq A^{m/2} \leq C^{l/2} \) which is a contradiction with \((l - h) < 1/2\, l \) is supposed a large integer, then \(ABC\) conjecture is false. Using (3.5), we deduce that the \(ABC\) conjecture is true.
3.2.3 Case \(m < l \) and \(n > l \)

If \(C < A \), as \(l < n \Rightarrow C^l < A^n \Rightarrow 0 < A^m - B^n \) then \(A > B \). As \(C^n > C^l > B^n \Rightarrow C^n > B^n \Rightarrow \boxed{C > B} \). So we obtain:

\[
B < C < A
\] \hspace{1cm} (3.16)

Then the equation (3.12) becomes:

\[
C^l < K(\varepsilon) (A.B.C)^{1+\varepsilon} \Rightarrow C^l < K(\varepsilon) \left(A.A^{1/n}.A\right)^{1+\varepsilon} \Rightarrow C^l < K(\varepsilon) A^{(1/n)(1+\varepsilon)} \approx K(\varepsilon) A^2 \quad (3.17)
\]

we arrive to \(\lambda < A^2 \leq A^{m/2} < C^{l/2} \) which is a contradiction with \((l - h) < l/2 \), \(l \) is supposed a large integer, then \(ABC \) conjecture is false. Using (3.5), we deduce that the \(ABC \) conjecture is true.

If \(A < C \Rightarrow A^l < C^l \) but \(B^n < A^m \Rightarrow A^l < 2A^m \Rightarrow A^l < A^{m+1} \Rightarrow l < m+1 \), as \(m < l \Rightarrow m+1 \leq l < m+1 \) that is a contradiction, then \(\boxed{C < A} \) and this case is studied above.

3.2.4 Case \(m > l \) and \(n < l \)

We have \(n < l < m \). As \(A^m < C^l \Rightarrow A < C^{l/n} \Rightarrow \boxed{A < C} \). As \(2B^n < C^l \Rightarrow B < \frac{C^n}{2^n} \). The equation (3.12) becomes:

\[
C^l < K(\varepsilon) (A.B.C)^{1+\varepsilon} \Rightarrow C^l < K(\varepsilon) \left(C_n, \frac{C^n}{2^n} C\right)^{1+\varepsilon} \\
\Rightarrow C^l < K(\varepsilon)2^{1+\varepsilon}C^{(1+1/m+1/n)(1+\varepsilon)} < K(\varepsilon)C^{1+1/m+1/n} \approx K(\varepsilon)C^{1+1/n} \quad (3.18)
\]

Then:

\[
\lambda \approx C^{1+1/n} \quad (3.19)
\]

As it supposed that \(\lambda \approx C^{h} \) with \((l - h) < l/2 \), we find that \(l - h = l - 1 - l/n < l/2 \Rightarrow l - l/n \leq 1/2 \Rightarrow n \leq 2 \) that is contradiction with \(n \geq 3 \), then the \(ABC \) conjecture is false. Using (3.5), we deduce that the \(ABC \) conjecture is true.

3.3 Case \(K(\varepsilon) > 1 \) and \(C^l < K(\varepsilon) \)

We consider \(\varepsilon = 0.001 \) and we suppose that \(K(\varepsilon) > 1 \). As Beal conjecture is false, we consider that it exits a unique solution of (3.1) such that \(C^l < K(\varepsilon) \):

\[
C^l = A^m + B^n \quad (3.20)
\]

We obtain that:

\[
C^l < K(\varepsilon) R(A^m B^n C^l)^{1+\varepsilon} \quad (3.21)
\]

and the \(ABC \) conjecture is true for \(C^l = A^m + B^n \), but there is a contradiction because the hypothesis of the beginning used for the proof is false, then this case is to reject.

The proof of the \(ABC \) conjecture is achieved.
4. Conclusion

Supposing that Beal conjecture is true, we have given a proof that the ABC conjecture is true. We can announce the important theorem:

Theorem 1. (David Masser, Joseph Oesterlé & Abdelmajid Ben Hadj Salem; 2018) Let a, b, c positive integers relatively prime with $c = a + b$, then for each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that:

$$c < K(\varepsilon).\text{rad}(abc)^{1+\varepsilon}$$

where $K(\varepsilon)$ depends only of ε.

References

